
  

A Nontrivial Product in the Cohomology of the Steenrod 
Algebra 

 

Chong Wang* 

College of Mathematics and Statistics, Cangzhou Normal University, Hebei 061000, P. R. China. 
 
* Corresponding author. Tel.: 13230737859; email: wangchong_618@163.com 
Manuscript submitted May 14, 2017; accepted September 14, 2017. 

 
 

Abstract: Let p be a prime greater than seven and A be the mod p Steenrod algebra. In this paper, we prove 

that the product b_0^2delta_{s+4} is nontrivial, where s is greater than or equal to zero and less than p-4. 
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1. Introduction 

Homotopy groups are among the most fundamental algebraic invariants of topological spaces. To 

determine the homotopy groups S of spheres S  at p  is one of the central problems in the stable 

homotopy theory. Throughout this paper, p  will denote an arbitrary odd prime number. Let A  denote 

the mod p  Steenrod algebra and S  denote the sphere spectrum localized at an odd prime number p . 

The Adams spectral sequence SZZExtE stpp

ts

A

ts

 ),(,,

2  has been an invaluable tool in studying the 

stable homotopy groups of spheres, where the tsE ,

2  term is the cohomology of A . If a family of 

homotopy generators ix  in 
,*

2

sE converges nontrivially in the Adams spectral sequence, then we get a 

family of homotopy elements if  in S  and we say that if  is represented by 
,*

2

s

i Ex  and has 

filtration s  in the Adams spectral sequence. So far, not so many families of homotopy elements in S  

have been detected. For example, R. Cohen [1] constructed a certain infinite family of elements denoted 

by ,
3)1)(1(2 1 Skppk   1k and 2p . Note that the family k is represented by 

),(}1){1(2,3

0

1

pp

pp

Ak ZZExtbh
k  

  in the Adams spectral sequence. 

Throughout this paper, we fix )1(2  pq . For computing the stable homotopy groups of spheres with 

the classical Adams spectral sequence, we must compute the 2E  term of the Adams spectral sequence 

),(*,*

ppA ZZExt . There are two best methods for computing ),(*,*

ppA ZZExt : the May spectral sequence and 

the lambda algebra. The known results on ),(*,*

ppA ZZExt  are as follows. pppA ZZZExt ),(,*0
 by its 

definition. From [2], we have ),(,*1

ppA ZZExt has pZ  basis consisting of ),(1,1

0 ppA ZZExta   and 

),(,1

pp

qp

Ai ZZExth
i

  for all 0i  and ),(,*2

ppA ZZExt  has pZ  basis consisting of 
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)0(,, 0

2

02 ihaa i , )0(),0(),0(  ibikig iii , and )0,2(  iijhh ji whose internal degrees are 

1,2,12  qpq i
, qpqp ii 21 

, qpqp ii 12 , qp i 1
, and qpqp ji   respectively. In 1980, Aikawa [3] 

determined ),(,*3

ppA ZZExt  by   algebra. 

Studying higher-dimensional cohomology of the mod p  Steenrod algebra A  is an interesting subject 

and studied by several authors. For example, Liu and Zhao [4] prove the following theorem. 

Theorem 1.1 For 7p  and ps 4 , the product 0
~

00 sbh   in the classical Adams spectral 

sequence,  

where s
~

 is given in [5]. 

In this paper, our main result can be stated as follows. 

Theorem 1.2 Let 7p  and ps 4 . Then in the cohomology of the mod p  Steenrod 

algebra A , ),()(,8

pp

sts

A ZZExt 
, the product 4

2

0

~
sb   is nontrivial, where 

 2)3()4()1[()( pspssqst sps  ])4( 3
. 

The main method of proof is the (modified) May spectral sequence, so we will recall some knowledge on 

the May spectral sequence in Section 2. After detecting the generators of some May 1E  terms in Section 3, 

we will prove the main theorem -Theorem 1.2. 

