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Abstract: In order to study some statistical characteristics of matrix addition decomposition, the concept of 

function addition decomposition and its moments is defined. Theoretically, if the function can be 

decomposed into the addition of the function sequence, the sum of the moments of the function sequence 

can be found to be equal to the moments of the original function under certain conditions. Then the 

property of function decomposition is applied to matrix addition decomposition. If a matrix can be 

decomposed into the addition of matrix sequence, the sum of matrix sequence moments is equal to that of 

the original matrix. Finally, the normalized central moments and local normalized central moments of 

image are calculated. These normalized central moments have scaling and translation invariance, which 

shows that the function sequence moments can be used to extract local features of images. 

 
Key words: Function addition decomposition, function sequence, function moments, matrix sequence, 
matrix addition decomposition. 

 
 

1. Introduction 

At present, the common methods of function addition decomposition can be roughly classified into three 

categories: 

The first decomposition method is for periodic function. According to the definition of Fourier series, any 

periodic function can be decomposed into the superposition of sine or cosine functions of each harmonic. 

The advantage of this decomposition is that the local characteristics of each harmonic can be studied and 

utilized. In the communication system, the transmitter can transmit different signals through each 

harmonic multiplexing, and then pass through the receiver. The filter extracts the harmonic signals to 

achieve the purpose of efficient communication.  

The second decomposition method is to decompose the power series of any real function. The most 

commonly used method is Taylor series. The first derivative in Taylor series geometrically represents the 

slope of a function at a certain point, and the second derivative represents the slope change trend of a 

function at a certain point. It can explain the concavity and convexity of a function. The next point can be 

predicted by the slope change trend of a function at a certain point. Derivatives after the third order have no 

practical significance and can only be understood as a way of expression.  

The third is that rational functions can be decomposed into partial fractions and forms. These methods 

include real root substitution, complex root substitution, limit method and derivation method. For detail 
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methods refer to [1].  

The methods mentioned above are all decomposition methods for one-dimensional function cases, which 

do not extend to two-dimensional and multi-dimensional function cases. The first and second methods are 

mostly used in the field of time series. For two-dimensional and multi-dimensional function decomposition 

and statistical properties are not involved.  

The decomposition scheme in this paper can be applied to any addition decomposition scheme. The 

purpose is to study the local characteristics of arbitrary dimension function sequence and refine the local 

statistical characteristics of pattern sequence after addition decomposition. 

2. Function Addition Decomposition and Relevant Properties of Moments 

2.1. Decomposition of Function Addition and Definition of Function Moments 

Definition 1 : Let ( , )f x y  be a function on 
2R R , if there is a sequence of functions ( , )lf x y

( 1, 2,...,l k ):
2R R , such that 

1

( , ) ( , )
k

l

l

f x y f x y


 , then the function ( , )f x y  is the sum of the 

sequence of functions ( , )lf x y ( 1, 2,...,l k ). ( , )lf x y ( 1, 2,...,l k ) is the addition decomposition 

sub-function of ( , )f x y .  

It can be generalized to n-dimensional Euclidean space. Let 1 2( , ,..., )nf x x x  be a function on 
nR R  

of n variables , if there exists a function sequence 1 2( , ,..., )l nf x x x ( 1, 2,...,l k ) :
nR R , such that 

1 2 1 2

1

( , ,..., ) ( , ,..., )
k

n l n

l

f x x x f x x x


 ， then the function 1 2( , ,..., )nf x x x  is the sum of the functions 

sequence 1 2( , ,..., )l nf x x x ( 1, 2,...,l k ). 1 2( , ,..., )l nf x x x ( 1, 2,...,l k ) is the addition decomposition 

sub-function of 1 2( , ,..., )nf x x x . 

The moments concepts description refer to [2]. This paper emphasized on the relationship of moments 

between the original function and its decomposition sequence. 

Definition 2: Let ( , )f x y  be a function on 
2R R  , ( , )p q

pqm x y f x y dxdy

 

 

    is defined as p+q 

order moment. 

It can be generalized to the case of n-variable function. Let  1 2( , ,..., )nf x x x  be an n-variable function of 

nR R , the 
1

n

i

i

p


 order moment of 1 2( , ,..., )nf x x x is defined as 

1 2 ,..., 1 2 1 2

1

... ( ) ( , ,..., ) ...i

n

n
p

p p p i n n

i

m x f x x x dx dx dx

  

  

    .  

