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Abstract: Multiresolution techniques are deeply related to image/signal processing, biological and 

computer vision, scientific computing, optical data analysis. Improving quality of noisy signals/images has 

been an active area of research in many years. Although wavelets have been widely used in signal 

processing, they have limitations with orientation selectivity and hence, they fail to represent changing 

geometric features along edges effectively. Curvelet transform on the contrary exhibits good reconstruction 

of the edge data by incorporating a directional component to the conventional wavelet transform and can 

be robustly used in the analysis of complex neural networks; which in turn are represented by graphs, 

called Graph Neural Networks.  

This paper explores the application of curvelet transform in the analysis of such complex networks. 

Especially, a technique of Fast Discrete Curvelet Transform de-noising with the Independent Component 

Analysis (ICA) for the separation of noisy signals is discussed. Two different approaches viz. separating 

noisy mixed signals using fast ICA algorithm and then applying Curvelet thresholding to de-noise the 

resulting signal, and the other one that uses Curvelet thresholding to de-noise the mixed signals and then 

the fast ICA algorithm to separate the de-noised signals are presented for the purpose. The Signal-to-Noise 

Ratio and Root Mean Square Error are used as metrics to evaluate the quality of the separated signals. 
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1. Introduction 

Many underlying relationships among data in several areas of science and engineering, e.g. computer 

vision, molecular chemistry, molecular biology, pattern recognition, data mining, can be represented in 

terms of graphs. The complex networks like neural networks are also represented with the help of graphs 

by showing the computational elements, neurons of the network. Network analysis has many practical 

applications, for example, to model and analyze traffic networks. The applications include analysis to 

determine structural properties of a network such as the distribution of vertex degrees and the diameter of 

the graph, to find a measurable quantity within the network, for example, for a transportation network, the 

level of vehicular flow within any portion of it, and the analysis of dynamical properties of networks. 

In recent years many important properties of complex networks have been delineated and studied the 

relationship between the structural properties, nature of dynamics taking place on these networks. For 

instance, the 'synchronizability' of complex networks of coupled oscillators can be determined by graph 

spectral analysis. These developments in the theory of complex networks have inspired new applications in 
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the field of neuroscience such as study of models of neural networks, anatomical connectivity, and 

functional connectivity based upon functional magnetic resonance imaging (fMRI), electroencephalography 

(EEG) and magnetoencephalography (MEG). The recent applications of network theory to neuroscience 

such as modeling of neural dynamics on complex networks; graph theoretical analysis of neuroanatomical 

networks; and applications of graph analysis to study functional connectivity with fMRI, EEG and MEG are 

discussed at length [1].  

A graph is an abstract representation of complex network. Many types of relations and process dynamics 

in physical, biological, social and information systems can be modeled with graphs. Graph analysis has been 

used in the study of models of neural networks, anatomical connectivity, and functional connectivity. These 

developments in the theory of complex networks have inspired new applications in the upcoming field of 

neuroscience including neural networks. Many practical problems can be represented by graphs that can be 

used to model different types of relations and process dynamics in physical, social and information systems. 

In mathematics, graphs are useful in geometry and certain parts of topology, e.g. Knot Theory. Algebraic 

graph theory has close links with group theory. In computer science, graphs are used to represent networks 

of communication, data organization, computational devices, the flow of computation, etc. Graph theory is 

also used to study molecules in chemistry and physics. In condensed matter physics, the three dimensional 

structure of complicated simulated atomic structures can be studied quantitatively by gathering statistics 

on graph-theoretic properties related to the topology of the atoms. For example, Franzblau's shortest-path 

(SP) rings. In chemistry, a graph makes a natural model for a molecule, where vertices represent atoms and 

edges bonds. This approach is especially used in computer processing of molecular structures, ranging from 

chemical editors to database searching. In statistical physics, graphs can represent local connections 

between interacting parts of a system, as well as the dynamics of a physical process on such systems. 

Likewise, graph theory is useful in biology and conservation efforts where a vertex can represent regions 

where certain species exist (or habitats) and the edges represent migration paths, or movement between 

the regions. This information is important when looking at breeding patterns or tracking the spread of 

disease, parasites or how changes to the movement can affect other species. In sum, many underlying 

relationships among data in several areas of science and engineering, e.g., computer vision, molecular 

chemistry, molecular biology, pattern recognition, and data mining, can be represented in terms of graphs 

and the graph theoretic approach can be employed to analyse such complex data. 

