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Abstract: Let iIkQ /i   be system quiver algebras of maximal tame representation types. In this paper, 

based on the minimal projective bimodule resolutions, we calculate explicitly the dimensions of all 

Hochschild homology groups of the system quiver of maximal tame representation types.  
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1. Introduction 

The differential equation ,
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 Provides the linear time invariant dynamical 

system 
);;( HFG

 , where 
pmn ktyktuktx  )(,)(,)(

are vector variables, and HFG ;; are 

npnnmn  ;; matrix respectively. Hazewinkel first obtained the one to one correspondence of every 

linear time invariant dynamical system 
);;( HFG

 and the dimensional vector );;( pnm  of the 

following system quiver Q  in [1]. 

 

 
 

The equivalence classes of a dynamical system are one-to-one correspondence with the isomorphism 

classes of the finite dimensional representations of the system quiver. Elements of the repreesentation 

theory had been explained in [2]. Longcai Li et al. classfied all the system quiver algebras according their 

representation type,and found the list of system quiver algebras of maximal tame representation type [3]. 

System quiver algebra of minimal wild type had been discussed in [4].  

Let   is a system quiver algebra. In the isomorphism and dual sense,   is tame type if and only if   

is (or degenerate) IkQ / , where I  is correspond to T . The algebra is called the system quiver algebra 

of maximal tame type.  
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Hochschild homology group was introduced by Hochschild in 1945 in [5]. Let   be the finite 

dimensional combination basic algebra (Including identical element 1) in number field K. Its enveloping 

algebra was defined as 
 k

ope

,
op  be the reflexive algebra of  . M  be the finite dimensional 

  dual-mode in number field K, then coefficients in the M of algebraic  ,which Homology group 

at the n-th order is defined as 
),(),(   MTorMHH

e

nn . 

Especially, when M , then say 
),()(  nn HHHH

, known as the n-th order algebraic 

Hochschild homology group. 

The arrow diagram and its development and application , provided a effective method for calculating the 

Hochschild homology of algebra group. 

Bardzell gave the explicit description of construction of minimal projective bimodule resolutions of 

monomial algebras with directed paths. Using Bardzell’s method, the minimal projective bimodule 

resolutions of the system quiver algebras of maximal tame representation type is constructed in [6]. In this 

thesis, based on the resolutions, we calculate explicitly the dimensions of all Hochschild homology groups of 

the system quiver algebras of maximal tame representation type by means of combinatorics. Thus we get a 

further understanding of the homology property of those algebras. 

2. Minimal Projective Bimodule Resolution 

In the section, we first introduce the minimal projective bimodule resolutions of the system quiver 

algebras of maximal tame representation type constructed by Dandan Zhang in [7]. 

By the correspondence of the list in introduction, it can obtain the following ideals corresponding to the 

system quiver algebras of maximal tame type ii IkQ /
:
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，
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Let iB
 be a series of k bases of i

,and 321 ,, eee
 be the primitive idempotent element 

corresponding to the vertexes 1, 2, 3 respectively, we have  

 

  10dim,,,,,,,,,, 13211  keeeB 
; 

 

  12dim,,,,,,,,,,,, 12

2222

3212  keeeB 
; 

  10dim,,,,,,,,,, 3

2

3213  keeeB 
; 

  10dim,,,,,,,,,, 4

32

3214  keeeB 
; 
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  5dim,,,,,,,,,,, 5

132

3215   meeeB k

m 
 

 

And then, we construct the minimal projective bimodule resolutions of i
. Let ik

op

i

e

i 
be the 

enveloping algebra of i
, writed for 

k :
.
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nAPp

i

n ptpoP
i




)()(:
)(


, where the constructions of 

)(nAPi  are as follows: 

 321 ,,)0( eeeAPi  ,   ,,)1( iAP . 
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For all 
)(nAPp i

n 
, define 

} ofsubpath  a is:)1({)sup( 11 nn
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Let n be an odd number, 
)(nAPp i

n 
, then }{)sup( 1

2

1

1

 nnn ppp ， ， where
)1(1  nAPp i

n

l ,

)2,1( l , and there exists only one subpath 
1

2R and
2

1L , such that 
np  exists the following decomposition: 
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i

n
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, ii  and
 are the supplemental subpaths of

n
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i
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 the following form: 
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And then it follows the following theorem according to [6]. 

Theorem 1 For the above the system quiver algebras i
 of maximal tame representation type, the 

complex 
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ii 

 
 

is the minimal projective e

i  resolution of i
. 

3. Hochschild Homology Group 

Let YX ,  is a set that consists of all consistent elements of kQ , and X ⊙ Y YXyx ),{(

,)()( yoxt 
  )(yt )}(xo .Then Xk( ⊙ )Y  is a linear space whose base is X ⊙Y . In the section, we 

calculate the dimensions of all Hochschild homology groups of the system quiver algebras of maximal tame 

representation type by means of  combinatorics. 

Acting on the minimal projection e

i resolution ),( iiP  of i
 by the functor

ie
i


 , it follows 
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It follows Bardzell chain complex 
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where, for all i

n Bpc (),( 
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))(nAPi , if n  is an odd number, then 

 

),(),(),( 1

2

1

1

  nnni

n pcpcpc 
                              (1) 

 

where  1

2

1

1

  nnn ppp ，
)1(, 1

2

1

1  nAPpp i

nn

aresubpaths of pn. And if is an even number, then 

 

 
k

n

kk

ni

n pcpc ),(),( 1
                                  (2) 

 

where 
1n

kp
 is any one of )sup( np  such that k
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Theorem 2  Let )/(/ 2
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Proof: Here, the conclusion of 3
 is only proved and the others can similarly be proved. From the 

second section, it follows 
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when 3n , and n is an even number, 
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For proving the next conclusion, we can sequence the base of 3B
⊙

)(3 nAP
 in accordance with the 

order in the previous proving, and still denote its corresponding matrix by 
3

n . 

From (1) and (2), it follows: 
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When 2n , for the same reason, it follows:  
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therefore the matrix 
3

2  is 
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When 3n ,and n is an odd number, 
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