Definition 3: Let ( , )f x y  be a function on 
2R R , the point 2( , )x y RC , the central moment of p 

+q order of the function at the point ( , )x yC  is defined as ( ) ( ) ( , )p q

pq x x y y f x y dxdy
 

 

    , 

where p, q = 0, 1, 2,....  

It can be generalized to the case of n-variable function. Let 1 2( , ,..., )nf x x x  be an n-variable function of 

nR R , the point 1 2( , ,..., ) n

nx x x RC , 
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1 2 ,..., 1 2 1 2

1

... ( ( ) ) ( , ,..., ) ...i

n

n
p

p p p i i n n

i

x x f x x x dx dx dx
  

  

     is defined as the 
1

n

i

i

p


  order central 

moment of 1 2( , ,..., )nf x x x  for the point 1 2( , ,..., ) n

nx x x RC , where 
1, 2,..., 0,1,2,...np p p    

Definition 4: Let ( , )f x y  be a function on 
2R R , the point 2( , )x y RC , the normalized p+q 

central moments of the functions on the point C are defined as 
00

pq

pq 





 , 

00 ( , )f x y dxdy
 

 

    is 

normalized factor, where 1, 2,3,...
2

p q
p q


    . 

For the case of n-variable functions, let 1 2( , ,..., )nf x x x  be an n-variable function, the point 

1 2( , ,..., ) n

nx x x RC , the normalized 
1

n

i

i

p


  order central moments of the function on the point 

1 2( , ,..., )nx x xC  are defined as 

 

1 2

1 2

1 2 1 2

,..., 1

,...,

00,...,0

1 2 1 2

... ( ( ) ) ( , ,..., ) ...

( )
( ... ( , ,..., ) ... )

i

n

n

n
p

i i n n

p p p i

p p p

n n
n

x x f x x x dx dx dx

f x x x dx dx dx









  

  

  

  



 

  

  

 

 

00,...,0 1 2 1 2... ( , ,..., ) ...n n

n

f x x x dx dx dx
  

  

     is normalized factor.  

where 1

1

1, , 1,...

n

i n
i

i

i

p

p n n
n

 



   


  

2.2. Properties of Moments of Functions and Function Sequences 

Property 1: If ( , )f x y is a function on 
2R R ,The p+q order moments of the function ( , )f x y  are 

( , )p q

pqm x y f x y dxdy

 

 

   , if there exists a sequence of functions ( , )lf x y :
2R R , such that 

1

( , ) ( , )
k

l

l

f x y f x y


 , the p+q order moments of sub-functions ( , )lf x y  are 

, ( , )p q

l pq lm x y f x y dxdy

 

 

    , where 1, 2,...,l k ; p, q = 0, 1, 2,... , then 
,

1

k

pq l pq

l

m m


 . 

Proof:  Let ( , )z f x y :
2R R ， ( , )l lz f x y :

2R R ， 1, 2,...,l k ， 

1

( , ) ( , )
k

l

l

f x y f x y


 .                

1 1

( , ) ( , )
k k

l l

l l

z f x y f x y z
 

     ，                     
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and , ( , )p q

l pq lm x y f x y dxdy

 

 

    

 

,

1 1

1

( , )

( , ) ( , )

k k
p q

l pq l

l l

k
p q p q

l

l

pq

m x y f x y dxdy

x y f x y dxdy x y f x y dxdy

m

 

   

   

   

 

 



   

                   (1) 

 

Thus, the conclusion is valid. 

Property 2: If 2( , )x y RC ， ( , )f x y  is a function on 
2R R , the p+q order centralized moments of 

( , )f x y  at the point ( , )x yC  are defined as pq , ie. ( ) ( ) ( , )p q

pq x x y y f x y dxdy
 

 

    , if there 

exists a sequence of functions ( , )lf x y :
2R R , such that 

1

( , ) ( , )
k

l

l

f x y f x y


 , the p+q order 

centralized moments of sub-functions ( , )lf x y  are 
, ( ) ( ) ( , )p q

l pq lx x y y f x y dxdy
 

 

    , where 

1, 2,...,l k ;  p, q = 0, 1, 2,... , then 
,

1

k

pq l pq

l

 


 . 

Proof: 

Let 
( , )z f x y

:
2R R ， ( , )l lz f x y :

2R R ，
1, 2,...,l k

， 

1

( , ) ( , )
k

l

l

f x y f x y


 .                