In recent years many important properties of complex networks have been delineated and studied the 

relationship between the structural properties, nature of dynamics taking place on these networks. For 

instance, the 'synchronizability' of complex networks of coupled oscillators can be determined by graph 

spectral analysis. These developments in the theory of complex networks have inspired new applications in 

the field of neuroscience such as study of models of neural networks, anatomical connectivity, and 

functional connectivity based upon functional magnetic resonance imaging (fMRI), electroencephalography 

(EEG) and magnetoencephalography (MEG). The recent applications of network theory to neuroscience 

such as modelling of neural dynamics on complex networks; graph theoretical analysis of neuroanatomical 

networks; and applications of graph analysis to studies of functional connectivity with fMRI, EEG and MEG 

are discussed at length. The complex networks like neural networks are also represented with the help of 

graphs by showing the computational elements, neurons of the network. Each node corresponds to one 

neuron and the arrows usually denote weighted sums of the values from other neurons. 

Recently various approaches have been unified in neural network model called graph neural networks 

(GNN), which is used for processing the data represented in graph domains. The GNN are of two kinds viz. 

Biological neural networks (BNN) and Artificial neural networks (ANN) [2]. BNNs are of objective existence, 

in which the neurons are linked as a network in a certain order, e.g. human neural network is the most 

intelligent network system. The ANN are aimed at modeling the organization principles of central neural 
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system, with the hope that the biologically inspired computing capabilities of ANN will allow the cognitive 

and sensory tasks to be performed more easily and satisfactorily [3]. GNNs have been proved to be sort of 

universal approximator for functions on graphs and have been applied to several problems, including spam 

detection, object localization in images, molecule classification [4]. A novel neural network model that 

extends existing neural network methods for processing the data represented in the graph domain is 

considered in this work for curvelet based multi-resolution analysis.  

Of late, wavelet based multi-resolution techniques are widely used in image/signal processing, biological 

and computer vision, scientific computing, optical data analysis. In our earlier works, we have also explored 

the applications of wavelet techniques in analyzing solitons [5], random processes [6], bio-informatics [7], 

neural networks [8]. Since Olshausen and Field’s work in Nature [9], researchers in biological vision have 

discussed the similarity between vision and multi-scale image processing. However, wavelets do not 

provide a good direction selectivity, which is also an important response property of simple cells and 

neurons at stages of the visual pathway. To overcome this discrepancy, an anisotropic geometric wavelet 

transform, named ridgelet transform, was proposed by Candès and Donoho in1999 [10]. The ridgelet 

transform is optimal at representing straight-line singularities but global straight-line singularities are 

rarely observed in real applications. To analyze local line or curve singularities, the obvious way is to 

consider a partition of the image, and then to apply the ridgelet transform to the resulting sub-images. This 

block ridgelet-based transform, named curvelet transform, was first proposed by Candès and Donoho in 

2000 [11]. Curvelet transform is a new extension of wavelet transform which aims to deal with interesting 

phenomena occurring along curved edges in 2D images. In the 2D case, the curvelet transform allows 

optimal sparse representation of objects with singularities along smooth curves. Moreover, the curvelet 

methods preserve the edges and the structures better than wavelet transform. Recently, denoising images 

using curvelet transform approach has been widely used in many fields for its ability to obtain high quality 

images [12]. Curvelet transform is a special multi-scale pyramid with many directions and positions at each 

decomposition scale. Therefore, the curvelet transform is more suitable than all other multi-scale 

transforms including wavelet in signal and image applications including, filtering, enhancement, 

compression, de-noising, and watermarking. The curvelets act as analytic signal filters in signal processing. 

The analytic signal filters are important in signal processing, because they yield a meaningful 

decomposition of filtered signal into amplitude and phase, where the amplitude has the interpretation of 

the envelope of the signal. We consider various forms of the curvelet transform in the following section. 

