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Abstract: Among the diseases with high treatment costs, oncologic and cardiovascular diseases are 

nowadays the main causes of death in Portugal as in many other high income per capita countries. This 

situation is a challenge for health insurance companies and financial institutions. Although there is 

currently some affordable health insurance in case of severe diseases, such as cardiovascular disorders or 

cancer, the available capital is easily depleted. The study of costs associated with many serious diseases 

shows that very often lognormal distribution fits well to the costs distribution. Therefore, a simulation 

study was made to compare different interval estimation methods of the average cost of a lognormal 

distribution. This work compares bootstrap parametric and non-parametric methodologies with Cox and 

large sample normal based methods and the results were applied to a breast cancer Portuguese dataset. 

Furthermore, for the lognormal distribution, a correction to the truncated values of costs following capital 

depletion is proposed, and the impact of this correction illustrated via its application to a heart failure 

dataset. 
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1. Introduction 

In Portugal, as in many other countries, longevity is increasing and the proportion of young people 

decreasing. Under these circumstances, it is expected that the incidence of oncological and cardiovascular 

diseases will increase significantly in the near future. Simultaneously, recent developments in medical 

treatment have increased the rate of survival for patients suffering from these diseases. These two factors 

lead to high prevalence and inevitably to an increase in associated treatment costs. This situation concerns 

the funding institutions, as in the case of health insurance companies. Although there is currently some 

affordable health insurance for such serious diseases as cardiovascular or cancer, the available capital is 

often insufficient [1], [2]. This is a cause of concern for insurers who want adequate products to serve the 

clients' needs. This paper presents the results of research to study the costs associated with these diseases, 

but the long history of truncated values, because of capital depletion, was also a relevant problem. The 

results show that lognormal distribution fits well to the cost distribution for some of these serious diseases 

[3]. Assuming that costs follow this probability distribution, the objectives of this study are twofold: to 

compare some confidence interval estimation methods to the cost's mean value; and in case there exists 
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depletion in data to propose an estimation method of truncated values. 

2. Methodologies 

2.1. Interval Estimation Comparison 

A simulation study was made to compare different interval estimation methods of the average cost when 

it follows a lognormal distribution. The methods under consideration were bootstrap parametric and 

non-parametric methodologies, namely, normal, studentized, basic and percentile [4]–[7], Cox [8], [9] and 

large sample normal based methods. Considering 𝑋 as a random variable with lognormal distribution, 

𝑌 = 𝑙𝑛(𝑋) is normally distributed with mean 𝜇 and variance 𝜎2. Therefore, the mean and variance of 𝑋, 

𝑚 and 𝑣, are functions of 𝜇 and 𝜎2 given by:  

 

𝑚 = 𝑒𝜇+0.5𝜎2
 and 𝑣 = 𝑒2𝜇+𝜎2

 (𝑒𝜎2
− 1). 

 

A brief description of the considered interval estimation methods for 𝑚 follows.  

 𝑁𝑎𝑖�̈�𝑒 : 𝑁𝑎𝑖�̈�𝑒 confidence interval consists in the exponential transformation of normal based 

confidence interval limits, applied to data after logarithmic transformation. This approach produces the 

interval 
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 Cox and Cox-t: Cox confidence interval uses the maximum likelihood estimators for μ and σ2 to 

estimate ln(𝑚) and its variance. More specifically, the maximum likelihood estimator of ln(𝑚) is given by 
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As this estimator has asymptotic normal distribution, and replacing 𝜎𝑌
2  and 𝜎𝑌

4  by its consistent 

maximum likelihood estimators, SY
2 and SY

4, respectively, an asymptotic confidence interval for ln(𝑚) may 

be easily constructed. Applying the exponential transformation to the upper and lower bound of that 

interval, the confidence interval for ln(𝑚) is given by 
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where 𝑞1−
𝛼

2
 is the 1 −

𝛼

2
 quantile of a standard normal distribution. When the sample size is small, some 

authors recommend to use the quantile of a Student's t distribution with 𝑛 − 1 degrees of freedom (Cox-t 

method). 

 Large: Large sample confidence interval consists in the usual large sample normal based interval, that 

is, 
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with 𝑧1−
𝛼

2
 the 1 −

𝛼

2
 quantile of a standard normal distribution. 

Several bootstrap methodologies were also considered, namely: Parametric methods (bootP), in which 

samples from a pre-defined distribution are generated, with parameters previously estimated from the 

initial sample; and non-Parametric methods (bootNP), in which the sample is constructed using a 

resampling process of the initial sample. 