2. The May Spectral Sequence 

In this paper, we will make use of the May spectral sequence to prove our main results. For completeness, 

in this section we give some knowledge on it. From [6], there is a May spectral sequence },{ ,*,

r

ts

r dE  which 

converges to ),(,

pp

ts

A ZZExt  with 1E  term 

 

)0()0,0()0,0( ,,

*,*,*

1  naPimbPimhEE nimim  

 

where )(E  is the exterior algebra, )(P is the polynomial algebra, and 

 

.,, 12,12,1

1

)12(,)1(2,2

1,

12,)1(12

1,

1  
 np

n

mppp

im

mpp

im

nimim

EaEbEh  

 

One has 

 
ruts

r

uts

rr EEd  ,.1,,:  

 

and if 
,*,ts

rEx  and 
,*,ts

rEy


 , then 

 

)()1()()( ydxyxdyxd r

s

rr   

 

In particular, the first May differential 1d  is given by  
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0)(,)(,)( ,1

0

,1,

0

,,1  






 jik

ik

kkiijk

ik

jkkiji bdahadhhhd  

 

There also exists a graded commutativity in the May spectral sequence: xyyx ttss 
)1(  for 

yx,
imim bh ,, ,  or na . 

For each element 
utsEx ,,

1 , we define uxMtxsx  )(,deg,dim .Then we have 

 











































,)12()(

,12)()(

,1deg

,1)1...(deg

)...(deg

),...(deg

,2dim

,1dimdim

,

1,

0

1

1

,

1

,

,

,

pibM

iaMhM

a

pqa

ppqb

ppqh

b

ah

ji

iji

i

i

jji

ji

jji

ji

ji

iji

 

 

where 0,1  ji . 

3. Proof of the Main Theorem 

By (2.2), we know that to prove the non-triviality of the product 4

2

0

~
sb  , we have to show that the 

representative of the product cannot be hit by any May differential. For doing it, we give the following two 

lemmas. The first one is a lemma on the representative of 4

~
s  in the May spectral sequence. 

Lemma 3.1 For 7p  and 40  ps . Then the fourth Greek letter element 

),(
~ )(,4

4
1

pp

sts

As ZZExt


   is represented by 

 
,*)(,4

13,12,21,30,44
1 sstss hhhha




 
 

in the 1E term of the May spectral sequence, where 4

~
s  is actually 

)4(

4
~

s  described in [7] and  

 

].)4()3()2()1[()( 32

1 pspspssqst 
 

 

Lemma 3.2 Let 7p  and 40  ps . Then we have the May 1E  term 

 

},...,,{ 721

),*(,7

1 GGGZE p

sts 
, 

 

where spspspssqnst  ])4()3()4()1[(),( 32
,and 
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3,11,30,4

2

0,33

1

41 hhhbaaG s , 3,11,30,40,10,342 hhhbbaG s , 1,11,30,42,10,343 hhhbbaG s , 1,13,10,4

2

0,344 hhhbaG s , 

1,13,12,21,30,40,32

1

45 hhhhhbaaG s , 1,13,12,21,30,40,146 hhhhhbaG s , 1,13,11,21,30,42,1247 hhhhhbaaG s . 

 

Proof Consider 
),*(,7

121 ... sts

m Exxxh   in the MSS, where ix is one of zujr bh ,, , or 

ka
, 40  k , 40  jr , 30  zu , 0,0,0,0  zujr . 

By(2.5), we can assume that iiiiii ecpcpcpcqx  )(deg 0,1,

2

2,

3

3, , where 0, jic  or 1 , 1ie  

if 
iki ax  , or 0ie . It follows that 7dimdim

1




sxh
m

i

i  and 

 

)()]()()()[(degdeg
11

0,

1

1,

2

1

2,

3

1

3,

1





m

i

i

m

i

i

m

i

i

m

i

i

m

i

i

m

i

i ecpcpcpcqxh
 

                 sspspspsq  )]1()4()3()4[( 23
 

 

Note that 2dim,1dimdim ,,  jiiji bah  and 40  ps . From 7dimdim
1




sxh
m

i

i , we 

can have 27  psm . 

