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Abstract: Let A; =KQ/ 1, be system quiver algebras of maximal tame representation types. In this paper,

based on the minimal projective bimodule resolutions, we calculate explicitly the dimensions of all
Hochschild homology groups of the system quiver of maximal tame representation types.
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1. Introduction

_ _ _ M = Fx(t) + Gu(t)
The differential equation dt

y(t) = Hx(t)
X(t) e k", u(t) e k™, y(t) ek”

, Provides the linear time invariant dynamical

system Z:(G; FH) )
nxm;nxn; pxn

. G:F:H
where are vector variables, and ' ' ' are

matrix respectively. Hazewinkel first obtained the one to one correspondence of every

=(G;F;H n:
linear time invariant dynamical system Z ( ) and the dimensional vector (m;n; p) of the

following system quiver Q in [1].

s g
1 2 3

The equivalence classes of a dynamical system are one-to-one correspondence with the isomorphism
classes of the finite dimensional representations of the system quiver. Elements of the repreesentation
theory had been explained in [2]. Longcai Li et al. classfied all the system quiver algebras according their
representation type,and found the list of system quiver algebras of maximal tame representation type [3].
System quiver algebra of minimal wild type had been discussed in [4].

Let A isa system quiver algebra. In the isomorphism and dual sense, A s tame type if and only if A

kQ/1

is (or degenerate) , where | is correspond to T . The algebra is called the system quiver algebra

of maximal tame type.
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T
m L =(");

2) 1, =(a®, uo, pav);

3) I, = (u,a’v, o’ a);
@ 1, =(ua,a’v,a’);

(5) I =(av,pa,a™),(m=5).

Hochschild homology group was introduced by Hochschild in 1945 in [5]. Let A pe the finite
dimensional combination basic algebra (Including identical element 1) in number field K. Its enveloping

e __ AOp
algebra was defined as A =AT B, A, A" be the reflexive algebra of A M bpe the finite dimensional

A=A - dual-mode in number field K, then coefficients in the M of algebraic A which Homology group
HH_ (A,M) =Tor™ (M, A)

at the n-th order is defined as

HHH(A): HH”(A’A), known as the n-th order algebraic

Especially, when M =A | then say
Hochschild homology group.

The arrow diagram and its development and application , provided a effective method for calculating the
Hochschild homology of algebra group.

Bardzell gave the explicit description of construction of minimal projective bimodule resolutions of
monomial algebras with directed paths. Using Bardzell’'s method, the minimal projective bimodule
resolutions of the system quiver algebras of maximal tame representation type is constructed in [6]. In this
thesis, based on the resolutions, we calculate explicitly the dimensions of all Hochschild homology groups of
the system quiver algebras of maximal tame representation type by means of combinatorics. Thus we get a

further understanding of the homology property of those algebras.

2. Minimal Projective Bimodule Resolution

In the section, we first introduce the minimal projective bimodule resolutions of the system quiver
algebras of maximal tame representation type constructed by Dandan Zhang in [7].
By the correspondence of the list in introduction, it can obtain the following ideals corresponding to the

_ (2 (3
system quiver algebras of maximal tame type Ay =kQ/; : = (a) ) l, =(a, uo, pav) )
I, = (v, @’v, ua®, o) 1, = (ua,a’v,a*) | =(av,ua,a™)  (m=5)

€,6,,

B. . A, PR
Let ' be a series of k_bases of “!,and €3 be the primitive idempotent element

corresponding to the vertexes 1, 2, 3 respectively, we have

B, = {el,ez,e3,y,a,u,yu,au,,ua,,uav},dimk A, =10

B, = {el,ez,es,u,a,u,,ua,au,az,,uaz,azu,uazu},dimk A, =12,
B, = {el,ez,e3,,u,a,z),,ua,au,az,,uau},dimk A; =10,

B, = {el,ez,e3,y,a,u,,uu,au,az,as},dimk A, :10;
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B, :{el,ez,eg,,u,a,u,,uu,az,a3,~-,am_l},dimk A =m+5

And then, we construct the minimal projective bimodule resolutions of

enveloping algebra of * 1, writed for

: P! =
®=® """ peanm
APi(O)z{el,ez,e3} APi(l):{/“’a’U}_

For A, AP, (n) = {an } When N2,

For Az,AP2(2)={aalﬂu’/’m’}.When n

AP, (n)

For AS, AP, (2) = {,uu,azu, ,uaz,aS}

AP, (n) =

LI A;o(p)®t(p)A,

A =

AP ®, A

A‘. Let i be the

. AP.(n
where the constructions of '() are as follows:

)

>3

{

3n-1
o 2

}

when n is an odd number;

when n isan even number.

