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Abstract: In this paper we represent a parallel implementation of three simultaneous methods for finding 

the roots of polynomials. We have chosen two well-known simultaneous methods, Durand-Kerner and 

Ehrich-Aberth and a third new improvement in an asynchronous cluster with 9 processors. We have 

analysed the time of execution (= time of communication + time of computation) of these algorithms on 

polynomials with different powers (up to 200) and using different number of processors. For each of these 

methods we have we have calculated the speed-up. The numerical tests show the global convergence of 

these methods and through these tests we come into the conclusions when the parallelization is more 

effective. Some numerical tests are related to the case of using Estrin’s scheme in the evaluation of the 

polynomials, which gives interesting results in the cases when the polynomial degree is a power of 2. 
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1. Introduction 

The problem of finding the roots of polynomials is encountered in different applications. Most of the 

numerical methods that deal with this problem are simultaneous ones. These methods start from the initial 

approximations of all the roots of the polynomial and give a sequence of approximations that converge to 

the roots of the polynomial. The main problem of the simultaneous methods is that the necessary time 

needed for the convergence is increased with the increasing of the degree of the polynomial. These methods 

are suitable to implement in a cluster and their parallelization considerably improves the time of 

convergence. In this paper we with treat the parallelization of Durand-Kerner method [1], [2] and 

Ehrlich-Aberth method [3], [4] comparing with the sequential case. These methods in practice have good 

global convergence. Other simultaneous methods as Laguerre, Euler-like and Halley-like methods can be 

implemented in parallel platforms. From the computational analyses in polynomial root-finding indicates 

that among all the mentioned methods, Ehrlich-Aberth method has the advantages of requiring a small 

number of iterations for convergence and having a small number of function evaluations per iteration. This 

is the main reason we have choosing this method to be compared with the modification of Durand-Kerner 

iterations. 

2. Simultaneous Methods for Approximating Polynomial Zeros 

Until 1960 all known methods for finding the roots of polynomials are based in the Deflation method, so 

International Journal of Applied Physics and Mathematics

111 Volume 9, Number 2, April 2019

doi: 10.17706/ijapm.2019.9.2.111-118

mailto:eglantina.kalluci@fshn.edu.al
mailto:fatmir.hoxha@fshn.edu.al


  

in finding the roots of polynomials one by one. This method lead to the increasing of rounding errors. A 

group of methods that avoids this problem are the simultaneous ones, which in every iteration approximate 

all the roots simultaneously. These methods have many advantages even on a serial computer, but they are 

especially suited to be implemented in parallel computers. Several authors have considered this situation, 

McNamee, J. M., (2007) [5] has listed in chronological order most of them.  

The first method of this group is the following: 

 

𝑧̂𝑖 = 𝑧𝑖 −
𝑃(𝑧𝑖)

∏ (𝑧𝑖−𝑧𝑗)𝑖≠𝑗
.                                    (1) 

 

This formula is mentioned for the first time from Weiestrass (1903) as part of the fundamental theorem 

of Algebra and is rediscovered from Ilieff (1950), Durand (1960), Docev (1962), Kerner (1966) and others. 

This is known as Durand-Kerner (DK) metod or Weiestrass-Durand-Kerner method. From a straightforward 

evaluation of (1), where P(z) is evaluated using the Horner’s scheme, requires about 2n2  complex 

multiplications and 2n2 additions and subtractions. While Werner (1982) describes a more efficient 

scheme that requires only 
1

2
n2 multiplications, 

1

2
n2 divisions and 2n2 additions and subtractions. 

Another method discovered from Borsch-Supan (1963) and also described and brought in the following 

form Ehrlich (1967) and Aberth (1973) 

 

𝑧̂𝑖 = 𝑧𝑖 −
1

𝑃′(𝑧𝑖)

𝑃(𝑧𝑖)
−∑ (𝑧𝑖−𝑧𝑗)𝑖≠𝑗

.                                   (2) 

 

Aberth, Ehrlich and Farmer-Loizou (1983) have proved that the above method has cubic order of 

convergence for simple roots. 

Besides the advantages of lending itself to parallel computations, the Weiestrass method is much more 

robust than e. g. Newton’s method, i. e. it nearly always converges, no matter what the initial guess(es). 

