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Abstract: Chaos in double diffusive convection was investigated in this paper. A five-dimensional model of 

chaotic system was obtained using the Galerkin truncated approximation. The results showed, the 

transition from steady convection to chaos via a Hopf bifurcation produced a limit cycle which may be 

associated with a homoclinic explosion at a slightly subcritical value of the Rayleigh number. 
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1. Introduction 

Chaos theory is the concept of sensitive on initial conditions where small difference on initial condition 

may produce the large variations in the long term behavior of the system. This behavior also namely 

“butterfly effect” related to work done by [1] where it is already described by Henri Poincare in 1890 in the 

literature in a particular case of the three body problem. In dynamical system, chaos behavior has been 

studied intensively (see [2]–[5]) and in convection of fluid. In this study, we focused on the behavior of 

chaos in convection of fluid. 

The investigation of free convection in Rayleigh-Bènard problem is receiving higher attention due to its 

wide applications in different disciplines such as astrophysics, oceanography, engineering and geology. A 

two-dimensional fluid cell heated from below and cooled from above (also known as the Rayleigh-Bènard 

problem) was studied by [1] (known as Lorenz’s system) in order to model the unpredicted behavior in 

weather. He then came out with the three-dimensional set of partial differential equation known as model 

of fluid convection and suggested that difficulty in reaching good accuracy exists in a very long range 

forecasting because this model gives rise to chaotic behavior [6]. 

Researchers adopted the ideas of Lorenz’s system [1] to other types of problems. In 1997, [7] modified 

the Lorenz’s system by including two additional term: intensifies the vorticity and stabilizes the 

temperature field to investigate the convective motion heated from below with a sinusoidal differential 

heating. From the observation, they found that, the onset of chaotic convection is suppressed by the 

temperature difference and the marginal Rayleigh number is proportional to h2, where h is the horizontal 

difference in Rayleigh numbers. A chaotic mathematical model has been proposed by [6] to provide a 

profile of the chaotic attractor associated with the Rayleigh-Bènard problem in a plane fluid motion. The 

results showed the attractor of the Lorenz’s system is a cross-section of the attractor of the proposed 

model. 
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Chaos convection in fluid layer heated from below has been studied by [8] in order to obtain its 

subcritical transitions and hysteresis. Using the method of weak non-linear analysis theory and Adomian 

decomposition method, he shows the results is in a very good agreement for the transition from the steady 

solution to chaos in the neighbourhood of the convective solutions. His finding also explains the transition 

from steady convection to chaos is via a solitary limit cycle followed by homoclinic explosion at a subcritical 

value of Rayleigh number. 

Research in double-diffusive convection begins after work done by sea-going oceanographers in order to 

measure the fluctuation of temperature and salinity as a function of depth as stated in the paper of [9]. 

Then, [10] and [11] studied the transition to chaos in double-diffusive convection with stress free boundary 

conditions where the oscillatory solution exists. They showed that the instability of fluid becomes 

oscillatory when thermal Rayleigh number is raised and the truncated model suggests that the appearance 

of chaos is associated with heteroclinic bifurcations. 

Two-dimensional thermosolutal convection between free boundaries was studied numerically by [12] 

and Huppert and Moore (1976) as cited in [10]. From their observation, they found that when solutal 

Rayleigh number is large enough, the oscillations underwent a bifurcation to asymmetry as thermal 

Rayleigh number increased and for the larger values of solutal Rayleigh number, the transition from chaos 

to steady motion occurs. While the study of feedback control was found in [13-23]. 

The objective of the present paper is to study the weak turbulence and chaos for low Prandtl number in 

double-diffusive convection involving temperature and concentration as the thermal Rayleigh number 

increases with rigid, no-slip horizontal boundary condition in the presence of feedback control. Applying 

the truncated Galerkin approximation to the governing equations yields an autonomous system with five 

ordinary differential equations which can be used to understand low-dimensional dynamics before moving 

to studies more complex systems. Note that if the system in absence of feedback control, the system were 

reduced to the system solved by [24]. 

2. Mathematical Formulation 

Consider a two-dimensional layer of fluid of depth H subject to gravity and heated from below as shown 

in Fig. 1, a Cartesian coordinate system is used such that the vertical axis z is collinear with gravity, that is, 

ˆ ˆ .g ze = -e  A sensor array is placed at the top of the fluid layer. The bottom boundary consists of actuators. 

The bottom temperature is controlled as a function of the temperature at the top. 

 

 
Fig. 1. Physical model. 

