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Abstract: The polynomials are applied in many areas of mathematics, for instance, continued fractions,
operator theory, analytic functions, interpolation, approximation theory, numerical analysis, electrostatics,
statistical quantum mechanics, special functions, number theory, combinatorics, stochastic processes. On
the other hand, generating functions have a great importance in special functions theory. The present study
deals with some new properties of the Meixner polynomials in several variables. Firstly, we obtained some
results include various families of multilinear and multilateral generating functions for the Meixner
polynomials in several variables. In the last section, we get a theorem that gives a bilateral generating
functions for these polynomials and the Lauricella functions. Finally, we derive some corollaries of the last
theorem.
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1. Introduction

The Meixner polynomials are denoted by M, (X; £,C) and are defined as [1]
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where B >0, O<c<land x=012..

It is from (1) that (see [1]):
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where (/1)\, denotes the Pochhammer symbol.
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Definition 1: The Meixner polynomials of s-variables are defined by [2]:
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where S >0, O<c; <1 x;= R and j=12..,5s.

Theorem 1: (see [2]) The following generating functions holds true for the Meixner polynomials of

s-variables defined by (2):
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Theorem 2: (see [2]) The following generating function relationship for the Meixner polynomials of $

variables holds true:
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In Section 2, we establish several theorems involving various families of generating functions for the
Meixner polynomials m, (X,,..., X; £,C;,...,C;) by applying the method which was discussed by Chen and

Srivastava [3]. In the last section, we derive several families of bilateral generating functions for the

multivariable Meixner polynomials and the generalized Lauricella functions.

2. Bilinear and Bilateral Generating Functions

In this section, we derive several bilinear and bilateral generating functions for the Meixner polynomials
m, (X;,..., Xs; B,Cy,..., C;)  which generated by (2) and given explicitly by (3) using the similar method
considered in [4]-[7].

Theorem 3: Let
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then, for every nonnegative integer x, we have
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Proof: If we denote the left-hand side of (6) by T and use (5),
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Replacing N by n+ pk,
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which completes the proof.

Theorem 4: For a non-vanishing function Q  (Y,...,y,) of complex variables Y;,..., ¥, (r € N), let
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Then, for p, g € N, we have
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Proof: Let S denote the first member of the assertion (7) of Theorem 4. Then,
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Now, setting N by N+ QK and then using relation (4),
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which completes the proof.

3. The Generalized Lauricella Functions

In the present section, we derive various families of bilateral generating functions for the Meixner
polynomials in several variables and the Lauricella functions. Some of the definitions and notations used in
this paper are presented here as follows. A further generalization of the familiar Kampé de Fériet
hypergeometric function in two variables is due to Srivastava and Daoust [8] who defined the
Srivastava-Daoust (or generalized Lauricella) function as follows:
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are real constants and (bg()k)) abbreviates the array of B parameters

b (j=1...BY; k=1..n).

complex parameters, we define a function ¢n (ul;uz,...,us) of § variables U;;U,,...,U

complex) be defined by [9],
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Theorem 5: The following bilateral generating function holds true:
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where ¢, (U;;U,,...,U.) is given by (4).

Proof: By using the relationship (4), we can easily derive the following generating functions
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Corollary 1: Upon setting
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where F ,fs) the Lauricella function and the coefficients l//('7) are given by

o [1 @<n<s+l)
y = :
0 (s+l<ny<s+r)

Corollary 2: If we put
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where FB(S) the Lauricella function and  the coefficients 8™ are given by
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Corollary 3: Finallay, if we let
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and ¢ =0 =0 in Theorem 5, we have the following result:
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