Volume 4 Number 5 (Sep. 2014)
Home > Archive > 2014 > Volume 4 Number 5 (Sep. 2014) >
IJAPM 2014 Vol.4(5): 313-323 ISSN: 2010-362X
DOI: 10.7763/IJAPM.2014.V4.304

Curvelet Based Multiresolution Analysis of Graph Neural Networks

Bharat Bhosale
Abstract—Multiresolution techniques are deeply related to image/signal processing, biological and computer vision, scientific computing, optical data analysis. Improving quality of noisy signals/images has been an active area of research in many years. Although wavelets have been widely used in signal processing, they have limitations with orientation selectivity and hence, they fail to represent changing geometric features along edges effectively. Curvelet transform on the contrary exhibits good reconstruction of the edge data by incorporating a directional component to the conventional wavelet transform and can be robustly used in the analysis of complex neural networks; which in turn are represented by graphs, called Graph Neural Networks.
This paper explores the application of curvelet transform in the analysis of such complex networks. Especially, a technique of Fast Discrete Curvelet Transform de-noising with the Independent Component Analysis (ICA) for the separation of noisy signals is discussed. Two different approaches viz. separating noisy mixed signals using fast ICA algorithm and then applying Curvelet thresholding to de-noise the resulting signal, and the other one that uses Curvelet thresholding to de-noise the mixed signals and then the fast ICA algorithm to separate the de-noised signals are presented for the purpose. The Signal-to-Noise Ratio and Root Mean Square Error are used as metrics to evaluate the quality of the separated signals.

Index Terms—Curvelet transform, graph neural networks, curvelet thresholding, denoising.

Bharat Bhosale is with S. H. Kelkar College of Arts, Commerce and Science, University of Mumbai, Devgad 416613 (M.S.), India (email: bn.bhosale@rediffmail.com).

Cite: Bharat Bhosale, "Curvelet Based Multiresolution Analysis of Graph Neural Networks," International Journal of Applied Physics and Mathematics vol. 4, no. 5, pp. 313-323, 2014.

General Information

ISSN: 2010-362X
Frequency: Bimonthly (2011-2014); Quarterly (Since 2015)
DOI: 10.17706/IJAPM
Editor-in-Chief: Prof. Haydar Akca
Abstracting/ Indexing: Index Copernicus, EI (INSPEC, IET), Chemical Abstracts Services (CAS), Electronic Journals Library, Nanowerk Database, Google Scholar, EBSCO, and ProQuest
E-mail: ijapm@iap.org
  • Aug 06, 2018 News!

    IJAPM Vol 7, No 1-No 3 have been indexed by EI (Inspec)   [Click]

  • Oct 10, 2018 News!

    The paper published in Vol 8, No 4 has received dois from Crossref

  • Sep 29, 2018 News!

    Vol 8, No 4 has been published with online version     [Click]

  • Apr 23, 2018 News!

    The paper published in Vol 8, No 3 has received dois from Crossref

  • Apr 19, 2018 News!

    Vol 8, No 3 has been published with online version     [Click]

  • Read more>>
  • 2018和彩往期 ,六和彩四小尾数 ,香港六和彩的开奖记录
  • 香港白小姐一肖一码28,香港白小姐一肖一码
  • 香港马会免费资料大全,香港马会免费资料内部资料公开
  • 现场报码www.0077kj.com,现场开奖.com
  • 2018年欲钱料正版2018年欲钱料正版大全2018年歇后语001 一153
  • 香港开i奖现场直播视频, 香港骞马会管家婆玄机彩图
  • 彩虹六号猎恐是人机吗,彩虹六号每日挑战
  • 香港创富国际交易中心香港创富彩图库香港创富网
  • 2018年香港开奖结果2018年香港开奖结果历史记录2018年香港开奖结果现场直播