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Abstract: Is a temporal landline phone call network graph series led by the presence of small world 

phenomenon? Are order and average vertex degree of the network graphs associated to small – world – 

ness? How are related size and order of the network graphs in this temporal series? A continuously graded 

notion of small – world – ness is used to study the presence of small world phenomenon. Spearman’s and 

Kendall’s correlation coefficients are used to perform a non – parametric correlation analysis between small 

– world – ness and order/average vertex degree. Linear regression on log – transformed quantities is used 

to analyse the relationship between size and order. It is achieved by the study that, the presence of small – 

world – ness is confirmed in each time step of the series, and there is no significant association between 

small – world – ness and graph order/average vertex degree. A significant positive power relationship 

between size and order is found. 
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1. Introduction 

Different systems from real world are represented by network graphs with the purpose of topological 

studies [1]. A phone call network graph of a landline phone operator represents a system in which the 

vertex set is the set of the clients engaged in making or receiving calls, and the edge set is the set of 

communication relations between them. Scientific studies are concerned mainly in mobile network graphs 

[2]-[6] and those which analyze landline network graphs, considering dynamic evolution are rare. Network 

graph topology may vary over the observation time points. Temporal dynamics inferential studies in 

network graphs goes back to the 1970s and 1980s [7]-[11]. 

In most of the cases, topological relations in network graphs are supposed to be completely regular or 

completely random. Watts & Strogatz [12] showed that real world systems stand between these two 

topologies. Real systems are characterized by high level of clustering like regular lattices, and small 

geodesic distances like random graphs [13]. These network graphs are called by Watts & Strogatz as ‘small 

world’ in analogy with the phenomenon of ‘small world’ [14] known also as ‘six degrees of separation’ [15]. 

Association between different phenomena or processes has been a subject in many applied researches. 

Probabilistically speaking, it has to do with relationships between random variables. Practically, 

establishing the dependence or the independence, which is a property of the entire joint distribution of the 

random variables, is commonly replaced with establishing the correlation.  

In this paper are tackled the following questions, and are aimed their answers: Is a temporal landline 
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phone call network graph series led by the presence of small world phenomenon? Are order and average 

vertex degree of the network graphs associated to small – world – ness? How are related size and order of 

the network graphs in this temporal series? In this way 30 network graphs which were part of a temporal 

network graph series were constructed by splitting a phone call data records set for each day of a month. 

Time steps of the series are represented by each of the network graph. Small world phenomenon, in the 

case of a temporal landline phone call network graph series, is studied by applying a continuously graded 

notion of small – world – ness [16], [17] which led to a procedure for a general statistic test. Throughout, 

the association between small – world – ness versus the order and versus the average vertex degree of the 

network graph is studied by using a non – parametric correlation analysis. Linear regression on log – 

transformed quantities is used to analyse the relationship between size and order. 

2. Material and Methods 

2.1. Data Preparation 

A landline phone call data records is provided by a local telecommunicating operator located in south of 

Albania. Client identities are substituted by numbers, with the purpose of conserving the privacy. The study 

is based only on phone calls inside the operator’s clients’ network, and not outside it. The reason of this 

restriction was that the information about phone numbers which are not operator clients would be 

incomplete. Phone calls belong to November 2014 and were in total 81591. From these, 41 phone calls 

which were without call durations and 7442 phone calls with a duration less than 10 seconds are excluded 

from the study. The reason of this exclusion is that these calls could be lost calls, or wrong calls and could 

affect the accuracy of the study. The total data set which was used to conduct the study was 90.83% of the 

initial data set. Active clients are considered only them that are engaged at least in one phone call (made or 

received) with a call duration at least 10 seconds. 

The small world phenomenon in the communication system is studied by observing 30 network graphs 

which are constructed by splitting the data set for each day of the month. The network graphs are denoted 

by 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖), where the vertex set (active phone clients) is 𝑉𝑖  and the edge set is 𝐸𝑖 . Each edge represent 

a communication relation between two phone clients. Thus, if  𝑣1and 𝑣2 are vertices, then an undirected 

edge (𝑣1, 𝑣2) is between them only if 𝑣1 has received at least one phone call from 𝑣2 or the reverse. 

Multiple relations between two vertices were simplified in only one edge. The temporal network graph 

series is 𝐺1, 𝐺2, … , 𝐺30.The network graph 𝐺𝑖 is constructed based only on the data of the ith day.  