Therefore, the bootstrap confidence intervals in study were: 

 boot(P/NP)Normal: The normal bootstrap confidence interval is based in the large sample interval, 

but has a bias correction associated. The estimates for the bias and standard deviation are calculated from 

the bootstrap samples. This confidence interval is given by:  

 

(�̅� − 𝑏𝐵 ∓ 𝑧1−
𝛼

2
𝑠�̂�𝐵), 

 

with B the number of bootstrap samples and 𝑧1−
𝛼

2
 the 1 −

𝛼

2
 normal quantile. Also, 𝑏𝐵 represents the 

bias of bootstrap estimates to sample estimates and 𝑠�̂�𝐵 is the bootstrap standard deviation and they are 

given, respectively, by:  
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 boot(P/NP)Studentized: The studentized bootstrap confidence interval is based in the large sample 

interval as well, but the pivotal quantity 𝑍 = (�̅� − 𝑚)/𝑠𝑒�̅� is replaced by 𝑍∗ =
(�̅�(𝑏)−�̅�)

𝑠𝑒(𝑏) , 𝑏 = 1, . . , 𝐵. This 

confidence interval is given by 
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with B the number of bootstrap samples, 𝑠�̂�𝐵 the bootstrap standard deviation, and 𝑧𝜏
∗ the 𝜏 quantile of 

bootstrap distribution, 𝑍∗.  

 boot(P/NP)Basic: The Basic bootstrap method is based in the fact that  
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Assuming that (�̅�(𝑏) − �̅�) is a good approximation for (�̅� − 𝑚), the confidence interval can be written 
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as: 
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with 𝐵  the number of bootstrap  samples and 𝑞∗
𝜏

 the 𝜏  quantile of bootstrap distribution of �̅�.  

 boot(P/NP)Percentile: In contrast with the previous methods, the percentile bootstrap interval is not 

based in pivotal quantities. This interval is constructed under the assumption that �̅�(𝑏) ~ 𝑁(�̅�, 𝑠�̂�2) and 

the confidence interval �̅� ∓ 𝑠�̂�𝑧1−
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2
  is approximated by:  
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with 𝐵 being the number of bootstrap samples and 𝑞∗
𝜏
 the τ quantile of bootstrap distribution of �̅�.  

For different values of the parameters μ (mean value of the normal distribution associated) and σ 

(standard deviation of the normal distribution associated) and the sample size n, a set of 1 000 sample 

replicates was generated in order to understand what are the most adequate methods of interval estimation. 

To evaluate the performance of each method for each of these scenarios, 1 000 balanced confidence 

intervals at the 0,95 confidence level were constructed, using all the methods in study. The methods 

producing a coverage level, that is, a proportion of intervals including the true value of m smaller than 0,8, 

were eliminated. Then for each of the other methods with a good coverage level (greater than 0,8), the 

average interval amplitude was computed and compared with the coverage level. That is, the precision of 

each method was measured through the ratio [10] 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑒𝑣𝑒𝑙
 

and the methods producing smaller ratios were selected. This indicator was used in order to exclude the 

methods that produced high coverage levels but amplitudes excessively large.  

2.1. Truncated Costs Correction 

As mentioned before, many elements in the available samples of costs are truncated due to the depletion 

of capital. Thus, these values may be treated as observations from a lognormal population truncated at a 

constant 𝑐. The estimation of the true values of these observations can be made through the use of the 

conditional expected value.  

The conditional expected moments of a lognormal distribution can be evaluated from the incomplete 

higher order moments [11], which are given by:  

 

                                                           ∫ 𝑥𝑘𝑓𝑋(𝑥) 𝑑𝑥
𝑐

0

= 𝐸(𝑋𝑘)Φ (
ln(𝑐) − 𝜇 − 𝑘𝜎2

𝜎
),                                                       (1) 

where 𝑓𝑋(𝑥) is the density function of the random variable 𝑋 (defined in section 2.1). 