1 1

( , ) ( , )
k k

l l

l l

z f x y f x y z
 

     ，                     

And , ( ) ( ) ( , )p q

l pq lx x y y f x y dxdy
 

 

     

 

,

1 1

1

( ) ( ) ( , )

( ) ( ) ( , ) ( ) ( ) ( , )

k k
p q

l pq l

l l

k
p q p q

l

l

pq

x x y y f x y dxdy

x x y y f x y dxdy x x y y f x y dxdy





 

   

   

   

   

     



   

         (2) 

 

Thus, the conclusion is valid. 

Property 3 If the point 2( , )x y RC , ( , )f x y  is a function on 
2R R , the p+q order normalized 

central moment of ( , )f x y  at the point ( , )x yC  are defined as 
pq , ie. 
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00

( ) ( ) ( , )

[ ( , ) ]

p q

pq

pq

x x y y f x y dxdy

f x y dxdy









 

 

 

 

 

 
 

 

, if there exists a sequence of functions ( , )lf x y :
2R R , 

such that 
1

( , ) ( , )
k

l

l

f x y f x y


 , the p+q order  normalized central moments of sub-functions ( , )lf x y  

are 
,

,

00

( ) ( ) ( , )

[ ( , ) ]

p q

l

l pq

l pq

x x y y f x y dxdy

f x y dxdy









 

 

 

 

 

 
 

 

 , where 1, 2,...,l k ; p, q = 0, 1, 2,... , then 

,

1

k

pq l pq

l

 


 . 

Proof: 

Based on Property 1 and property 2,                

,
,

,

00

( ) ( ) ( , )

[ ( , ) ]

p q

l

l pq

l pq

x x y y f x y dxdy

f x y dxdy









 

 

 

 

 

 
 

 

 

 

,

,

1 1 00

1 00

1

00

00

( , )

( , )

( , )

( ) ( )

( ) ( )

( ) ( )

k k
l pq

l pq

l l

p q

lk

l

kp q

l

l

p q

pq

f x y dxdy

f x y dxdy

f x y dxdy

x x y y

x x y y

x x y y






















 

 

 



 

 

 

 

 









 

  


  

  

                     (3) 

 

Thus, the conclusion is also valid. 

The above properties can be extended to n-dimensional Euclidean space.  

3. Moments of Matrix 

3.1. Decomposition of Matrix Addition and Definition of Matrix Moments 

The detail description of moments is based on reference [2]. The method of addition decomposition of 

functions can be extended to matrix addition decomposition. Several decomposition schemes of matrices 

International Journal of Applied Physics and Mathematics

162 Volume 9, Number 4, October 2019



  

are studied in detail in references [3]-[5]. 

Definition 5: ( )ij m nA a   represents m n matrix , ( , , ) p q

ij

i j

m A p q i j a  is defined as p+q 

order moments of A, where p, q = 0, 1, 2,... 

Definition 6: If 
x y

a  represents an element of row x  and column y  inside the Matrix ( )ij m nA a  , 

The p+q order centralized moment of Matrix ( )ij m nA a  centered on 
x y

a  is defined as 

1 1

( , , ) ( ) ( )
m n p q

ij

i j

A p q ai x j y
 

   , where p, q = 0, 1, 2,...  

Definition 7: Based on definition 6, the p+q order normalized central moments of Matrix ( )ij m nA a   

is defined as 
( , , )

( , , )
( ,0,0)

A p q
A p q

A 





 ,

1 1

( ,0,0)
m n

ij

i j

A a
 

 is normalized factor. where 

1, 2,3,...
2

p q
p q


    .  

3.2. Matrix Addition Decomposition and Properties of Moments 

The properties of Moments of Functions and Function Sequences can be generalized to the matrices.   