The statistical computation analyses in this study is conducted based in these packages: igraphdata [18], 

igraph [19], Kendall [20], ggpbur [21] in R statistical computation platform [22].  

2.2. Basic Definitions 

The order of a network graph is the number of vertices and the size is the number of edges on it. Let 

< 𝑙𝐺𝑖
> be the average geodesic distance [1] between vertex pairs in 𝐺𝑖 . We distinguish two type of 

clustering coefficient, based from the local and global perspective of a not weighted and undirected network 

graph. The clustering coefficient from the local perspective (vertices) was defined initially from Watts & 

Strogatz [12], [23] and is denoted by 

𝑐𝑙(𝑣) =
𝜏∆(𝑣)

𝜏3(𝑣)
,                                            (1) 

where 𝑣 ∈ 𝑉𝑖   and 𝜏∆(𝑣) is the number of triangles in 𝐺𝑖 in which is included the vertex 𝑣 ∈ 𝑉𝑖 , while 

𝜏3(𝑣) is the number of connected triples of vertices in 𝐺𝑖 , such that two of the edges are simultaneously 

incident with the vertex 𝑣. The clustering coefficient of 𝐺𝑖 is computed with the formula 
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𝑐𝑙(𝐺𝑖) =
1

|𝑉𝑖|
∑ 𝑐𝑙(𝑣).𝑣∈𝑉𝑖

                                   (2) 

In case that vertices had degree equal to zero or one, the clustering coefficient is taken 𝑐𝑙(𝑣) = 0 [1]. 

Transitivity of a network graph 𝐺𝑖 is denoted by 𝑐𝑙𝑇(𝐺𝑖) [23], [1] and considers the network graph as 

whole, from global perspective:  

𝑐𝑙𝑇(𝐺𝑖) =
3𝜏∆(𝐺𝑖)

𝜏3(𝐺𝑖)
,                                       (3) 

where 𝜏∆(𝐺𝑖) =
1

3
∑ 𝜏∆(𝑣)𝑣∈𝑉𝑖

 is the number of triangles in 𝐺𝑖 , and 𝜏3(𝐺𝑖) = ∑ 𝜏3(𝑣)𝑣∈𝑉𝑖
 is the number of 

connected triples. Although 𝑐𝑙(𝐺𝑖) and 𝑐𝑙𝑇(𝐺𝑖) are seen both form the global perspective, they are not 

equal but often have approximated values. 

Let 𝐺𝑖 be a network graph of order |𝑉𝑖| = 𝑛 and size |𝐸𝑖| = 𝑚. The equivalent random network graph 

Erdӧs – Rényi [13] with same order and size is denoted by 𝐸– 𝑅, which is constructed uniformly, and each 

edge has the same probability. A semi categorical definition of small – world – ness is [12]: 

Definition 1: A network graph 𝐺𝑖 is a small world network graph if < 𝑙𝐺𝑖 > ≥ < 𝑙𝐸−𝑅𝑖
> and 𝑐𝑙𝑇(𝐺𝑖 ) ≫

𝑐𝑙𝑇(𝐸 − 𝑅𝑖).  

Definition 𝟏′: A network graph 𝐺𝑖 is a small world network graph if < 𝑙𝐺𝑖 > ≥ < 𝑙𝐸−𝑅𝑖
> and 𝑐𝑙(𝐺𝑖 ) ≫

𝑐𝑙(𝐸 − 𝑅𝑖). 

A new categorical definition was proposed to measure quantitatively the small world phenomenon in a 

network graph [16], [17]. Let 

𝜆𝐺𝑖
=

<𝑙𝐺𝑖 >

<𝑙𝐸−𝑅𝑖
>

,                                      (4) 

and 

𝛾𝐺𝑖

𝑇 =
𝑐𝑙𝑇(𝐺𝑖)

𝑐𝑙𝑇(𝐸−𝑅𝑖)
,  𝑆𝑖

𝑇 =
𝛾𝐺𝑖

𝑇

𝜆𝐺𝑖

.                               (5) 

Similarly, 

𝛾𝐺𝑖
=

𝑐𝑙(𝐺𝑖 )

𝑐𝑙(𝐸−𝑅𝑖)
,   𝑆𝑖 =

𝛾𝐺𝑖

𝜆𝐺𝑖

.                                (6) 

Definition 1 and 1’ imply that 𝜆𝐺𝑖
≥ 1 and 𝛾𝐺𝑖

𝑇 ≫ 1 ( 𝛾𝐺𝑖
≫ 1), from which we have 𝑆𝑖

𝑇 > 1 (𝑆𝑖 > 1). 