From here, it is easy to see that the kth order moment of the truncated lognormal random variable is 

 

                           𝐸(𝑋𝑘|𝑋 ≥ 𝑐) =
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)

𝐸(𝑋𝑘).                           (2) 
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Considering 𝑘 = 1, the conditional expected value is given by:  

                                             𝐸(𝑋|𝑋 ≥ 𝑐) =
𝑒𝜇+

𝜎2

2

1 − Φ (
ln(𝑐) − 𝜇

𝜎
)

[1 − Φ (
ln(𝑐) − (𝜇 + 𝜎2)

𝜎
)].                                      (3) 

The truncated observations in the sample were replaced by an estimated value of its true value given by 

the conditional expected value calculated with the help of formula 3 and where 𝜇 and 𝜎2 are replaced by 

its maximum likelihood estimates. The prediction mean square error of these estimates is exactly the 

conditional variance of the truncated observations. Taking 𝑘 = 2 in formula 2 the conditional second 

moment is obtained and, consequently, the conditional variance is 

 

                                 𝑉𝑎𝑟(𝑋|𝑋 ≥ 𝑐) =
Φ (−

ln(𝑐) − (𝜇 + 2𝜎2)
𝜎

)

Φ (−
ln(𝑐) − 𝜇

𝜎
)

𝐸(𝑋2) − [𝐸(𝑋|𝑋 ≥ 𝑐)]2,                            (4) 

where  

                                                                                 𝐸(𝑋2) = 𝑒2𝜇+2𝜎2
,                                                                         (5) 

with 𝑐 is the positive truncation point.  

3. The Data 

To illustrate the application of the several interval estimation methodologies, a sample of 513 breast 

cancer patients was used. From these, only 4 were men, and all of them were diagnosed between the years 

2005 and 2012, with ages ranging from 27 to 87 years old.  

The correction of truncated costs with the use of the conditional expected value of a lognormal 

distribution was applied to the inpatient costs, in the year of diagnosis, of 558 heart failure patients, of 

which 72 had unlimited capital and 16 exceeded contracted capital. Both sets of data were kindly provided 

by the health insurance company Multicare.  

The treatment costs of various oncological and cardiovascular diseases fit well to the lognormal 

distribution. Shapiro-Wilks and Lilliefors adjustment tests were applied to the hypothesis of lognormal 

distribution for the treatment cost, and they lead to non-rejection for at least some of the usual levels of 

significance (breast cancer: p-values 0,013 and 0,115; heart failure: p-values of 0,411 and 0,389). These 

results agree with the QQ-plot presented in Fig. 1b) and 2b.  

 

 
Fig. 1. a) Histogram of treatment cost and density curve of lognormal distribution. b) QQ-plot of the 

logarithm of cost. 

International Journal of Applied Physics and Mathematics

105 Volume 9, Number 2, April 2019



  

  
Fig. 2. a) Histogram of treatment cost and density curve of lognormal distribution.  b) QQ-plot of the 

logarithm of cost. 

  

4. Results 

4.1. Interval Estimation Comparison 

The simulation study concluded that the best methodologies for the interval estimation of the mean of a 

lognormal distribution are the non-parametric percentile bootstrap, if the standard deviation is small, and 

the parametric percentile bootstrap, when the standard deviation is large. For large samples, namely larger 

than 50, the best method is the Cox confidence interval. These results are summarized in Fig. 3.  

 

 
Fig. 3. Summary of the bilateral confidence intervals chosen for estimating the mean of a lognormal 

variable. 

 

When the standard deviation is small most of the methods produce good results. However, when the 

samples are small, or the standard deviation is large, parametric methods produce better results than 

exclusively sample based methods. For large samples Cox methods are the best and do not differ 

significantly from each other.   

Some expected but interesting points worth noting are that, in contrast with other methods, Naïve 

method does not improve its performance with large samples. Rather this method is worse the larger the 

sample size or the standard deviation. The reason is that the Naiv̈e method is a confidence interval for 𝑒𝜇 

and not for 𝑚 = 𝑒𝜇+
𝜎2

2 . As for Large confidence interval, it is interesting that although it is rarely the best 

option, its results are usually not very different than the results of the selected intervals. 

Application to Dataset of first year breast cancer costs:  

As referred in the data description section, the lognormal distribution fits well to the costs of most types 

of cancer. When considering only one type of cancer, however, it is possible to identify different patterns of 

costs, associated with the severity of the disease. The medical community uses frequently the word “stage” 

to refer to the different levels of the disease progression. This variable has a great impact on costs since an 

advanced stage is usually associated with a more aggressive treatment and therefore more expensive.  

International Journal of Applied Physics and Mathematics

106 Volume 9, Number 2, April 2019



  

Table 1 presents the results for logarithms of costs for breast cancer, dividing the patients into 

subsamples according the stage of the disease. The table shows the estimated standard deviation and the 

interval estimation method which produced the best result.  

