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Abstract: In this paper, the Restarted Adomian Method has been implemented to analyze the System of 
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decomposition method is much better than the standard version of the Adomian decomposition method, 

where more accurate approximations for the solutions of the studied examples have been achieved. 
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1. Introduction 

The ‘Adomian Decomposition Method’ (ADM) [1] consists of calculating the function 𝑢 as a series 

𝑢 = ∑ 𝑢𝑛
∞
𝑛=0 , and the nonlinear function is decomposed as 𝑁(𝑢) = 𝑁(∑ 𝐴𝑛𝑥

𝑛∞
𝑛=0 ), where the 𝐴𝑛, are given 

by   𝐴𝑛 = ∑ 𝑐(𝜈, 𝑛) ∞
𝑛=0 𝑁(𝜈)(𝑢)|𝑢=𝑢0   [2]. In computing the series 𝑢  using appropriate software, as n 

increases the number of terms in the expression for 𝐴𝑛 increases and this causes propagation of round off 

errors. On the other hand, the factor 
1

𝑛!
 , existing in the formula of 𝐴𝑛, makes it very small, so that its 

contribution to 𝑢 is negligible. Hence, only the first few terms of the series ∑ 𝑢𝑛
∞
𝑛=0  determine the 

accuracy of the approximate solution. In 2003, E. Babolian, et al. [3] paid attention to this fact and 

introduced a new algorithm called ‘Restarted Adomian Method’, based on the ‘Adomian Decomposition 

Method’ to improve the accuracy dramatically. The ‘Restarted Adomian Decomposition Method’ (RADM), 

based on the standard ADM, introduced by E.Babolian, et al. [3] was for algebraic equations. In 2008, A. 

Yahidi et al. [4] described the ‘Restarted Adomian Decomposition Method’ to solve the system of nonlinear 

algebraic equations. In 2005, E. Babolian, et al. [5] applied the ‘Restarted Adomian Decomposition Method’ 

for solving nonlinear differential equation. In 2004, E. Babolian, et al. [6] applied the (RADM) to nonlinear 

integral equations and integro-differential equation.  H. Sadeghi, et al. [7] applied the RADM for solving 

system of nonlinear Volterra integral equations. In this paper we will show by examples that convergence 

rate this method is more accelerate than standard ADM for solving System of Integro-Differential Equations 

in both Volterra and Fredholm types.  

2. Restarted Adomian Decomposition Method 

We consider the Integro-differentil equation of the form 
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{
𝑢′′(𝑥) = 𝑓1(𝑥) + ∫ (𝑘1(𝑥, 𝑡)𝑁1(𝑢(𝑡)) + 𝑘1

~(𝑥, 𝑡)𝑁1
~(𝑣(𝑡)))𝑑𝑡

𝑏(𝑥)

𝑎

𝑣′′(𝑥) = 𝑓2(𝑥) + ∫ (𝑘2(𝑥, 𝑡)𝑁2(𝑢(𝑡)) + 𝑘2
~(𝑥, 𝑡)𝑁2

~(𝑣(𝑡)))𝑑𝑡
𝑏(𝑥)

𝑎

          (1) 

 

with initial condotions: 

 

𝑢(0) = 𝛼1, 𝑢′(0) = 𝛽1. 

 

𝑣(0) = 𝛼2, 𝑣′(0) = 𝛽2 

 

where u′′(x), 𝑣′′(𝑥) are the second derivative of the unknown function u(x), 𝑣(𝑥) that will be 

determined, 𝑘1(𝑥, 𝑡), 𝑘1
~(𝑥, 𝑡), 𝑘2(𝑥, 𝑡)and 𝑘2

~(𝑥, 𝑡) are the kernels of the integro differential equations, 

𝑓1(𝑥), 𝑓2(𝑥) are an analytic function, 𝑁1(𝑢(𝑡)), 𝑁2(𝑢(𝑡)), 𝑁1
~(𝑣(𝑡)), 𝑁2

~(𝑣(𝑡)) are nonlinear function of u, 

𝑣 respectively.  