Cosnard and Fraignaud (1990) [6] compare three different parallel network topologies (ring, 2-D torus, 

and hypercube). They conclude that the hypercube is by far the fastest. In experiment they obtain almost 

perfect speed-up.  

Bini (1996) [7] and Bini and Fiorentino (2000) [8] have written a highly efficient and robust program, 

based on Aberth’s method, with cluster analysis to speed convergence for multiple roots, and adaptive 

multiprecision arithmetic. It never failed on 1000 polynomials of degree up to 25. 

The Gauss-Seidel method in Linear Algebra consists in using the same iterations the already calculated 

values. Many authors have borrowed the same idea in the simultaneous methods for finding the roots of 

polynomials. For example, Niell (2010) [2] gives a modification of the following modification for the DK 

method: 

 

𝑧̂𝑖 = 𝑧𝑖
(𝑘)

−
𝑃(𝑧𝑖

(𝑘)
)

∏ (𝑧𝑖
(𝑘)

−𝑧𝑗
(𝑘+1)

)𝑖−1
𝑗=1 ∏ (𝑧𝑖

(𝑘)
−𝑧𝑗

(𝑘)
)𝑛

𝑗=𝑖+1

.                   (3) 

 

He has proved that the order of convergence is 2 < 𝑟 < 3, for polynomials with degree up to15. 

In the paper Xhaja, Hoxha (2011) [3] we have proposed another modification. Let, 
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be Newton’s and Halley’s corrections appearing in the well-known iterative formulas iii Nzz ˆ  

(Newton’s method), iii Hzz ˆ  (Halley’s method) of the second and third order, respectively. 

Let be nzzz ,,, 21   the approximations to the zeros n ,,1  , of a monic polynomial of order n. Using 

the improved approximations 
jjj Nzc   or 

jjj Hzc 
 

is defined the modified Weierstrass 

function, 

 

 






n

ij
j

j

i

cz

zP
zW

1

)(
)(

~
.  

 

This modification follows an idea borrowed from numerical linear algebra, where it leads from Jacobi’s 

method to Gauss-Seidel’s. The idea is to use at every moment the latest computed components of the 

approximate solution vector in order to compute the next component, rather than using the “old” 

approximate solution vector to compute the entire “new” vector. The Gauss-Seidel approach or serial mode 

is applied in different methods to accelerate the convergence speed. Using the modified Weierstrass 

function, 

 

𝑊⃗⃗⃗ 
𝑖 (𝑧𝑖

(𝑘)
) =

𝑃(𝑧𝑖
(𝑘)

)

∏ (𝑧𝑖
(𝑘)

−𝑐𝑗
(𝑘+1)

)𝑖−1
𝑗=1 ∏ (𝑧𝑖

(𝑘)
−𝑐𝑗

(𝑘)
)𝑛

𝑗=𝑖+1

,                           (4) 

 

and substituting this function to Newton method, achieving the following simultaneous method 

 

𝑧̂𝑖 = 𝑧𝑖 −
𝑊⃗⃗⃗ (𝑧𝑖)

𝑊𝑖
′⃗⃗⃗⃗ ⃗⃗ (𝑧𝑖)

 ,                                    (5) 

 

which has fifth order of convergence when we use the Newton correction and sixth order of convergence 

when we use Halley correction.  

All applications are based on the fact that the rational function W (or W
~

, W


) has the same zeros as 

the polynomial P. We emphasize that the use of corrections is justified only when its evaluations can be 

performed by the already calculated quantities. In this way the order of convergence is increased using 

negligible number of numerical operations giving a higher computation efficiency of the stated method.  

3. The Implementation in a Cluster of the Simultaneous Methods 

The simultaneous methods have a lot of advantages (for example very good convergence) even on 

sequential computers, but they are suitable to be implemented in parallel computers. 

Many authors have treated the problem of implementation of simultaneous methods in a cluster. Freeman 

(1989) has tested the DK method, EA method and another method of the fourth order proposed from 

Farmer and Loizou (1983), on a 8- processor linear chain, for polynomial of degree up to 8. The third 

method often diverges, but the first two methods have speed-up 5.5 (speed-up = (Time on one 

processor)/(Time on p processors)). Later Freeman and Bane (1090) considered asynchronous algorithms, 

in which each processor continues to update its approximations even although the latest values of other 

zi
(k)

have not received from the other processors, in difference with the synchronous version where it would 
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wait. 

In this paper we have considered the asynchronous version for DK method, EA method and the 

improvement given in (5). 