2. Notations and Terminologies 

In the most common sense of the term, a graph is an ordered pair 𝐺 = (𝐸, 𝑉) comprising a set V of 

vertices or nodes together with a set E of edges or lines, which are 2-element subsets of V (i.e., an edge is 

related with two vertices, and the relation is represented as unordered pair of the vertices with respect to 

the particular edge). A vertex may exist in a graph and not belong to an edge. The presence of an edge 

between two vertices indicates the presence of some kind of interaction or connection between the vertices 

(the interpretation depends upon what is being modelled with the graph). The order of a graph  𝑉 , is the 

number of vertices. A graph's size is  𝐸  the number of edges. The degree of a vertex is the number of 

edges that connect to it, where an edge that connects to the vertex at both ends (a loop) is counted twice. 

As an extension of the simple graph is a weighted graph 𝐺 = (𝐸, 𝑉, 𝑤) that consists of a set of vertices, a 

set of edges 𝐸, and a weight function 

 𝑤 ∶  𝐸 →  𝑅+ which assigns a positive weight to each edge.  The adjacency matrix 𝐴 for a weighted 

graph 𝐺 is the 𝑁 ×  𝑁 matrix that contains the information about the connectivity structure of the graph. 

When an edge exists between two vertices 𝑖 and 𝑗, the corresponding entry of the adjacency matrix 

is 𝐴𝑖𝑗  =  1; otherwise 𝐴𝑖𝑗  =  0. The likelihood 𝑃(𝑘) that a randomly chosen vertex will have degree 𝑘 is 

International Journal of Applied Physics and Mathematics

315 Volume 4, Number 5, September 2014



  

given by the degree distribution: it is a plot of 𝑃(𝑘) as a function of 𝑘. The degree distribution can have 

different forms: Gaussian, binomial, Poisson, exponential or power law. 

For a weighted graph, the degree of each vertex 𝑚, written as 𝑑(𝑚), is defined as the sum of the weights 

of all the edges incident to it. This implies 𝑑(𝑚)  =   𝐴𝑚,𝑛 .𝑛   

Every real valued function 𝑓 ∶  𝑉 →  𝑅 on the vertices of the graph 𝐺 can be viewed as a vector in 𝑅𝑁 , 

where the value of 𝑓 on each vertex defines each coordinate. This implies an implicit numbering of the 

vertices. 

3. Curvelet Transform 

Continuous Curvelet Transform: A Continuous Curvelet Transform (CCT) 𝑓 →  𝛤𝑓(𝑎, 𝑏, 𝜃) of functions 

𝑓(𝑥1, 𝑥2) on 𝑅2, into a transform domain with continuous scale  a > 0, location  𝑏 ∈  𝑅2, and orientation 

 

Basically, the construction of curvelets involves two main ideas viz. one, considering polar coordinates in 

frequency domain and two, constructing curvelet elements being locally supported near wedges 

As we work in 𝑅2, we denote with 𝑥 =  (𝑥1;  𝑥2)𝑇  the spatial variable, and 𝜉 =  𝜉1, 𝜉2 
𝑇  the variable in 

frequency domain. The polar coordinates in frequency domain can be defined as 𝑟 =  𝜉1
2 + 𝜉2

2, 𝜔 =

𝑎𝑟𝑐𝑡𝑎𝑛
𝜉1

𝜉2
 . 

Starting with a pair of windows W(r) and V (t), called as ‘radial window’ and ‘angular window’, 

respectively that obey the admissibility conditions 

 

                      𝑊(𝑎𝑟)2 𝑑𝑎

𝑎

∞

0
= 1, ∀𝑟 > 0,  𝑉(𝑡)2𝑑𝑡

1

−1
= 1                            (1) 

                      

These windows are both smooth, nonnegative and real-valued, with W taking positive real arguments and 

supported on 𝑟 ∈  (1/2, 2) and V taking real arguments and supported for 

 

𝑡 ∈  [−1, 1]. 

 

For this purpose, the scaled Meyer window functions are considered the most fundamental window 

functions.  