Definition 2: A network graph 𝐺𝑖 will be a small world network graph if 𝑆𝑖
𝑇 > 1 (𝑆𝑖 > 1). 

2.3. Small World Hypothesis Testing   

A quantitative definition of small – world – ness is adopted, which led us to a procedure for a general 

statistic test for the presence of small – world structure as defined by Watts & Strogatz [16], [17]. An 

equivalent random network graph 𝐸 − 𝑅𝑖 [13] with same order and size, is created for each of the network 

graphs 𝐺𝑖 , from the series 𝐺1, 𝐺2, … , 𝐺30 and after that is computed 𝑆𝑖
𝑇 and 𝑆𝑖 . To ensure the robustness of 

the categorization, network graphs are tested for significance using Monte Carlo sampling. The null 

hypothesis [12] is that: 

H0: The system 𝐺𝑖 is an Erdӧs – Rényi [13] random network graph. 

Thus, for each of the network graphs  𝐺𝑖 , are constructed M equivalent random network graphs, 
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computing 𝑆𝑖
𝑇 and 𝑆𝑖 related to each of the ith E-R network graphs. The 99% confidence limits for the null 

hypothesis are defined for each of the 30 days. The procedure is described as follow [24]: 

1) Let �̂� be the empirical distribution of the M data 𝑆𝑖
𝑇 (or 𝑆𝑖), i.e. the probability which puts mas 1/ 

M at each data.  

2) A random generator is used to draw M new points 𝑆𝑖
𝑇∗

 (or 𝑆𝑖
∗) independently and with replacement 

from �̂�, so that each new point is an independent random selection of one of the M ‘original’ data 

points. These new points, which are called ‘bootstrap sample’, are a subset of original data points. 

3) The mean 𝑆𝑖
𝑇̅̅ ̅ (or 𝑆𝑖 ̅̅ ̅̅ ) value is computed for the bootstrap sample. 

4) Steps 2 and 3 are repeated 10000 times, each time using an independent set of new random 

numbers to generate the new bootstrap sample. The resulting sequence of bootstrap mean values is 

𝑆𝑖
𝑇̅̅ ̅1

, 𝑆𝑖
𝑇̅̅ ̅2

, … , 𝑆𝑖
𝑇̅̅ ̅10000

 

5) Let [𝑎∗, 𝑏∗] be the central 68% interval for the 𝑆𝑖
𝑇̅̅ ̅values such that 

#{𝑆𝑖
𝑇<𝑎∗}

10000
= 0.16 and 

#{𝑆𝑖
𝑇<𝑏∗}

10000
=

0.84. The bootstrap estimate of the standard deviation 𝜎, is �̂�(𝐵) =
𝑏∗−𝑎∗

2
, based upon the fact that a 

normal distribution puts 68% of its probability within one standard deviation of the mean. Half of 

the length of the interval from 16th percentile to 84th percentile is a reasonable definition of the 

normal – theory estimate of standard deviation. 

The upper 99% confidence limit is 𝐶𝐿0.01 = 1 + 2.58�̂�(𝐵), where by definition 𝑆𝑇 = 1 for an E – R 

network graph. A network graph with 𝑆𝑖
𝑇 > 𝐶𝐿0.01 is considered to significantly differ from a random 

network graph [16, 17] and the hypothesis H0 is rejected. In a similar way is done the same for 𝑆𝑖 . 

2.4. Correlation Analysis   

Correlation is a bivariate analysis that measures the strength and the direction of the association between 

two variables. Correlation reflects only some parts of the joint distribution. Correlation coefficient is a 

scalar measure of association between paired observations. Different correlation coefficients, leads to 

different results of correlation analysis and different interpretation results. Below we will refer to two non – 

parametric correlation coefficients: Spearman’s (𝜌), and Kendall’s (𝜏). Let (𝑋𝑖 , 𝑌𝑖), 𝑖 = 1, … , 𝑛 be a paired 

sample, and (𝑅𝑖
𝑋, 𝑅𝑖

𝑌) be the corresponding ranks for the sample. 

