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Abstract: In recent years, the common solution of pell equations is a hot field in indefinite equations. For 

example, the equations 1) mentioned in the paper. However, due to the diverse forms of such equations, 

many scholars have done more studies on the smaller values of k and m, and the main conclusions are 

focused on the estimation of solutions under some special forms of D1 and the specific values of D. So there 

is a lot of room for studying these kinds of equations. In this paper, we studied the common solution of the 

system of indefinite equations 2) mentioned in this paper by using the elementary method and the 

recursive property of solution sequence. If D is the case in this paper, the common solution of the equations 

is given. 
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1. Introduction 

The Diophantine equation is the oldest branch in number theory, whose content is extremely abundant, 

and it has close connections with the algebraic number theory, the algebraic geometry, the combinatorics 

and so on. In the recent 30 years, this field also has developed too much. In such fields as the information 

encoding theory, the algebraic number theory and the diophantine analysis theory, many types of the 

results of higher diophantine equation are used, which make it necessary for us to study some basic types 

of the solutions of higher diophantine equation. We are familiar to study some basic types of the simple 

diophantine equation and quadratic diophantine equation, while with the solution of higher diophantine 

equation, there is no general conclusion, so it needs further discussing. 

  The Diophantine equation not only developed actively itself, but also was apply to else fields of 

Discerete Mathematics. It plays an important role in people’s study and research to solve the actual 

problems. So many researchers study the Diophantine equation extensively and highly in the domestic and 

abroad. Along with the development of the Diophantine equation, Algebraic Number Theory obtained the 

first formation and developments. Currently, Algebracic Number Theory has become a branch of 

mathematics with abundant contents, is also an important tool of studying of the Diophantine equation. 

In recent years, the common solution of pell equations  
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is a hot field in indefinite equations. The main conclusions  are as follows: 

1) When k=1 and m=1,   

the research results of the system focus on the scope and estimation of the solution, and the main 

conclusions are shown in [1], [2].  

2) When k=1 and m=4, 

a) If 1D =2, for the solution of the system, the main conclusion is shown in [3]-[10]; 

b) If 1D =6, it is shown in [11]-[15]; 

c) If 1D =10 , it is shown in the main conclusion [16]. 

d) If 1D =12, it is shown in the main conclusion [17]-[19]. 

e) If 1D =30, it is shown in the main conclusion [20]. 

3) When k=1 and m=25, 

a) If 1D =23, the situation of the system is discussed in [21]. 

However, the pell equations 
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is one of the kind of the equations (1). When k=2, it is shown in [11]-[15], when k=3, it is shown in the main 

conclusion [17]-[19]. In this paper, we deal with the case of k=4, namely 
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And the following conclusions are obtained: 

Theorem If 31 2 4

1 2 3 42 ,tD p p p p
  

  where 0s   or  1, 1 4sp s   are distinct odd primes, t is a 

positive integer, and the solution of the indefinite system (1) is as follows:  

a) D=2×7×23, the system (2) has non-trivial solutions (x, y, z)=(±2889, ±646,±36); 

b) D=23×7×23, the system (2) has non-trivial solutions (x, y, z)=(±2889, ±646,±18); 

c) D=25×7×23, the system (2) has non-trivial solutions (x, y, z)=(±2889, ±646,±9). 

d) When 1,3,5t  , the system (2) only has trivial solutions (x, y, z) =(±9, ±2,0). 

2. Preliminaries 

Lemma 1 [18] If p is an odd prime number, then the diophantine equation x4-py2=1 has no other positive 

integer solution except p=5, x=3, y=4 and p=29, x=99, y=1820. 

Lemma 2 [18] If a is a square number and a >1, the equation 
4 2 1ax by   has only one positive 

integer solution. 

Lemma 3 [18] If D is a non-square positive integer, then 
4 4 1x Dy   has at most two positive integer 

solutions. And the sufficient and necessary condition for the equation to have two groups of solutions is that 

D=1785 or D=28560, or that 2x0 and 2y0 are squares, where (x0, y0) is the fundamental solution of the 

equation. 