The general formula for the simultaneous methods has the form: 

 

𝑧𝑖
(𝑘+1)

= 𝑧𝑖
(𝑘)

−
𝑃(𝑧𝑖

(𝑘)
)

Φ𝑖(𝑧1
(𝑘)

,𝑧2
(𝑘)

,⋯,𝑧𝑛
(𝑘)

)
(𝑖 = 1,⋯ , 𝑛).                    (6) 

 

The parallel version of (6) for p-processors in which the l-th processor calculates 𝑗𝑙  approximations and 

𝑖𝑙 = ∑ 𝑗𝑚
𝑙−1
𝑚=1 (𝑙 = 1,⋯ , 𝑝)(𝑖1 = 0): 

Step 1: (i) k=1 

 (ii) Define the initial approximations 𝑧𝑖
(1)

. 

Step 2: In parallel, for𝑙 = 1, 2, … , 𝑝 and for𝑖 = 𝑖𝑙 + 1, 𝑖𝑙 + 2,… , 𝑖𝑙 + 𝑗𝑙 . 

1) Calculate𝑝𝑖
(𝑘)

= 𝑃(𝑧𝑖
(𝑘)

). 

2) Calculate𝑞𝑖
(𝑘)

= Φ𝑖 (𝑧1
(𝑘)

, 𝑧2
(𝑘)

, … , 𝑧𝑛
(𝑘)

). 

3) Set𝑧𝑖
(𝑘+1)

= 𝑧𝑖
(𝑘)

−
𝑝𝑖

(𝑘)

𝑞𝑖
(𝑘). 

Step 3: For𝑖 = 1, 2, … , 𝑛 communicate 𝑧𝑖
(𝑘+1)

 to all the processors. 

Step 4: (i) Check for the convergence. 

(ii) Perform a new iteration 𝑘 = 𝑘 + 1. 

Go to Step 2. 

Finding the appropriate initial approximations is very important for the efficiency of the algorithm, 

leading to a small number of iterations needed for the convergence. The point (ii) of Step 1 can be defined 

from different methods. For finding the initial approximation we have used Aberth method [1], which is 

suitable because it does not put conditions in the way how the roots should be spread, and also in their 

nature, real or complex.  

We calculate the points (i) and (ii) of Step 2 using the classical method and not Horner’s scheme, which is 

known as the fastest method for evaluating the polynomial in sequential computers. Another method which 

is designed for parallel environments is Estrin’s scheme [4]. The condition that this method gives is that the 

degree of the polynomial should be a power of two. In this paper we have tested it in the cases of 

polynomials of power 8, 16, 32, 64 and 128. 

 
Table 2.1. The Total Time of the Algorithm for Polynomials of Different Degrees (from 8 to 128) Using 

Estrin’s Scheme 
proc/n 8 16 32 64 128 

1 0.000932 0.007696 0.110636 0.572907 0.950551 

2 0.012506 0.029038 0.259891 0.550832 0.827741 

5 0.023143 0.066454 0.267016 0.523447 0.696566 

9 0.058312 0.113119 0.296654 0.56681 0.756231 

 
We have implemented all the algorithms mentioned in the SEEUCluster, an asynchronous cluster, which 

has a node that makes the connection with the environment outside the cluster. He is composed of 9 

processors PC computer 1.5 Ghz/128MB/20GB, a switch 16 ports and additional supply for the network. 

The cluster is built in the operating systems Linux Red Hat Enterprise 4.0, the clustering configuration is in 
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software OSCAR 4.2 (Open Source Cluster Application Resources). The parallel environment for 

programming, which will be used is LAM 7.0.6/MPI 2 C++/ROMIO-Indiana University. 

We have implemented the parallel version of DK algorithm in polynomials of different orders and we have 

evaluated the time of communication between the processors, the time of calculation of each processor and 

the total time (the total time= the communication time + the calculation time). For comparison we have 

implemented also EA algorithm. 