 
Table 1. Dimension and Logarithms of Costs Standard Deviation of Each Stage Sample 

 Stage 

 In Situ I II III IV 

𝝈 0,62 0,77 0,72 0,72 0,96 

𝒏 44 205 162 81 21 

CI method bootNPPercentile Cox Cox Cox bootNPPercentile 

 
Using stage information to split data results into more homogeneous groups, the adjustment tests show 

improvements in most cases. 

Fig. 4 shows the results for the confidence intervals methods selected for each stage. 

 

 
Fig. 4. 95% Confidence interval for average cost of treatment of breast cancer in first year after diagnosis, 

per stage. 

 

An increase in the average costs is usual until stage III, but not always in stage IV. In fact, in case of 

advanced disease, many patients died before finishing the treatment and some chose not even to start the 

treatment. For breast cancer first-year costs, the calculated confidence intervals follow this expected 

behavior. For stage IV, the confidence interval has a larger amplitude because of smaller sample dimension 

(𝑛 = 21) and larger standard deviation (𝜎 = 1). 

4.2. Truncated Cost Correction 

The contracted capitals by coverage may be one of two types: limited or unlimited. When capitals are 

limited, insurance companies pay, per year, claims whose total amount does not exceeds the contracted 

capital so that a surplus has to be borne by the insured person. If the capitals are unlimited, companies 

cover any amount per year of contract. In the case of limited capital, whenever the value of the claims 

exceeds the contracted capital, the insurer will have access only to right truncated data, since the individual 

likely will continue his treatment, despite having to pay the excess costs without the insurer’s 

co-participation.  

It should be noted that the consequence of using truncated values in the calculation of the average cost of 

a given diagnosis is that such calculation will be underestimated, since some of these observations are less 

than the actual costs. Similarly, the removal of these observations from the sample results in an even more 

underestimated average cost of the diagnosis.  

Therefore, estimating the actual cost of patients who exceeded the capital is an extremely important 
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matter for adequate pricing in health insurance [12]-[14]. Once the company sells policies with unlimited 

capital, these were used to estimate the truncated amounts of the limited capital products.  

Assuming that the costs distribution of the unlimited capital does not differ significantly from that of the 

limited capital, it is possible to estimate the parameters of the lognormal distribution, necessary for the 

calculation of the conditional expected value, based on the unlimited sample, in order to calculate an 

estimate for the truncated costs in the sample of the limited capitals. [15] 

 

 
Fig. 5. Correction of truncated costs by depletion of capital, using the conditional expected value from a 

lognormal distributed variable. 

 

Fig. 5 illustrates the result of the above-described estimation procedure, applied to the inpatient 

observations occurred in the year of diagnosis in clients with heart failure. Three types of observations may 

be observed: customer costs that did not reach the contracted capital (gray points); costs of customers 

whose capital was insufficient (yellow points); and estimates of real costs (blue dots).  

Note that the estimation process was based on formula 3, where 𝑋 is a random variable that represents 

the cost which has lognormal distribution, with mean m and variance 𝑣, and 𝑐 represents the contracted 

capital. 

Correcting the truncated values before calculating the average costs results in an increase of 276,24€ in 

the final result. These numbers illustrate the underestimation problem caused by the use of truncated 

observations. Also, using solely the values associated with unlimited capital tends to overestimate the mean 

value, in this case, a difference of 518,72€. The precision of the estimate of the mean value is also 

underestimated in the case of non-corrected observations, once the capital limits force the observations to 

be artificially small. After correction, the estimated standard-deviation of the average of costs increases 

from 295,41€ to 461,53€. Similarly, the use of the sample including only unlimited capitals leads to a poor 

estimate, because the sample size is too small (1 252,05€).  

5. Conclusion 

From this study it was possible to select the methodologies producing more accurate confidence 

intervals for the mean of a lognormal distribution, according to the population variance and the sample size. 

These confidence intervals are necessary to evaluate the tariff of health insurance products and 

simultaneously may be applied to identify potential abusive or fraudulent usage from providers. As for 

many insurance contracts, the coverage capitals are limited, thus it is important to provide corrections to 

the truncated values observed in these cases. The proposed correction showed a good performance when 
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applied to the data set used for the study. This correction is of particular importance when the goal is the 

pricing of products with higher capital than the usual.   
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