Lemma 4 If xn, yn is any integer solution of Pell equation x2-104y2=1, then xn, yn has the following 

properties: 
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Lemma 5 If ( x1, y1) is the fundamental solution of Pell equation x2-20y2=1, and all integer solutions are 

(xn, yn),n∈Z. For any (xn, yn),it has the following properties: 

a) xn is square if and only if n=0; 

b) 
5

nx

 
is square if and only if n=±1; 

c) 
2

ny  is square if and only if n=0, 1. 

3. Proof of Theorem 

Proof: Since the fundamental solution of Pell equation x2-20y2=1 is    1 1, 9,2x y  , all integer solutions of 

pell equation are
  20 9 2 20 , Z.

n

n nx y n     Thus: 

If    , , , ,n nx y z x y z  is the integer solution to (2), then n  ,  
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By (2) 
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Then 
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case1 Let n  be odd, might as well  2 1, Zn m m   , At this point, equation (4) becomes: 

 
2

1 1 2 2 2 1 14n n m m m m m mDz y y y y x y x y                                     (5) 

 

case1. 1 Let m  be odd, might as well  *2 ,m r r  , At this point, equation (5) becomes: 

 

2

2 1 2 1 2 2 2 1 2 1 24 8r r r r r r r r rDz x y x y x y x x y    
                            (6) 

 

case 1.1.1 Let r be odd, might as well
  2 1,r u u Z   ，At this point, equation (5) becomes： 
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does not equal 0,1, it's not a square number. 

When u=0, equation (7) is    
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However, 3 3
2

2889 646
161=7 23, =3 107 17 19

9 9 2 2

x y
x       ，  

Therefore, the right hand side of (8) contains six different odd prime Numbers, so formula (8) does not 

hold, and the system (2) has no solution. 

When u = 1,
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So when D=2×7×23, the system (2) has a nontrivial solutions (x, y, z) = (±2889,±646,±36); D=23×7×23, 

(2) has a nontrivial solution (x, y, z) = (±2889,±646,±18), when D=23×7×23, (2) has a nontrivial solution 

(x, y, z) = (±2889,±646,±9). 

case 1.1.2 If r is even, let  2 ,r v v  , then equation (5) can be written into 
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so formula (9) is not true, so when u≠0,1, the system (2) has no solution. 

When v≠±1 and v is odd, 4 1 4 1
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are not squares. At this point, they have at least five 

different odd prime Numbers, so formula (9) is not true, so when u≠0,1, the system (2) has no solution. So 

when v≠0, v≠±1 and v is even, the system (2) has no solution. 

When v=0, (9) can be written into 2 3

0 0 1 116 0Dz x y x y       , thus z=0, At this point, the system (2), only 

has ordinary solutions (x, y, z)= (±9,±2, 0). 

When v=1, (9) can be written into 
2 3

3 3 4 2 1 1

6 5
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The right hand side of the above equation contains eight odd prime Numbers, so the above formula is 

impossible. Therefor when v=1, the system (2) has no common solution. 

When v=-1, 
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Therefore, the right hand side of the above equation contains ten odd prime Numbers, so the above 

formula is impossible. Therefor when v=-1, the system (2) has no common solution. 

case 1.2 If m is odd, modelled on the case 1.1, it can be proved that the equation (2) is only the common 

solution (x, y, z)= (±9,±2,0). 

case2 If n is even, by lemma 4,  1 1 1 mod 2n ny y   , the right-hand side of equation (4) is odd, while the 

left-hand side is even in the form of D, so the system (2) has no common solution. 

4. Summary and Prospect 

In this paper, we have gotten the solutions of  the following equations 
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When k=4 and 31 2 4

1 2 3 42tD p p p p
  

 ，where 0s  or 1  1 4s  . And we can go on and talk about the 

solutions to this system when k > 4, and D is some other form. So there is a lot of room for studying these 

kinds of equations.  

Due to the diverse forms of such equations, many scholars have done more studies on the smaller values 

of k and m, and the main conclusions are focused on the estimation of solutions under some special forms of 

D1 and the specific values of D. We need more powerful ways of finding common solutions to more forms of 

equations. 
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