Using psssss  4,3,3,1,0  and the knowledge on the p  adic expression in number 

theory, we have that 

 


















































.4

;3

;4

;1

;

1

3,

1

2,

1

1,

1

0,

1

sc

sc

sc

sc

se

m

i

i

m

i

i

m

i

i

m

i

i

m

i

i

 

 

By 03, ic  or 1 , one has 4 sm  from 4
1

3, 


sc
m

i

i . Note that 7 sm . Thus m  may equal 

4s , 6,5  ss ,or 7s .Since )0)((mod1deg),0,0)((mod0deg, ,

1




iqajiqhse iji

m

i

i and

)0,0)((mod0deg ,  jiqb ji , then by the graded commutativity of 
*,*,*

1E and degree reasons, we can 

assume that haaaaah lkzyx  43210  with ,...21 mss xxxh   where 
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),*(,7

1
2 st

E

0),*2545(,7

1

23

 pppqE

0),*1545(,7

1

23

 pppqE

}{ 1

),*1445(,7

1

23

gZ

E

p

pppq





slkzyxslkzyx  ,,,,,0 . 

Consequently, we have 
),*(,7

121
2...

st

mss Exxxh   , where 

 

)]1()4()3()4[()( 23

2 yzklspzklspklsplsqst  . 

 

From (3.1) we have 

 


















































.4

;3

;4

;1

;0

1

3,

1

2,

1

1,

1

0,

1

lsc

klsc

zklsc

yzklsc

e

m

si

i

m

si

i

m

si

i

m

si

i

m

si

i

 

 

Case 1. 4 sm . Form lsc
s

si

i 




4
4

1

3, in (3.2), we have that scsl
s

si

i  




4

1

3,4 . Note that 

sl 0 . Thus sl   and 0 kzyx . By (3.2), 
),*1434(,7

14321

23 

  pppq

ssss Exxxxh . In this 

case, h  is impossible to exist. Then h  doesn't exist either. 

Case 2. 5 sm . Form lsc
s

si

i 




4
5

1

3,  in (3.2), we have that 14
5

1

3,  




scsl
s

si

i . Thus sl   

or sl  . There are five possibilities satisfying slkzyx  ,,,,0  and slkzyx  . 

We list all the possibilities in the following Table 1. 

 
Table 1. Five Possibilities Satisfying slkzyx  ,,,,0  and slkzyx   

The possibility l  x  y  z  k  

 

    h  

The 1st 1s  1  0  0  0  

 

Nonexistence 

The 2nd 1s  0  1  0  0  

 

Nonexistence 

The 3rd 1s  0  0  1  0  

 

signtoup

gh 1
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0),*1435(,7

1

23

 pppqE

},,{ 432

),*1434(,7

1

23

gggZ

E

p

pppq





),*(,7

1
2 st

E

0),*3656(,7

1

23

 pppqE

0),*1656(,7

1

23

 pppqE

0),*1456(,7

1

23

 pppqE

0),*1436(,7

1

23

 pppqE

0),*2656(,7

1

23

 pppqE

0),*2556(,7

1

23

 pppqE

0),*2546(,7

1

23

 pppqE

0),*1556(,7

1

23

 pppqE

The 4th 1s  0  0  0  1  
 

Nonexistence 

The 5th s  0  0  0  0  

 

signtoup

gggh 432 ,,

 

 

In the table, 1,13,10,4

2

0,31,11,30,42,10,33,11,30,40,10,33,11,30,4

2

0,3 ,,, hhhbhhhbbhhhbbhhhb  denoted by 4321 ,,, gggg  

respectively. Consequently, in this case up to sign 44342412

1

4 ,,, gagagagaah ssss  denoted by ,, 21 GG 3G  

4G  respectively. 

Case 3. 6 sm . Form lsc
s

si

i 




4
6

1

3, in (3.2), one has 24
6

1

3,  




scsl
s

si

i . Thus 2 sl , 

1s  or s . We list all the possibilities in the following table2. 

 

Table 2. Form lsc
s

si

i 




4
6

1

3, in (3.2), One Has 24
6

1

3,  




scsl
s

si

i . Thus 2 sl , 1s  or s . 