 

 

 

                       (2) 

                 

where 𝜈 is a smooth function satisfying 

𝜈 𝑧 =  
0, 𝑧 ≤ 0
1, 𝑧 ≥ 1

  , 𝜈 𝑧 + 𝜈 1 − 𝑧 = 1, 𝑧 ∈ 𝑅 

The windows (2) will be used to construct a family of complex-valued waveforms with three parameters, 

the scale 𝑎 ∈ (0;  1], the location 𝑏 ∈ 𝑅2, and the orientation 𝜃 ∈  [0;  2𝜋) 
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𝜃 ∈ [0, 2π) is devised as follows.

𝑉 𝑡 =  
1,  𝑡 ≤ 1/3

cos π/2𝜈 3 𝑡 − 1  , 1/3 ≤  𝑡 ≤ 2/3
0, 𝑒𝑙𝑠𝑒

 

𝑊 𝑟 =  

cos π/2𝜈 5 − 6𝑟  , 2/3 ≤ 𝑟 ≤ 5/6
1, 5/6 ≤ 𝑟 ≤ 4/3

cos π/2𝜈 3𝑟 − 4  , 4/3 ≤ 𝑟 ≤ 5/3,0, 𝑒𝑙𝑠𝑒

       



  

Using the polar coordinates (𝑟;  𝜔) in frequency domain, the a-scaled window can be given as 

 

𝑈𝑎 = 𝑎3/4𝑊 𝑎𝑟 𝑉  
𝜔

 𝑎
 ,                                     (3) 

                                                          

for some 𝑎 with 0 < 𝑎 ≤ 1 

This window 𝑈𝑎  is applied for building curvelet functions as follows.  

Let the basic element 𝛾𝑎,0,0 ∈ 𝐿2(𝑅2) be given by its Fourier transform 𝛾 𝑎,0,0 = 𝑈𝑎(𝜉) and let the curvelet 

family be generated by translation and rotation of the basic element 𝛾𝑎,0,0, 

 

𝛾𝑎,𝑏,𝜃 𝑧 = 𝛾𝑎,0,0 𝑅𝜃 𝑧 − 𝑏                                         (4) 

                                                    

with the translation 𝑏 ∈ 𝑅2,  

where 𝑅𝜃 =  
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

  is the 2 × 2 rotation matrix with angle 𝜃. 

Now use these windows in the frequency domain to construct a family of analyzing elements with three 

parameters: scale a > 0, location 𝑏 ∈  𝑹𝟐 and orientation θ ∈ [0, 2π). 

At scale a, the family is generated by translation and rotation of a basic element 𝛾𝑎00: 

 

       𝛾𝑎𝑏𝜃 (𝑥)  =  𝛾𝑎00(𝑅𝜃 𝑥 −  𝑏 )                                       (5) 

                                       

where 𝑅𝜃  is the 2 × 2 rotation matrix effecting planar rotation by θ radians.  

Equipped with this family of curvelets, define a CCT, 𝛤𝑓  , a function on scale/location/direction space 

given by [6] 

 

  𝛤𝑓(𝑎, 𝑏, 𝜃)  =   𝑓, 𝛾𝑎𝑏𝜃  , 𝑎 < 𝑎0, 𝑏 ∈  𝑹𝟐, 𝜃 ∈  [0, 2𝜋)                     (6) 

 

where  𝑓, 𝛾𝑎𝑏𝜃   is the inner products of function  f onto analyzing elements, 𝛾𝑎𝑏𝜃 , called curvelets.  

In other words, applying this family of high frequency elements  

 𝛾𝑎,𝑏,𝜃 :  0,1 , 𝑏 ∈ 𝑅2, 𝜃 ∈ [0,2𝜋 , the CCT 𝛤𝑓  of 𝑓 ∈ 𝐿2 𝑅2 , the curvelet transform is given as  

𝛤𝑓 𝑎, 𝑏, 𝜃 =  𝛾𝑎,𝑏,𝜃 , 𝑓 =  𝛾𝑎,𝑏,𝜃 𝑥 𝑓(𝑥)      𝑑𝑥
 

𝑅2 . 

