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Abstract: In this paper, we discuss a quantum control algorithm, devised by the authors, inspired in Rabitz
and Krotov algorithms and applied to Nuclear Magnetic Resonance (NMR) That algorithm is based on a
numerical method for iterative optimization. Specifically, we address the determination of external optimal
pulses (controls) to minimal cost, over a two-level quantum system. We use the numerical approximation to
find the optimal controls in the case of two external electromagnetic fields, integrating the associated
equations of the Pontryagin Maximum Principle. That algorithm unifies and generalizes the Rabitz and
Krotov algorithms. We compare the efficiency of these algorithms with the solutions found by analytical
methods.
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1. Introduction

In recent years Optimal Geometric Control techniques have been used in Nuclear Magnetic Resonance
(NMR) for the control of dynamics of quantum systems [1]. A fundamental problem in NMR is the
determination of the minimum time required to perform a unitary transformation in a quantum system.

A sample is placed in an uniform and longitudinal static magnetic field B, in the direction of the axis Z,
aligning the magnetic moments of this sample. Then it is exposed to variable radio frequency fields in the
X-Y plane, u,(t), u,(t), absorbing the energy through the sequence of transverse magnetic pulses. The

total magnetic field to which the sample is subjected is B(t) = (ux(t), u, (t), BZ).

When the magnetic moment vector of the system is transferred to the XY plane the sequence of
transverse magnetic pulses is stopped, making precess the magnetic moment vector. Repetitions of this
process cause fluctuations in B, and eventually cause decoherence. The pulse sequence should be as short
as possible to minimize the effects of relaxation, to optimize the sensitivity to the experiment and to
optimize the contrast of the image obtained. This is achieved by controlling the sequence of pulses that
create a unitary transformation in the shortest possible time. For the Control Theory the minimization in
time of a sequence of pulses equals the minimization of lengths of trajectories (in homogeneous spaces).

Consider a quantum system described by his wave function g[_))(t) called state. The evolution of @(t) is
determined by the Schrodinger equation
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where lI—J) = (Y1, P5): [0, T] > C? is a vector representing the unitary ket |{), T € R is the complete time

of control, let’ssay T = 12 , the Lebesgue integrable function u:[0,T] - C? is the intensity of the control

field laser pulse and H(t) is the Hamiltonian that represents the energy of the interaction of the spin
angular momentum with the external magnetic field, therefore

H(u(t)) = _V‘SZBZ - ]/qux(t) - V‘Syuy(t) (2)

where § = (8x,8y,8;) is the spin angular momentum operator and y is the gyromagnetic ratio of the
system [2].
We study the simplest control system in a spin —% particle interacting with the magnetic field. We

consider the following optimal control problem for the pure state:

d - >
9@ = —iHw®)p(®)
¥ =) ®

The target state is 117 (%) = (?) This means that the spin turns 27 radians from his initial position.

Using an adjoint state (Lagrange multiplier) A(t) we obtain

d i i i
—A®) = (5, +uy (DS, +ue(®)S; )2

The development of monotonic algorithms applied to Quantum Control Theory has been generating
approximative procedures to get the sequences of pulses in a state transfer problem in a single spin.
There exist several optimization procedures to compute the approximate solution of (3), by example,
Rabitz-Zhu algorithm, Krotov et al. algorithm and Maday-Turinici algorithm, used on Quantum Molecular
Dynamics. However, this type of algorithms can be used in the Optimal Control framework. A way to control
the system is to light it with a laser pulse, so u(t) is the intensity of the control laser pulse. That

procedures compute iteratively sequences {J(k)(t),u,(ck)(t),uj(,k)(t),l(k)(t) }, k€N and, solving

repeatedly the Schrddinger equation, approximate the solution {IZ(t), U, (t), uy (t), ()}

It's important to use an algorithm with an appropriate performance to solve the control quantum
equations (3), minimizing the cost J(u,,u,) = <J?t (%) 0| 55(%» + foﬁ(u,zc(t) + u3(t)) dt, where O is

the matrix observable with target information, which will allow us an optimum evolution of the system.

2. Problem Formulation

2.1. Settings

We have adapted two iterative algorithms due to Krotov et al. and Rabitz et al. respectively, to optimize a
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system with two controls (pulses of external magnetic fields) restricted to minimum cost. We present that
algorithm and we done a demonstration of convergence.

We consider the following optimal control problem, where we have changed the complex problem (3)
into a real problem [3]:

L3t = (5 +uy (D, +u, (), ) %(0) (4)

1
x(0) = ( 8) ©)
0

where S, S, and S, are the realification of Pauli matrices: Sy, S,, S,:

00 0 1 0 -1 0 0 0 0 0 1
& _ 0 0 1 0 s | 1 0 0 0 & _ 0 0 1 0
=l 0o 100/ {00 o0 -1] %0 =10 0 (6)
-1 0 0 0 0 0 1 0 -1 0 0 0
And
_ T. 2 20 . | Re
l'|J - (ll'll,lpz,) [O'T] - (C ,x(t) — Im(lpi)
Im(W,)
Given the final state
- 0
5 0
X|l—|) = 7
(%) (") @

minimizing the functional cost

J (g uy) = <5ét (%)wm(%) + L %(u,%(t)+u§(t)) dt )
where O is the matrix:
0=z (%) 7t (%) (10)

Since span{S,, S, $,} = su(2), where su(2) is the Lie algebra of traceless anti-Hermitian 2 x 2 matrices
and §y,3,,8, are orthogonal and linearity independent, the existence of the optimal control for the system
(4) with the final condition (9) is assured [4].