Let 𝐿 =
𝑑2

𝑑𝑥2
, so 𝐿−1(. ) = ∫ ∫ (. )𝑑𝑥𝑑𝑥

𝑥

0

𝑥

0
, applying 𝐿−1 to both sides of (1), and using initial conditions, we 

obtain  

{
 
 

 
 𝑢(𝑥) = 𝛼1 + 𝛽1𝑥 + 𝐿

−1𝑓1(𝑥) + 𝐿
−1∫ (𝑘1(𝑥, 𝑡)𝑁1(𝑢(𝑡)) + 𝑘1

~(𝑥, 𝑡)𝑁1
~(𝑣(𝑡)))𝑑𝑡

𝑏(𝑥)

𝑎

𝑣(𝑥) = 𝛼2 + 𝛽2𝑥 + 𝐿
−1𝑓2(𝑥) + 𝐿

−1∫ (𝑘2(𝑥, 𝑡)𝑁2(𝑢(𝑡)) + 𝑘2
~(𝑥, 𝑡)𝑁2

~(𝑣(𝑡)))𝑑𝑡
𝑏(𝑥)

𝑎

          (2) 

 

The Adomian polynomials depend only on 𝑢0, 𝑣0; therefor if we can modify the term  𝛼1 + 𝛽1𝑥 +

𝐿−1𝑓1(𝑥) and 𝛼2 + 𝛽2𝑥 + 𝐿
−1𝑓2(𝑥) in equation (2), then 𝑢0, 𝑣0 are modified. This can be done by adding a 

term to both sides of the equation. Let 𝑔1, 𝑔2 be the proper terms, which are determined next; then 

 

{
𝑢(𝑥) + 𝑔1 = 𝛼1 + 𝛽1𝑥 + 𝐿

−1𝑓1(𝑥) + 𝑔1 + 𝐿
−1 ∫ (𝑘1(𝑥, 𝑡)𝑁1(𝑢(𝑡)) + 𝑘1

~(𝑥, 𝑡)𝑁1
~(𝑣(𝑡)))𝑑𝑡

𝑏(𝑥)

𝑎
 

𝑣(𝑥) + 𝑔2 = 𝛼2 + 𝛽2𝑥 + 𝐿
−1𝑓2(𝑥)+𝑔2 + 𝐿

−1 ∫ (𝑘2(𝑥, 𝑡)𝑁2(𝑢(𝑡)) + 𝑘2
~(𝑥, 𝑡)𝑁2

~(𝑣(𝑡))) 𝑑𝑡      
𝑏(𝑥)

𝑎

 

 (3) 

By applying the modified Adomian method on equation (2), we obtain 

{
𝑢0 = 𝑔1
𝑣0 = 𝑔2

 

{
 
 

 
 𝑢1 = 𝛼1 + 𝛽1𝑥 + 𝐿

−1𝑓1(𝑥) − 𝑔1 + 𝐿
−1∫ (𝑘1(𝑥, 𝑡)𝐴0(𝑡) + 𝑘1

~(𝑥, 𝑡)𝐴0
~(𝑡))𝑑𝑡

𝑏(𝑥)

𝑎

       

𝑣1 = 𝛼2 + 𝛽2𝑥 + 𝐿
−1𝑓2(𝑥) − 𝑔2 + 𝐿

−1∫ (𝑘2(𝑥, 𝑡)𝐵0(𝑡) + 𝑘2
~(𝑥, 𝑡)𝐵0

~(𝑣(𝑡)))𝑑𝑡
𝑏(𝑥)

𝑎

 

{
 
 

 
 𝑢𝑘+1 = 𝐿

−1∫ (𝑘1(𝑥, 𝑡)𝐴𝑘(𝑡) + 𝑘1
~(𝑥, 𝑡)𝐴𝐾

~(𝑡))𝑑𝑡
𝑏(𝑥)

𝑎

, 𝑘 ≥ 1 

𝑣𝑘+1 = 𝐿
−1∫ (𝑘2(𝑥, 𝑡)𝐵𝑘(𝑡) + 𝑘2

~(𝑥, 𝑡)𝐵𝐾
~(𝑣(𝑡)))𝑑𝑡

𝑏(𝑥)

𝑎

, 𝑘 ≥ 1
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Hence, we present the following algorithm 

2.1. The Algorithm 

Choose small natural numbers m, n. 