The reproducible formula can also be given as 

 

𝑓 𝑥 =  𝛤𝑓 𝑎, 𝑏, 𝜃 𝛾𝑎𝑏𝜃  𝑥 𝜇(𝑑𝑎 𝑑𝑏 𝑑𝜃)                         (7) 

                                                                      

 𝑓 𝐿2
2 =   𝛤𝑓 𝑎, 𝑏, 𝜃  

2
𝜇(𝑑𝑎 𝑑𝑏 𝑑𝜃) 

 

where, 𝜇 denotes the reference measure 

 

𝑑𝜇 =  
𝑑𝑎

𝑎3
𝑑𝑏 𝑑𝜃 

 

This formula is valid for 𝑓 ∈  𝐿2 that has a Fourier transform vanishing for |𝜉|  <  2/𝑎0. 

A polar “wedge” supported by the radial window {W(r)} and angular window {V(r)}, 𝑈𝑗  in the Fourier 
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domain is defined as 

 

  𝑈𝑗  𝑟, 𝜔 = 2−3𝑗/4 𝑊 2−𝑗 𝑟 𝑉  
2𝑗 /2𝜔

2𝜋
                                  (8) 

 

The basic curvelet is then defined as 𝛾 𝑗 ,0,0 𝜉 = 𝑈𝑗 (𝜉), and the family of curvelet functions is given as  

 

       𝛾𝑗 ,𝑘,𝑙 𝑥 = 𝛾𝑗 ,0,0  𝑅𝜃𝑗 ,𝑙
 𝑥 − 𝑏𝑘

𝑗 ,𝑙
                                    (9) 

                                           

Further, to construct the discrete curvelet transform (DCT), choose the scales 𝑎𝑗 = 2−𝑗 , 𝑗 ≥ 0; the 

equidistant sequence of rotation angles 𝜃𝑗 ,𝑙 , 

𝜃𝑗 ,𝑙 =
𝜋𝑙2− 𝑗/2 

2
 with 𝑙 = 0,1,… ,4. 2 𝑗 /2 − 1; the positions 𝑏𝑘

𝑗 ,𝑙
= 𝑏𝑘1 ,𝑘2

𝑗 ,𝑙
= 𝑅𝜃𝑗 ,𝑙

−1  
𝑘1

2𝑗
,
𝑘2

2𝑗 /2 , with 𝑘1, 𝑘2 ∈ 𝑍, and 

where 𝑅𝜃  denotes the rotation matrix with angle 𝜃. 

This choice will lead to a discrete curvelet system that forms a tight frame, i.e., every function 

𝑓 ∈  𝐿2(𝑅2) will be representable by a curvelet series, 𝑓 =   𝑓, 𝛾𝑗 ,𝑘,𝑙 𝛾𝑗 ,𝑘,𝑙𝑗 ,𝑘,𝑙 , for which the Parseval identity 

   𝑓, 𝛾𝑗 ,𝑘,𝑙  
2

𝑗 ,𝑘,𝑙 =  𝑓 𝐿2(𝑅2)
2 , ∀𝑓 ∈ 𝐿2(𝑅2)  holds. This ensures that the discrete curvelet transform will be 

invertible. 

The terms in the above series, 𝑐𝑗 ,𝑘,𝑙 𝑓 =  𝑓, 𝛾𝑗 ,𝑘,𝑙  are the curvelet coefficients. In particular, we can obtain 

𝑐𝑗 ,𝑘,𝑙 𝑓  by Plancherel's Theorem for 𝑗 ≥ 0  as 𝑐𝑗 ,𝑘,𝑙 𝑓 =  𝑓 𝑥 𝛾𝑗 ,𝑘,𝑙       𝑥 𝑑𝑥
 

𝑅2 =  𝑓  𝜉 𝛾 𝑗 ,𝑘,𝑙
       𝜉 𝑑𝜉

 

𝑅2 =

 𝑓  𝜉 𝑈𝑗  𝑅𝜃𝑗 ,𝑙
𝜉 𝑒𝑖 𝑏𝑘

𝑗 ,𝑙
,𝜉 𝑑𝜉

 

𝑅2 ,          

where 

 

 𝑓  𝜉 =
1

2𝜋
 𝑓 𝑥 𝑒−𝑖 𝑥,𝜉 𝑑𝑥

 

𝑅2 .                                 (10) 

 

Yet another version of discrete curvelet transform, called  Fast Discrete Curvelet Transform (FDCT), is 

based on wrapping of Fourier samples; which takes a 2D signal/image as an input in the form of a Cartesian 

array f [m, n], where 0 ≤ m < M, 0 ≤ n < N where M and N are the dimensions of the array. The outputs will be 

a collection of curvelet coefficients 𝑐𝐷( 𝑗, 𝑙, 𝑘1𝑘2) indexed by a scale j, an orientation l and spatial location 

parameters 𝑘1 and 𝑘2.  