.When N 23,

2 vuax ? a ? v,a ?
when n is an odd number;
3n-4 3n-2 3n-3 3n

vux ? a ? U,az}

when n isan even number.

For A4,AP4(2):{ﬂa’azu”a4}.When n=3

)’

2n72’#aznfztv’aznfllamzu}
when n is an odd number;
2n—3“ua2n—4vya2n’a2n—20}

when n isan even number.

for Ns AP =lua,av,a™| (m25) o >3

AP, (n) =

fua
fu

(n-1)m (n—3)m*l (n—l)m*l (n-1)m
2 ua ? va ? a ? v
when nisan odd number;
(n—Z)m_'_1 (n-2)m mn (n—:l)m+l

2 ue 2 val,a 2

)

when nisan even number.
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| P"€AP () define sup(p™) ={p"" € AP,(n-1): p"isasubpath of p"}

For al
Let n be an odd number, p" < AR (n), then sup(p") :{plnil’ pgil}, where p'nil € AR (n_l),

(1=12)

1 2 n
, and there exists only one subpath R; and Ll, such that P exists the following decomposition:

p" = p/ 'R} = L2 pg‘*l’and then p" € AP (n +1),sup(p”+l) ={p> P2, P} (i=1-,9) ‘where

n+1 n+l

n n
P 6 'ui,gi andz, are the supplemental subpaths of Pi with respect to P

i . pi i
Define O P >R the following form:

S, (o(p") ®t(p")) = L ®t(p") -0o(p") ®R,

S (") @t(p" ) =Y 8 ® 4

i=1
And then it follows the following theorem according to [6].

. A, . .
Theorem 1 For the above the system quiver algebras ~ ' of maximal tame representation type, the
complex

o R N
(P,6")->P,>P >->P >R —>P >0

. - o A — . A,
is the minimal projective *"i resolution of ~ .

3. Hochschild Homology Group

X, Y

Let is a set that consists of all consistent elements of kQ, and X ©Y = (X, y) e X xY

t(x) =o0(y), =

| ( ) (y) ty) O(X)}.Then k(X @Y) is a linear space whose base is X ®Y . Inthe section, we
calculate the dimensions of all Hochschild homology groups of the system quiver algebras of maximal tame
representation type by means of combinatorics.

A (P',6") ¢ A

Acting on the minimal projection “*i ~ resolution A

i by the functor ' it follows

5@l 5ie1

o> P ®,c A — P! ®,. A — P ®,, A - PR, ®,. A —>0

n+l

Note that
PI® A= T (0(P)BUP) B, A = L (0(p)UP)) By, (B8 \'e)
= k(B, ® AP, (n))

It follows Bardzell chain complex

> (B, AP (M) SK(B, o, AP(N-D)
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—K(B, ;, AP (1))£>k(Bi o AR(0) >0

where, for all

n
€p)e (Bi O] AR (n)), if N isan odd number, then

7h(c, p") = (cA, p ™) — (&, ps) &)

no_ n-1 _ .n-1 n-1 . n-1 _
where P = Ay =p; 0 , PouP € AR(n-D) aresubpaths of pn. And if is an even number, then

7, p") =D (A, p")

n-1 n no_ n-1
where P is any one of sup(p”) such that P™ =P ek_

Theorem 2 Let Al - kQ/ Il - le(az),then

(2)

4 when n=0;
B.o AR =12 when n>1

and

4 when n=0;
dim, HH_ (A,)= |1 when n>1

Let N2 =kQ/ 1, =kQ/(@®, v, pav) o

5 when n=0;
|Bz®AP2(n)| =13 when nx1
and
5 when n=0;
dim, HH (A,)= (2 when n>1
Lt s =kQ/ 1, =kQ/(uw, @, pa® %)
5 when n=0;
B; o AP(N) =13 when nx>1
and
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5 when n=0;
dim, HH (A;)=12 when n>1