From the tests with fixed tolerance 0.00001 we achieve the results shown in the following tables: 

 
Table 2.2. The Communication Time between the Processors for Polynomials of Different Degrees (from 9 to 

200) 
proc/n 9 50 80 100 120 150 180 200 

2 0.011976 0.084491 0.179627 0.236206 0.309865 0.454037 0.635534 0.809774 

5 0.022858 0.142724 0.288124 0.384883 0.466556 0.658251 0.872588 1.03647 

9 0.057796 0.171517 0.348915 0.482871 0.616082 0.92352 1.26034 1.54332 

 

Table 2.3. The Calculation Time for Polynomials of Different Degrees (from 9 to 200) 
proc/n 9 50 80 100 120 150 180 200 

1 0.000932 0.07696 0.310636 0.57907 0.950551 1.90795 3.19035 4.30292 

2 0.00053 0.44547 0.180264 0.314626 0.517876 1.02191 1.73541 2.40965 

5 0.000285 0.02373 0.078892 0.138564 0.23001 0.441535 0.722316 0.973868 

9 0.000515 0.011602 0.047739 0.08681 0.140149 0.267236 0.516066 0.680262 

 

Table 2.4. The Total Time of the Algorithm for Polynomials of Different Degrees (from 9 to 200) 
proc/n 9 50 80 100 120 150 180 200 

1 0.000932 0.07696 0.310636 0.572907 0.950551 1.90795 3.19035 4.30292 

2 0.012506 0.129038 0.359891 0.550832 0.827741 1.475947 2.370944 3.219424 

5 0.023143 0.166454 0.367016 0.523447 0.696566 1.099786 1.594904 2.010338 

9 0.058312 0.183119 0.396654 0.56681 0.756231 1.190756 1.776406 2.223582 

 

If we analyze the values in the tables, we notice that for a fixed degree of the polynomial if we increase the 

number of processors, the communication time is increased, because each processor will communicate with 

other processors in the cluster. The same situation is encountered even if we move in the other direction, so 

if we fix the number of processors and increase the degree of the polynomial.  We can emphasize that if we 

compare the rows of Table 2.2 and of  Table 2.3, so with the increasing of the degree of the polynomial and 

for a fixed number of processors, we notice that the calculation time is smaller than the communication one. 

If we move vertically in Table 2.3 we notice that with the increasing of the number of processors, the 

calculation time will be decreased. In Table 2.4 is presented the total time which is needed from the 

algorithm to give the desired result and we notice that with the increasing of the degree of the polynomial, 

this time is quite doubled for a given number of processors. If we move vertically in this table for a fixed 

degree of the polynomial, we notice that we do not gain much in time, because arrives a moment when 

adding more processors does not bring much difference in the number of evaluation performed, but 

increases the possibility of passing in stand-by mode and increases the communication through processors. 

Finally for both DK and EA algorithms we have compared the sequential and parallel implementations 

and is measured the speed-up for polynomials with different degrees. This is useful for finding the degree of 
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polynomial for which we will achieve a good speed-up, and for which the speed-up remains quite constant. 
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Fig. 1. The speed-up of DK and EA method for polynomial for different degrees. 

 

As seen from Fig. 1 the speed-up of DK method converges at 4.5, while the speed-up of EA method 

converges at 14.5. 

In Fig. 2 is added the speed-up of the modified method (5) DKN, but without the Gauss-Seidel approach 

and the numerical tests agree with the theoretical ones, because EA method and DKN method have the 

same order of convergence. 

 
Fig. 2. The speed-up of DK, EA and DKN method for polynomials of different degrees. 

 

If we have less than 6 processors then it would be better to run the program in a number of processors 

that is a submultiples of 6 (the degree of the polynomial) for using at the maximum all the processors. In 

this case should be better to run the program in 2 or 3 processors. 

4. Conclusions 

The simultaneous methods calculate all the roots of polynomials simultaneously and this is an advantage, 

which leads to the parallelization of these methods. In this paper we considered the parallelization of DK, 

EA and DKN method in a cluster with 9 processors. From the numerical tests we see that the increasing of 

the number of processors should be done till the communication time is considerable with the total time of 
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the execution of the algorithm.  

It is shown clearly in the scatter plot given in Fig. 1 that the parallelization is efficient for polynomials 

with large degrees (≥ 20). From the Fig. 2 we prove numerically that Erlich-Aberth method and 

Durand-Kerner method with Newton corrections have the same order of convergence. In all the polynomial 

evaluations we haven’t use the Horner’s role, because it will decrease the speed-up, for its sequential nature. 

In the case when the degree of polynomials is a power of two can be used the Estrin’s method for the 

evaluation of polynomials. All these aspects goes to the discussion of reducing the operations per iteration.  
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