 

  𝑐𝐷  𝑗, 𝑙, 𝑘1𝑘2 =  𝑓 𝑚, 𝑛 𝛾𝑗 ,𝑘,𝑘1𝑘2

𝐷  𝑚, 𝑛 0≤𝑚≤𝑀
0≤𝑛≤𝑁                        (11) 

                                                                     

Here, each 𝛾𝑗 ,𝑘,𝑘1𝑘2

𝐷  is a digital curvelet waveform, superscript D stands for “digital”. Thus for  any 

bivariate function, say, 𝑓 ∈  𝐿2(𝑅2) associated with signal vector, curvelet based sparse representation for 

the signal can be arrived at. 

4. Graph Neural Networks 

The neural networks can be represented by graphs showing the computational elements, neurons of the 

network, called as Graph neural network (GNN), which can be used to process structured data inputs, e.g. 

acyclic graph, cyclic graph, directed or un-directed graphs. This class of neural networks implements a 

function 𝜏(𝐺, 𝑛) ∈ 𝑅𝑚   that maps a graph 𝐺 and one of its nodes 𝑛 onto an 𝑚-dimensional Euclidean 

space. 
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For a triplet, 𝐺 =  (𝑉; 𝐸; 𝑤)  denoting the connected weighted graph (or a tree) with n nodes and m 

edges; wherein analogously, nodes being the neurons, arrows as the weighted sums of the values from other 

neurons, and  𝑤 = 𝐴𝑖𝑗 , the weights showing a links between the nodes in the given neural network, a 

linear Gaussian factor analysis model that represents the neural network [13] can be given as, 

 

    𝑥𝑖 𝑡 =  𝐴𝑖𝑗 𝑠𝑗  𝑡 𝑗 + 𝑎𝑖 + 𝑛𝑖(𝑡)                                (12) 

                                                                                    

where 𝑖  indexes different components of the observation vector xi, representing weighted sums of 

underlying latent variables, 𝑗 indexes different factors and 𝐴𝑖𝑗 are the weightings of the factors 𝑠, also 

known as factor loadings. The factors s and noise n are assumed to have zero mean. The bias in 𝑥 is 

assumed to be caused by 𝑎. The effect of the inaccuracies and other causes is summarized by Gaussian 

noise 𝑛. In anticipation of the dynamic model, the observations are indexed by t referring to time, although 

in the usual factor analysis model, observations at different time instants are assumed to be independent of 

each other and the observations therefore need not form a sequence in time. 

The corresponding vector representation can be given as 

𝐱(𝑡)  =  𝐀𝐬(𝑡)  +  𝐚 +  𝐧(𝑡)                                    (13) 

                                                                                     

where x, s, a and n are vectors and A is a matrix. 

If the variances of the Gaussian noise terms 𝑛𝑖(𝑡) are denoted by 𝜎𝑖
2, the probability which the model 

gives for the observation 𝑥𝑖(𝑡) can be written as 

𝑃(𝑥𝑖(𝑡) ∣ 𝑠 𝑡 , 𝐀, 𝑎𝑖 , 𝜎𝑖
2) =

1

 2𝜋𝜎𝑖
2
𝑒𝑥𝑝  −

 𝑥𝑖 𝑡 − 𝐴𝑖𝑗 𝑠𝑗  𝑡 −𝑎𝑖𝑗  
2

2𝜎𝑖
2                  (14) 

Or equivalently, we can write, 𝐱(𝑡)~𝑁(𝐀𝐬 + 𝐚, 𝛔2), where the vector 𝜎2contains the variances 𝜎𝑖
2, the 

variances of the Gaussian noise terms 𝑛𝑖(𝑡) as 𝜎𝑖
2, For mathematical convenience, the factors are assumed 

to have Gaussian distributions in the standard factor analysis model.  