 

The two long walls are maintained at temperature TH and TC while concentration is assumed linear and 

takes the form of    0 1 ,C S CT T S S          where  and S  is volume expansion coefficient 

due to variations of thermal and solute concentration. The Boussinesq approximation is applied for the 
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effects of density variations for the gravity term in momentum equation. 

Therefore, the set of equations governing the conservation of mass, momentum, energy and 

concentration for fluid flow is given by, 
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Introduce the following transformation, 
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where  * * * *, ,u v wV  is the velocity component, *p  is the pressure, CT T  and CS S is the 

temperature and solute concentration variations, *  is the effective thermal diffusivity, *v  is fluid’s 

viscosity. 

In this model, all the boundaries are rigid and the solution must follow the impermeability conditions 

there, that is *
ˆ 0n V e on the boundaries, where ˆ

ne  is a unit vector normal to the boundary. The 

temperature and solute concentration boundary conditions are 1T S   at 0,z  and 0T S   at 

1.z   

For convective rolls having axes parallel to the shorter dimension (i.e 0,y  ) 0,v  apply the curl 

operator on eq. (2) to eliminate the pressure and introducing the stream function defined by u
z
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where, 
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which are, respectively, the Prandtl number, the Rayleigh number, the solutal Rayleigh number and the 

Lewis number. The boundary conditions for the stream function are 0   on the horizontal boundaries. 

Eqs. (6)–(8) form a nonlinear coupled system which together with the corresponding boundary conditions 

allow for a basic motionless conduction solution. 

3. Dimished Set of Equations 

In order to obtain the solution to Eqs. (6)–(8), we represent the stream function and temperature 

distribution in the form 
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where K is the scalar gain controller as discussed in [13] and [14]. 

Substituting eqs. (10)–(12) into eqs. (6)–(8), multiplying the equations by the orthogonal eigenfunctions 

corresponding to eqs. (10)–(12), and then integrating them over the spatial domain yields a set of five 

ordinary differential equations for the time evolution of the amplitudes, 
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In eqs. (13)–(17), the time, the amplitudes, the Rayleigh number and the solutal Rayleigh number were 

rescaled and the following notation was introduced, 
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(a) 
 

 (b) 

 
 

(c)                                   
 (d) 

Fig. 2. Phase portraits for the case Le = 0.1, , K = 0 (left), K = 1 (right)  (a), R = 300, Rs = 15  (b) R = 200, Rs 

= 15 (b) R = 400, Rs = 20 and (d) R = 230, Rs = 30. 

 

Rescaling the equation again in the form of, 
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to provide the following set of scaled equations which are equivalent to Eqs. (13)-(17): 
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where the dots denote time derivatives  
d

.
dτ

 Note that if K = 0 the problem is reduced to the study of 

[24]. 

4. Results and Discussion 

In this paper, we investigate the chaos behaviour with low Prandtl number in double-diffusive 

convection in the present of feedback control strategy. We obtained a system (18) - (22) that provides a set 

of non-linear equations with five parameters. Parameter Pr is a Prandtl number, R is a Rayleigh number, Rs 

is a solutal Rayleigh number and Le is a Lewis number. The value of λ  has to be consistent with the wave 

number at the convection threshold, a requirement for the convection cells to fit into the domain and fulfill 

the boundary conditions. 

The Lorenz-like equations have been extensively analyzed and solved for parameter values 

corresponding to convection in pure fluids and even there, the parameter values most regularly used 

correspond to Pr = 10 and λ  = 8/3 which is consistent with the the study of [24].  All solutions were 

obtained using the same initial conditions, which were selected at τ  = 0 : X, Y,Z ,U, W = 0.9. All 

computations were carried out with the value of maximum time, maxτ = 210 and a step size h = 0.001 

running using built-in ODE45 method on MATLAB R2010a, which provides a numerical solution. 

The phase potrait illustrated in Fig. 2 identified where the system chaotic. When we fixed Le = 0.1 and 

increase Rs from 15 to 30, shows the dynamical behaviour return to chaotic at R = 300, K = 0 and R = 200, K 

= 1 respectively as shown in Fig. 2(a) and (b). It can be say that with the present of controller gain 

parameter it decrease the value of R where the chaotic bahaviour occur. The same phenomena also has 

been observe if we increase Rs (see Fig. 2 (c) and (d)). 

5. Conclusion 

In this work, we used ODE45 method to investigate the chaos for low Prandtl number in double-diffusive 

convection in fluid layer in the present of controller gain parameter. It is shown that the system become 

chaos if we at a lower R with the present of feedback control. 
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