Property 4: If ( )ij m nA a  is an m n  matrix, The p+q order moments of A  are 

1 1

( , , )
m n

p q

ij

i j

m A p q i j a
 

 , if matrix A can be denoted with addition 
1

k

l

l

A A


 , the p+q order moments 

of sub-matrix lA  are ,

1 1

( , , )
m n

p q

l l ij

i j

m A p q i j a
 

  , where 1, 2,...,l k ; p, q = 0, 1, 2,... , then 

 

 
1

( , , ) ( , , )
k

l

l

m A p q m A p q


                                 (4) 

 

Property 5:  If 
x y

a  represents an element of row x  and column y  inside the Matrix ( )ij m nA a  , 

The p+q order centralized moment of Matrix A centered on 
x y

a  is  

1 1

( , , ) ( ) ( )
m n p q

ij

i j

A p q ai x j y
 

   , and 
1

k

l

l

A A


 ,
,( )l l ij m nA a  , the p+q order centralized 

moment of Matrix lA centered on 
,l x y

a  is ,

1 1

( , , ) ( ) ( )
m n p q

l l ij

i j

A p q ai x j y
 

   , where 

1, 2,...,l k ; p, q = 0, 1, 2,... ; Then  

 

1

( , , ) ( , , )
k

l

l

A p q A p q 


                              (5) 

 

Property 6: If 
x y

a  represents an element of row x  and column y  inside the Matrix ( )ij m nA a  , The 
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p+q order normalized central moment of Matrix A centered on 
x y

a  is  

1 1

1 1

( , , )
( , , )

( ,0,0)
[ ]

( ) ( )
m n p q

ij

i j

m n

ij

i j

a
A p q

A p q
A

a

i x j y









 

 

 

  


, and 

1

k

l

l

A A


 ,
,( )l l ij m nA a  , the p+q order 

normalized centralized moment of Matrix lA centered on 
,l x y

a  is  

,

1 1

1 1

( , , )
( , , )

( ,0,0)
[ ]

( ) ( )
m n p q

l ij

i jl
l m n

ij

i j

a
A p q

A p q
A

a

i x j y









 

 

 

  


, 

1 1

( ,0,0)
m n

ij

i j

A a
 

 is normalized factor. 

where 1, 2,...,l k ; 1, 2,3,...
2

p q
p q


    ; Then  

1

( , , ) ( , , )
k

l

l

A p q A p q 


                               (6) 

4. Application of Matrix Addition Decomposition 

Face recognition research has been popular in the past few years, and it is particularly important to 

extract the local features of human faces. Literature [6]-[8] give some current local feature extraction 

methods. These methods can represent the local features effectively but not provide the relationship 

between the local and the global features of image.   

In this paper, the moment of decomposition sequence by function addition and the moment of block 

matrix sequence are applied to the local feature extraction of image, which provides a new solution for 

image local feature expression, and provide a relationship between local and global features. In order to 

recognize images more accurately, it is often necessary to describe the relationship between local features 

and global features.  

A face image is used as the experimental object. First, the centroid of the image is calculated, then the 

image is divided into four parts along the centroid, and then the normalized moment of each part relative to 

the centroid is calculated to test the above conclusions. In addition, normalized central moments of 

localized sub-graphs can be used as local features of images to match local sub-graphs of images. 

4.1. Image Segmentation 
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Fig. 1. The target image segmentation.



  

The centroid of the target image is calculated first, and then the image to be recognized is divided into 

four parts along the centroid, as shown in Fig. 1.  

 

The target image is divided into four parts along the center of mass: left-up, left-down, right-up and 

right-down. The normalized central moments of the image and the normalized central moments of the 

sub-images of each part are calculated respectively. Table 1 shows the result of p+q order normalized 

central moments of the above image and that of sub-images. This result shows the valid conclusion of 

 

1

( , , ) ( , , )
k

l

l

A p q A p q 


 . 

 

In this paper, the geometric segmentation and feature extraction of the image are simply carried out. 

Based on this algorithm, the image surface and depth can be segmented by any block according to different 

needs, and the local features of the image can be defined by the segmented sequence. 

 
Table 1. The p+q Order Normalized Centralized Moments 

 

 

5. Conclusion 

We have researched some statistical characteristics of the moments of function and matrix addition 

decomposition, proved the relationship between function moments and function sequence moments, and 

extended it to n-function dimension space. Finally, the method of function addition decomposition and 

calculation of function sequence moments is applied to extract the local features of images. The central 

moments of functions and their sequences are invariant in scaling, rotation and translation. It shows that 

this method can be used to extract, calculate, and express the local features of patterns.  

In a word, this paper only analyses the representation of global and local features from the angle of 

mathematical formula deduction. The performance of global and local features needs to be further studied 

in the future. This paper lists only one application of function sequence moments in image local feature 

representation. Our derivation here is not only for image patterns, but also for other patterns. All these need 

further study and discussion. 
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