It is to be noted that the Gaussian model for the factors leads to inability to separate the underlying 

causes from each other and therefore needs to consider models where the factors are not restricted to be 

Gaussian, independent component analysis (ICA) models depending. In the ICA community, the factors have 

been traditionally called sources because they are not just some arbitrary combinations of the underlying 

causes, but ideally at least, the original independent causes. The practical techniques for estimating the 

sources are known also as blind source or signal separation.  

As most of the natural signals are assumed to have additive random noise, which is modeled as Gaussian 

noise, denoising is the first step to be considered before the signal data is analyzed.  Digital signals are 

invariably contaminated by noise. Noise arises due to imperfect instruments used in signal processing, 

problems with the data acquisition process, and interference which can degrade the data of interest. Also, 

noise can be introduced due to compression and transmission errors [14]. Improving quality of noisy 

images has been an active area of research in many years. It is seen that removing additive Gaussian noise 

by nonlinear methods such as Wavelet denoising and Curvelet denoising had better results than classic 

approaches [15]. The overall noise characteristics in a signal depend on factors like type of sensor, exposure 

time, pixel dimensions, ISO speed, and temperature. Blind source separation (BSS) [16] is the method of 

extracting underlying source signals from a set of observed signal mixtures with little or no information to 

the nature of these source signals. Independent component analysis is used for finding factors or 

components from multivariate statistical data and is one of the many solutions to the BSS problem [17]. The 
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various ICA algorithms extract source signals based on the principle of information maximization, mutual 

information minimization, maximum likelihood estimation and maximizing non-Gaussianity. ICA is widely 

used in statistical signal processing, medical image processing, economic analysis and telecommunication 

applications [18].  

We can draw a clear analogy between linear Gaussian factor analysis model that represents the neural 

network and ICA model and therefore robustly apply ICA algorithm for analyzing GNN. 

The basic ICA model can be stated as, 

𝐱 𝑡 = 𝐀𝐬 𝑡 + 𝐧(𝑡)                                       (15) 

where 𝐱(𝑡) is an N dimensional vector of the observed signals at the discrete time instant t, A is an 

unknown mixing matrix, 𝐬(𝑡) is original source signal of 𝑀 × 𝑁 (𝑀 ≤ 𝑁) and 𝐧(𝑡) is the observed noise 

vector and M is number of sources.  

The linear Gaussian factor analysis model in vector form (11) that represents the GNN can be viewed as 

ICA model given by vector Eq.(13) with replacing 𝐀𝐬(𝑡)  +  𝐚 by 𝐀𝐬(𝑡). 

The purpose of the ICA is to estimate 𝐬(𝑡), which is the original source signal from 𝐱(𝑡), which is the 

mixed signal, i. e. it is equivalent to estimating the matrix A. Assuming that there is a matrix W, which is the 

de-mixing matrix or separation inverse matrix of A, then the original source signal is obtained by: 

𝐬 𝑡 = 𝐖𝐱(𝑡)  

The ICA algorithm assumes that the mixing matrix A must be of full column rank and all the independent 

components 𝐬(𝑡), with the possible exception of one component, must be non-Gaussian. Further, the 

number of observed linear mixtures M must be at least as large as the number of independent components 

N (M ≥N). 

The following two approaches are discussed. The results can be compared with practical implementation 

of each of them. 

Fast ICA Algorithm: The fast ICA is the most popular algorithm used in various applications as it is 

simple, fast convergent, and computationally less complex. It is a fixed point iterative algorithm that uses a 

nonlinear function 𝑔(𝑦)  =  𝑡𝑎𝑛𝑕 (𝑎𝑦), which is applied to the separation vector W that is recalculated at 

each iteration of the algorithm. The fixed point algorithm is to iterate to obtain a global minimum. Once you 

determine the vector W, it is pointing to one of the independent components. The steps to implement the 

fast ICA algorithm are as follows [19]:  

1) Center the data to make its mean zero.  

2) Whiten the data to give z.  

3) Choose an initial (e.g., random) vector w of unit norm.  

4) Let 𝒘+  =  𝐸{ 𝒛𝑔(𝒘𝑻 𝒛) } −  𝐸{ 𝑔’(𝒘𝑻 𝒛) }𝒘. 