We List All the Possibilities 

The possibility l  x  y  z  k  

 

    h  

The 1st 2s  2  0  0  0  

 

Nonexistence 

The 2nd 2s  0  2  0  0  

 

Nonexistence 

The 3rd 2s  0  0  2  0  

 

Nonexistence 

The 4th 2s  0  0  0  2  

 

Nonexistence 

The 5th 2s  1  1  0  0  

 

Nonexistence 

The 6th 2s  1  0  1  0  

 

Nonexistence 

The 7th 2s  1  0  0  1  

 

Nonexistence 

The 8th 2s  0  1  1  0  

 

Nonexistence 
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0),*1546(,7

1

23

 pppqE

0),*1446(,7

1

23

 pppqE

0),*2545(,7

1

23

 pppqE

0),*1545(,7

1

23

 pppqE

}{ 5

),*1445(,7

1

23

gZ

E

p

pppq





0),*1435(,7

1

23

 pppqE

},{ 76

),*1434(,7

1

23

ggZ

E

p

pppq





The 9th 2s  0  1  0  1  

 

Nonexistence 

The 10th 2s  0  0  1  1  

 

Nonexistence 

The 11th 1s  1  0  0  0  

 

Nonexistence 

The 12th 1s  0  1  0  0  

 

Nonexistence 

The 13th 1s  0  0  1  0  

 

signtoup

gh 5
 

The 14th 1s  0  0  0  1  
 

Nonexistence 

The 15th s  0  0  0  0  

 

signtoup

ggh 76 ,
 

 

In the table, 1,13,11,21,30,42,11,13,12,21,30,40,11,13,12,21,30,40,3 ,, hhhhhbhhhhhbhhhhhb  denoted by 765 ,, ggg  

respectively. 

Consequently, in this case up to sign 746452

1

4 ,, gagagaah sss  denoted by 765 ,, GGG  respectively. 

Case 4. 7 sm . Form lsc
s

si

i 




4
7

1

3,  in (3.2), one has 34
7

1

3,  




scsl
s

si

i . Thus 

3 sl , 2s , 1s  or s and ),*(,7

171
2...

st
Eyyh   where )71(  iyi  is in the form of 

0,40,,  rjrh jr , 0j . When 1 sl , the coefficient of 
3p  in )(2 st  is 5 . In these case h  

is impossible to exist. Then h doesn't exist either.In the last possibility, 1434)( 23

2  pppst  so 
1,30,4 ,hh , 

2,2h  and 3,1h  belong to h . Obviously, h  is impossible to exist in this case by the reason of dimension. 

Then h  doesn't exist either. 

Combining Cases 1-4, we obtain that },..,{ 71

),*(,7

1 GGZE p

sts  . This completes the proof of Lemma 3.2. 

Lemma 3.3 (1) ),(
~ )(,8

4

2

0 pp

sts

As ZZExtb 

   is represented by ),*(,8

13,12,21,30,44

2

0,1

stss Ehhhhab   in the MSS, 

where sspspspsqst  )]1()4()3()4[()( 23 . 

(2) For the seven generators of 
),*(,7

1

stsE 
, we have that 

 

,9910)()( 41  spGMGM 1396)()( 32  spGMGM , 

,1395)( 5  spGM .179)()( 76  spGMGM  
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Moreover, we have that .1692)( 3,12,21,30,44

2

0,1  sphhhhabM s  

Now we give the proof of Theorem 1.2. 

Proof of Theorem 1.2 From Lemma 3.3 (1), ),(
~ )(,8

4

2

0 pp

sts

As ZZExtb 

   is represented by 

 

1692),(,8

13,12,21,30,44

2

0,1

 spstss Ehhhhab  

 

in the MSS. Now we will show that nothing hits the permanent cycle 
3,12,21,30,44

2

0,1 hhhhab s  under the May 

differential 
rd  for 1r . From Lemma 3.2, we have },...,,{ 721

),*(,7

1 GGGZE p

sts  . 