Definition 3: The Spearman’s correlation [25], [26] coefficient is defined as the Pearson’s correlation of 

ranks 

𝜌(𝑋, 𝑌) = 𝑟(𝑅𝑖
𝑋, 𝑅𝑖

𝑌).                                    (7) 

Spearman’s correlation coefficient is a statistical measure of the strength of a monotonic relationship 

between paired data. It does not make any assumption about the data distribution. To test the significance 

of this coefficient we use this hypothesis test: 

H0: 𝜌 = 0 and Ha: 𝜌 ≠ 0. 

The total number of possible pairing of 𝑋 with 𝑌 is 
𝑛(𝑛−1)

2
, where the sample size is 𝑛. The procedure is 

as follow:  

 Begin by ordering the pairs by 𝑋 values. If 𝑋 and 𝑌 are correlated, then they would have the same 

relative rank orders.  

 Now, for each 𝑌𝑖 , count the number of 𝑌𝑗 > 𝑌𝑖  (concordant pairs 𝑛𝑐) and the number of 𝑌𝑗 < 𝑌𝑖  

(discordant pairs 𝑛𝑑). 

Definition 4: The Kendall’s correlation [25], [26] coefficient is defined by: 
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𝜏 =
𝑛𝑐−𝑛𝑑

1

2
𝑛(𝑛−1)

.                                    (8) 

The Kendall’s correlation coefficient is the difference between the probability that the observed data are 

in the same order, versus the probability that the observed data are no in the same order. To test the 

significance of this coefficient we use this hypothesis test:  

H0: 𝜏 = 0 and Ha: 𝜏 ≠ 0. 

Association between the small –world – ness and network graph order, and the association between the 

small – world – ness and the average vertex degree is studied by using Kendall’s and Spearman’s correlation 

coefficients. There will be a significantly correlation coefficient if 𝑝 ≤ 0.05 and if the value of 𝑝 ≥ 0.20, 

there is no correlation. More data are needed if 0.05 < 𝑝 < 0.20. 

Furthermore, we are interested to see the relationship between the size and the order of the network 

graphs. For this, it is performed a linear regression on log – transformed quantities and is estimated the 

best fitting. It is assumed that hypothesis H0 is true.  

H0: The residuals are normally distributed. 

After that, it is controlled the hypothesis H0 through the Shapiro –Wilk normality test [27]-[29]. If the p– 

value is less than the chosen alpha level 0.05, the hypotheses H0 is rejected, and in this case there will be 

evidence that the data doesn’t come from a normally distributed population. 

3. Results 

A data description of the temporal network graph series 𝐺1, 𝐺2, … , 𝐺30 related to the order |𝑉𝑖| = 𝑛𝑖 , 

size |𝐸𝑖| = 𝑚𝑖 , and average vertex degree < 𝑑𝑖 >, is given in Table 1. Also the upper 99% confidence limit 

𝐶𝐿0.01, is computed for each of the measures of small world phenomenon 𝑆𝑖
𝑇 and 𝑆𝑖 .  

Before applying the correlation analyses, with the purpose of studying the relationship between small – 

world – ness and network graph order and the average vertex degree, it is done a visual inspection of the 

data normality, which is given in Fig. 1. Q-Q plots draw the correlation between a given sample and the 

normal distribution.  

 

 

Fig. 1. Visual inspection of the data normality. “Small – world – ness 1” is referred to Si
Tand “Small – world – 

ness 1’ ” is referred to Si. 
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From normality plots in Fig. 1 it is shown that there is no bivariate normal data distribution if we 

compare 𝑆𝑇  ~ 𝑛,  𝑆  ~ 𝑛,  𝑆𝑇  ~ < 𝑑𝑣 >, and S  ~ < 𝑑𝑣 >, and for this reason it is used a non – parametric 

correlation analysis. At first are constructed the scatter plots to visually see this relations, which are shown 

in Fig. 3, and after that are computed two type of non – parametric correlation coefficients, Kendall’s 𝜏 and 

Spearman’s 𝜌 which are given in Table 2. The relationship between size and order of network graphs in the 

temporal series, the scatter plot and the best fitting is given in Fig. 2. 