Let Aa=kQ/I, = kQ/(,uu,c)czz),oz“)’therl

6 when n=0;
|B4®AP4(”)| =14 when n>1

and
6 when n=0;
dim, HH (A,)= |3 when n>1
Let As = kQ/I; = kQ/(au,,ua,am),(mZS)’then

m+2 when n=0;
|Bs®AP5(n)| =|m when n>1

m+2 when n=0;
dim, HH, (A;)= [m-1 when n>1

Proof: Here, the conclusion of Ag is only proved and the others can similarly be proved. From the
second section, it follows

B, = {el,62,e3,y,a,u,ua,au,a2,uau}7 dim, A, =10 AP,(0)= {el,ez,eg}, AP, (1) :{,u,a,u}.

- A, AR(2) = {yu,azu,yaz,a3}

Fo , when N2 3, and n is an odd number,

3n-5 3n-3 3n-3 3n-1
AP,(nN)=qua ? v,ua ? ,a * v,a ?

when N2 3, and n is an even number,

;-4 ;2 w2 3
AP,(nN) =< ua ? v,ua * ,a ? v,a?
SO

B, ® AP, (0) = {(el’el)’(ez’ez)’(a’ez)’(az’ez)(eyes)}’
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B, o AP = {(e, @), (@ @), (@ @)}

B, o AP, () = {(&;,0),(2,0). ()|
when nzs,andnis an odd number;
3n-1 3n-1 3n-1
AP3(n):{(e2,a 2 ) (a,a 2 ), (@, a 2 )}
30 )
when N2 3, and n is an even number,

AP, (n) = {(ez,a?),(a,a?),(a21a?)}
O .

SO

5 when n=0;
B3®AP3(n)| =13 when n>1

B, ) AP, (1)

For proving the next conclusion, we can sequence the base of in accordance with the

order in the previous proving, and still denote its corresponding matrix by T
From (1) and (2), it follows:

2'13(62,0{) =(e,a,e,)—(ce,,e,) = 0'
7 (@a)=(a’e,)-(a’,8,) =0

(a?,a) = (a°6,) ~ (a8, =0

3 _
therefore ‘1 :o,and then rankz, —0_

When N= 2 for the same reason, it follows:
r§(e2,a3) =(a®,a)+ (o’ a)+(a’, a) =3(a2,a)’
(o, a’) = (@, a)+ (@’ a)+ (&’ a)=3(c’,a) = 0
3 (a®,a®)=(a a)+(a* a)+(a*,a) =3(a’,a) :O,

3
therefore the matrix 2 is
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w O O
o O O
o O O

3 _
then rankr, _1_

When N2 3,and n is an odd number,

3n-1 3(n-1) 3(n-1)
Tr?(ez’a 2)=(,a,a ? )—(o&,,a * )=0

’

3n-1 3(n-1) 3(n-1)
tia,a 2 )=(a’,a 2 )—(a’,a 2 )=0

’

3n-1 3(n-1) 3(n-1)
rﬁ(az,a 2 )=(a3,0¢ 2 )—(a3,a 2 3)=0

3

3 _
Therefore the matrix " = 0, then rankrn = 0_

When N2 4, and n is an odd number,

3n 3n-4 3n-4 3n-4 3n-4
rﬁ(ez,az):(az,a 2 )+(a2,a 2 )+(a2,a 2 ):3(052,05 2)

3;” M M 3n-4 3n-4
ff(a,a2)=(a3,a 2 )+(a3,a 2 )+(a3,a 2 )=3(a3,a 23)=0

Pa,a?)=(@a 2 )+(ata 2 )+(a',a 2 )=3(a’,a ? )=0

3
Therefore the matrix T is

0 00O
0 00O
300
3 _
then Fankr; =1
. |0, nisanodd number;
rankr, = _
In conclusion 1,  nisanevennumber.

And because

dim, HH, (A,) =dimkerz —dimImz:,; =|B,©AP,(n)| - rankr; —rankz;

n+1 n+1
’

Thus
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5 when n=0;
dim, HH, (A;)= |2 when n>1
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