For the generators 
1G  and 

4G  whose May filtration are 9910)()( 41  spGMGM  (see 

Lemma3.3), by the reason of May filtration, from (2.2) we see that 

 

1692),(,8

13,12,21,30,44

2

0,1

 spstss Ehhhhab  

 

which represents ),(
~ )(,8

4

2

0 pp

sts

As ZZExtb 

   in the MSS is not in )( 9910),(,7

11

 spstsEd . 

Now we will show 09910),(,7  spsts

rE  for 2r . By an easy calculation, from (2.3) and (2.4) one can 

have the first May differentials of 
1G  and 

4G  as follows: 

 

0...)1()( 3,10,22,21,3

2

0,32

1

4

6

11   hhhhbaaGd ss  

 

0...)1()( 1,13,10,22,2

2

0,34

6

41   hhhhbaGd ss
. 

 

It is easy to see that the first May differentials of 
1G  and 

4G  are linearly independent. Consequently, the 

cocycle of 9910),(,7

1

 spstsE  must be zero. This means that 09910),(,7  spsts

rE  for 2r , from which we 

have that  

 

)( 9910),(,7

3,12,21,30,44

2

0,1

 spsts

rr

s Edhhhhab for 2r . 

 

In all, )( 9910),(,7

3,12,21,30,44

2

0,1

 spsts

rr

s Edhhhhab  for 1r . 

For the generators 
2G  and 3G  whose May filtration are 1396)()( 32  spGMGM  (see 

Lemma3.3), by the reason of May filtration, from (2.2) we see that 

 

1692),(,8

13,12,21,30,44

2

0,1

 spstss Ehhhhab  

 

which represents ),(
~ )(,8

4

2

0 pp

sts

As ZZExtb 

   in the MSS is not in )( 1396),(,7

11

 spstsEd . Now we will show 
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01396),(,7  spsts

rE  for 2r  

 

By an easy calculation, from (2.3) and (2.4) one can have the first May differentials of 
2G  and 3G  as 

follows. 

 

0...)1()( 3,10,22,21,30,10,34

6

21   hhhhbbaGd ss
, 

0...)1()( 1,10,22,21,32,10,34

6

31   hhhhbbaGd ss
. 

 

It is easy to see that the first May differentials of 
2G  and 3G  are linearly independent. Consequently, the 

cocycle of 1396),(,7

1

 spstsE  must be zero. This means that 01396),(,7  spsts

rE  for 2r , from which we 

have that  

 

)( 1396),(,7

3,12,21,30,44

2

0,1

 spsts

rr

s Edhhhhab for 2r . 

 

In all, )( 1396),(,7

3,12,21,30,44

2

0,1

 spsts

rr

s Edhhhhab  for 1r . 

For the generator 5G  with May filtration 1395)( 5  spGM , by an easy calculation, from (2.3) and 

(2.4) we have the first May differentials of 5G  as follows: 

 

0...)1()( 1,13,10,22,21,30,40,30

1

4

6

51   hhhhhhbaaGd ss
. 

 

Thus 01395),(,7  spsts

rE  for 2r . At the same time, we also have that up to nonzero scalar 

 

3,12,21,30,44

2

0,151 )( hhhhabGd s . 

 

In summary, )( 1395),(,7

3,12,21,30,44

2

0,1

 spsts

rr

s Edhhhhab  for 1r . 

For the generators 6G  and 7G  whose Mayfiltration are 179)()( 76  spGMGM  (see Lemma3.3), 

by the reason of May filtration, from (2.2) we see that 1692),(,8

13,12,21,30,44

2

0,1

 spstss Ehhhhab  which 

represents ),(
~ )(,8

4

2

0 pp

sts

As ZZExtb 

   in the MSS is not in )( 1396),(,7

1

 spsts

r Ed  for 1r . 

From the above discussion, we see that the permanent cycle 
3,12,21,30,44

2

0,1 hhhhab s  cannot be hit by any 

May differential in the MSS. Thus, 1692),(,8

13,12,21,30,44

2

0,1

 spstss Ehhhhab converges to 

),(
~ )(,8

4

2

0 pp

sts

As ZZExtb 

   in the MSS nontrivially. Consequently, 0
~

4

2

0 sb  . 

This finishes the proof of Theorem1.2. 
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