 
Table 1. Network Graph Topological Properties, Small – World – Ness Values and the Upper 99% Confidence 

Limit CL0.01. M is the Number of Simulated Equivalent E-R. Values of Measures Associated with (*) Are 
Rounded to Hundredths 

𝒊 |𝑽𝒊| |𝑬𝒊| < 𝒅𝒗
𝒊 >∗ 𝑺𝒊

𝑻* 𝑪𝑳𝑻
𝟎.𝟎𝟏* 𝑺𝒊* 𝑪𝑳𝟎.𝟎𝟏 ∗ M 

1 1597 2226 2.79 2.78 1.27 2.96 1.65 966 

2 1428 1940 2.72 1.70 1.18 2.25 1.38 972 

3 1561 2344 3.00 2.74 1.26 2.57 1.32 990 

4 1534 2286 2.98 3.46 1.32 2.77 1.43 990 

5 1522 2172 2.85 2.25 1.21 2.66 1.41 977 

6 1530 2231 2.92 14.16 1.24 23.66 1.26 982 

7 1531 2283 2.98 1.49 1.19 2.22 1.47 986 

8 1560 2363 3.03 2.80 1.26 4.12 1.49 991 

9 1487 2080 2.80 6.48 1.26 11.18 1.64 977 

10 1564 2273 2.91 2.92 1.20 1.67 1.28 989 

11 1545 2245 2.91 3.87 1.29 1.68 1.30 983 

12 1531 2221 2.90 3.32 1.18 1.75 1.32 980 

13 1547 2199 2.84 2.82 1.26 3.58 1.70 986 

14 1552 2290 2.95 4.41 1.27 4.67 1.45 989 

15 1555 2239 2.88 3.57 1.20 4.86 1.30 988 

16 1554 2168 2.79 1.39 1.14 0.87 1.18 968 

17 1555 2281 2.93 3.12 1.22 1.58 1.25 985 

18 1560 2272 2.91 2.22 1.32 1.54 1.43 984 

19 1494 2101 2.81 7.63 1.29 9.04 1.45 972 

20 1568 2250 2.87 2.99 1.34 2.18 1.57 981 

21 1523 2284 3.00 17.78 1.27 38.21 1.32 992 

22 1505 2207 2.93 1.82 1.25 2.70 1.46 985 

23 1479 2059 2.78 3.60 1.22 1.76 1.24 976 

24 1512 2202 2.91 11.09 1.41 9.66 1.52 985 

25 1559 2256 2.89 4.07 1.29 2.30 1.38 978 

26 1545 2272 2.94 2.38 1.35 3.79 1.62 984 

27 1530 2157 2.82 3.41 1.39 6.53 1.87 981 

28 1505 2213 2.94 3.74 1.24 5.53 1.44 986 

29 1524 2226 2.92 4.67 1.34 10.97 1.67 991 

30 1472 2036 2.77 1.72 1.14 0.66 1.11 961 

 
Table 2. Results of Non–parametric Correlation Tests 

 Model 
Kendall Spearman 

Tau p - value Rho p - value 

I 𝑆𝑇  ~ 𝑛 -0.1319476 0.3087 -0.1892253 0.3166 

II 𝑆  ~ 𝑛 -0.196764 0.129 -0.2793856 0.1349 

III 𝑆𝑇  ~ < 𝑑𝑣 > 0.1034483 0.4358 0.1372636 0.4679 

IV S  ~ < 𝑑𝑣 > 0.1218391 0.3567 0.2378198 0.2049 
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Fig. 2. The best fitting for the correlation between size and order of network graphs in log – log scale is 

m = e−3.66 n1.55  ( R2 = 0.69). For the model log m ~ log n, the value of the Shapiro – Wilk Statistic on the 

residuals is W=0.9704 and the 𝑝- value is 0.5501. Normal Q-Q plots of the model log m ~ log n. 

 

 
Fig. 3. Scatter plots of small – world – ness in relationship with the order of the network graph and in 

relationship with the average vertex degree of the network graph. 

 

4. Conclusion 

As a conclusion, 30 network graphs which were part of a temporal network graph series were 

constructed by splitting a phone call data records set for each day of a month. By applying a continuously 

graded notion of small – world – ness, the presence of small – world – ness is confirmed in each time step of 

the series. After computing Spearman’s and Kendall’s correlation coefficients, as part of a non – parametric 

correlation analysis between small – world – ness versus order, and between small – world – ness versus 

average vertex degree, is found that there is no significant association between them. Linear regression on 
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log – transformed quantities is used to analyse the relationship between size and order, and a significant 

positive power relationship between them is found.  
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