5) Let 𝒘 =  𝒘+/ 𝒘+.  

6) If not converged, go back to step 4.  

Curvelet Thresholding Approach: The curvelets are analytic signal filters. The analytic signal filters are 

important in signal processing, because they yield a meaningful decomposition of filtered signal into 

amplitude and phase, where the amplitude has the interpretation of the envelope of the signal. Digital 

signals are invariably contaminated by noise. Curvelet de-noising is a simple operation, which aims at 

reducing noise in a noisy image. It is performed by selecting the FDCT coefficients below a certain threshold 

and setting them to zero as follows: 

 

𝑦𝜆 =  
𝑦𝜆 ,  𝑦𝜆  ≥ 𝑡𝜆

0,  𝑦𝜆  < 𝑡𝜆
  



  

where 𝑡𝜆  is the threshold and λ is the index. 

The threshold used is 𝑡𝜆  =  𝑘𝜎𝜆𝜎, for some scale k, where σ is an estimation of the standard deviation of 

the noise, and 𝜎𝜆  is an approximation value for the standard deviation of each curvelet coefficient 

estimated by using the Monte-Carlo simulation . 

Thresholding neural network involves step by step procedure: Noisy signal (Input)→Applying FDCT→

Noisy curvelet coefficients→Tuning threshold value using threshold neural network→De-noised curvelet 

coefficients→Inverting FDCT→De-noised signal (Output).  

In curvelet de-noising, the noise standard deviation is estimated from the finest scale coefficients 

corresponding to the diagonal orientation using the Median Absolute Deviation (MAD) estimate, which is 

given by: 𝜎 =
𝑀𝐴𝐷

0.6745
  

Then, we use the inverse curvelet transform to get the de-noising image.  

The various performance factors are then calculated using the following equations. 

                          (16) 

where 𝑥(𝑖) is the original source signal, 𝑦(𝑖) is the separated signal, i is the sample index and N is the 

number of samples of the signal. 

                                       (17) 

In both the approaches, we select the signals (𝐱(𝑡)in case of GNN) and add white Gaussian noise using a 

(𝑚 × 𝑛) random mixing matrix. Simulations can be performed on these noisy mixed signals so obtained 

using any Matlab®  R 7.9 on a core i7 2.2 GHz PC. 

In the first approach, noisy mixed signals can be obtained by applying the fast ICA algorithm first and 

then de-noising. The separated independent components can be thresholded using hard curvelet 

thresholding and the signals can be separated. The second approach uses hard curvelet thresholding to 

de-noise the signals, and then the fast ICA algorithm is used to separate the de-noised signals.  

5. Conclusion 

The curvelet transform is a multi-scale directional transform that allows an optimal non-adaptive sparse 

representation of objects with edges especially the higher dimensional signals. Major advantages of 

Curvelet are directionality and anisotropy. Although, wavelet allows us to analysis image in three different 

directions (Vertical, horizontal and Diagonal), the Curvelet supports more directions. Curvelet treatment is 

particularly effective at detecting signal/image activity along curves instead of radial directions, which are 

the most comprising objects like higher dimensional signals. It retains edge and detail information which is 

mostly lost in wavelet analysis. The Curvelet threshold technique devised in this work can be therefore 

robustly employed for analyzing complex neural networks, in particular and higher dimensional signals, in 

general, that arise in wide range of applications including image/video processing, seismic exploration, 

fluid mechanics, simulation of partial different equations, and compressed sensing.  

Two different approaches of separation of noisy mixed signals have been discussed to observe the effect 

of de-noising before and after signal separation. De-noising was done using hard curvelet thresholding and 

separation was based in using ICA. In this work, thresholding neural network using Curvelet coefficients 

instead of wavelet coefficients is proposed. The results of the first approach (de-noising then separation) 

can be compared with that of the performance metrics (SNR and RMSE) of the second approach (separation 
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SNR = 10 log10  
 𝑥2(𝑖)𝑁
𝑖=1

  𝑥 𝑖 −𝑦(𝑖) 2𝑁
𝑖=1

         

RMSE =
1

𝑁
   𝑥 𝑖 − 𝑦(𝑖) 2𝑁

𝑖=1



  

then de-noising).  
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