The problem is the determination of the optimal controls to perform a unitary spin evolution of the state
spin 1/2 to State spin -1/2, with minimum cost (9), in a two-level quantum system.

We have devised an algorithm based on the algorithms of Rabitz et al., Krotov et al. and Maday-Turinici,
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which unifies and generalizes them for the case of two controls wu,(t), u, ().

2.2. Recursion Formulas
Given &;,8,,1m; and n, € [0,2], functions A°(t),v°(t), w(t) and k e Nk > 1

o PO -1 —u®
(k) (k)
i;g(k)(t): uy (1) 0 we (1) 1 HQOI0)
dt 1 w0 P
WPe -1 WP 0
1
21 (0) = (g) (11)
0
ul(6) = (1 - 8¢ (1) + 5,27V ()3, 70 1) (12)
uO(6) = (1 = 8 wE V() + 5,47 P ()3, 20 (1) (13)
0 —v®(t) -1 —w®(t)
d v®(6) 0 —w®(t) 1
_/1(/() t) = /1(’() t
2 00=1""" e 0 Ly 2O
w@) -1 v (1) 0 /
T 0
200 (—): ; (14)
V2 )
+ 2
v () = (1 = Ul () + ;AT (S, 9 () (15)
w® ) = (1 = n)ul (@) + 1,479 ()3, 28 (1) (16)

2.3. Algorithm

The following algorithm allows to find the optimal controls u, ,u, of the problem (4), minimizing the
cost J(uy,uy):

1) Choice 2°(t),v°(t), wo(t).

2) Choice the values §,,8,,1; and 1, € [0,2].

3) Replace 6;,2°(t),v°(t) in (12) to get uj(,l)(t).

4) Replace §,,1°(t),w®(t) in (13) to get u,(cl)(t).

5) In (16) replace u§,1)(t) and 7.

6) Replace u,(cl)(t) and 7, in (17).

7) Integrate (11) forward to get ¥V (t) using u,(cl)(t) and uj(,l)(t).
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8) Integrate (14) backwards to get AV (t) using u,(cl)(t) and u§,1)(t).
9) Replace ¥M(t) in the equation to ul(,l)(t).

10) (2D (@®), v D), whD ()} - 20 @), vM(©), w® ()}

11) @ OufP 0} - @, uf? ©)

12) Continue until convergence.

3. Results

The initial choice was §; = 0.5,8, = 0.5,17; = 1.5,17, = 1.5,v°(t) = cost, w%(t) = 1. The process was
convergent at k = 15 and the cost was | = 0.8492

The second choice was §; = 0.5,8, = 1.5,; = 1.5,17, = 0.5,v°(t) = cost, w°(t) = cost. The process
was convergent at k = 15 and the cost was again | = 0.8492

Optimal Controls

We present the optimal controls limit functions (Fig. 1) and the limit functional cost (Fig. 2) in the
iterative process.
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Fig. 1. The optimal controls u,(t),u,(t) for k = 100.
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Fig. 2. The functional cost convergence.

3.1. Convergence

We have the following result about the monotonic convergence of our algorithm:
Theorem
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The algorithm converges monotonically:
](u,(tk+1),U§,k+1)) Zj(u)(ck),u:g}k)), v k € N (17)

Proof.
The proof is based on [3], for the case of two controls:

J(u (k+1)’ (k+1)) ](u(k) (k)) — <(5C>(k+1)) ( )|0|—>(k+1) (\;%) f\/—( (k+1) (t)+u§,k+1)2(t)) dr
—<<f(k>> () 7 J1012® (2 > f ﬁcu,i">2(t)+u§">2<t>> dt
— g+ Dye () Z 200y (T2 1012+ () _z00 (T2
‘<(xk Y(ﬁ) (xk)t(ﬁ>|0|xk (ﬁ) 2 (ﬁ)>

+2Re<f<k+n () -5 () o1 ﬁ)>

Vs
NG NG 2 2
+ fo V202 (1) 4 u®+ 0% (1)) ar — fo ﬁ(ufj‘) ® +ul” () dt.

_ <(5C>(k+1))t (%) _ @0yt (\’/%) 10]Z0+D <ﬁ> 0 (%)>
N L% <(5£1 _ 1) (u§k+1)(t) _ v(k)(t) + 772 ) v®(¢) — §k)(t))2> dt

G
¥ fo% <(6£2 - 1) ( D) - w(k)(t) n (712 ) W(k)(t) - u,(ck)(t))2> dt

>0

4. Conclusion

In this paper we have devised a monotonic convergent algorithm, inspired in Rabitz et al, Krotov et al.
and Maday-Turinici algorithms [3], to find the optimal controls to perform a unitary spin evolution of the
state spin 1/2 to state spin -1/2 in a minimal time and minimum cost for a two-level quantum system. The
corresponding optimal controls and the minimum cost were calculated (Fig. 1 and Fig. 2, respectively) when
there are two external electromagnetic fields. The results were compared with the analytical solution which
was found using the Pontryagin Maximum Principle [5]. The proposed algorithm converges rapidly to
known analytical solutions, which are sine and cosine [6]. The strategy yields good performances in the
case study we have analyzed. Of course, a structured validation of the new algorithm is required and also is
possible, in each step of the process, to splits the cost functions into fidelity and pulse energy. Finally, we
consider important the implementation and the development of iterative numerical algorithms to solve
quantum control problems in the case of quantum multi-levels.
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