Step1: Apply the Adomian method on Eq. (1) and calculate (𝑢0, 𝑣0), (𝑢1, 𝑣1), … , (𝑢𝑛, 𝑣𝑛). Set  

𝜔1
1 = 𝑢0 + 𝑢1 +⋯+ 𝑢𝑛 

𝜔2
1 = 𝑣0 + 𝑣1 +⋯+ 𝑣𝑛 

Step2: For 𝑖 = 2:𝑚, do 

𝜔1
𝑖−1 = 𝑔1 

𝜔2
𝑖−1 = 𝑔2 

{
𝑢0 = 𝑔1
𝑣0 = 𝑔2

 

{
 
 

 
 𝑢1 = 𝛼1 + 𝛽1𝑥 + 𝐿

−1𝑓1(𝑥) − 𝑔1 + 𝐿
−1∫ (𝑘1(𝑥, 𝑡)𝐴0(𝑡) + 𝑘1

~(𝑥, 𝑡)𝐴0
~(𝑡))𝑑𝑡

𝑏(𝑥)

𝑎

      

𝑣1 = 𝛼2 + 𝛽2𝑥 + 𝐿
−1𝑓2(𝑥) − 𝑔2 + 𝐿

−1∫ (𝑘2(𝑥, 𝑡)𝐵0(𝑡) + 𝑘2
~(𝑥, 𝑡)𝐵0

~(𝑣(𝑡)))𝑑𝑡
𝑏(𝑥)

𝑎

 

{
 
 

 
 𝑢𝑘+1 = 𝐿

−1∫ (𝑘1(𝑥, 𝑡)𝐴𝑘(𝑡) + 𝑘1
~(𝑥, 𝑡)𝐴𝐾

~(𝑡))𝑑𝑡
𝑏(𝑥)

𝑎

, 𝑘 ≥ 1     

𝑣𝑘+1 = 𝐿
−1∫ (𝑘2(𝑥, 𝑡)𝐵𝑘(𝑡) + 𝑘2

~(𝑥, 𝑡)𝐵𝐾
~(𝑣(𝑡)))𝑑𝑡

𝑏(𝑥)

𝑎

, 𝑘 ≥ 1

 

Set 

𝜔1
𝑖 = 𝑢0 + 𝑢1 +⋯+ 𝑢𝑛 

𝜔2
𝑖 = 𝑣0 + 𝑣1 +⋯+ 𝑣𝑛 

end of for. 

Remarks 

 𝜔1
𝑖 , 𝜔2

𝑖  can be considered as the approximate solution of Eq. (1). 

 The Adomian method usually gives the sum of some of the first few terms gives an approximation of 

𝑢, 𝑣. In the new algorithm (RADM), we update 𝑢0, 𝑣0 in each step but we do not calculate the terms 

with large index in each step; therefore, 𝑚 and 𝑛 are considered to be small, say, 𝑚 = 3 and 𝑛= 2. 

 Applied the restarted Adomian method in m steps; and in each step, we obtained n terms of 

standard Adomian method with updated 𝑢0, 𝑣0 . Note that we used  𝐴0 , 𝐴1  . . . , 

𝐴𝑛−1, 𝐴0
~, 𝐴1

~, … , 𝐴𝑛−1
~ , 𝐵0 , 𝐵1  . . . ,𝐵𝑛−1, 𝐵0

~, 𝐵1
~, … , 𝐵𝑛−1

~  in each step, whereas for the standard 

Adomian method, we obtained mn terms, i.e., used  𝐴0 , 𝐴1 ,…, 

𝐴𝑚𝑛−1, 𝐴0
~, 𝐴1

~, … , 𝐴𝑚𝑛−1
~ , 𝐵0, 𝐵1 ,…,𝐵𝑚𝑛−1, 𝐵0

~, 𝐵1
~, … , 𝐵𝑚𝑛−1

~ .  

3. Computational Results and Analysis 

Example 1    

Consider the system of nonlinear Volterra integro differential equation [8]   

{
 
 

 
 𝑢′(𝑥) = 1 − 𝑥 +

𝑥2

2
−
𝑥4

12
+ ∫ ((𝑥 − 𝑡)𝑢2 + 𝑣2)𝑑𝑡,        𝑢(0) = 1                   

𝑥

0

𝑣′(𝑥) = −1 − 𝑥 −
3𝑥2

2
−
𝑥4

12
+ ∫ (𝑢2 + (𝑥 − 𝑡)𝑣2)𝑑𝑡,      𝑣(0) = 1

𝑥

0
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With the exact solution (1 + 𝑥,1 − 𝑥). Applying 𝐿−1(. )=∫ (. )𝑑𝑥
𝑥

0
  to the both sides gives, 

{
 
 

 
 𝑢(𝑥) = 1 + 𝑥 −

𝑥2

2
+
1

6
𝑥3 −

𝑥5

60
+ 𝐿−1∫ ((𝑥 − 𝑡)𝑢2 + 𝑣2)𝑑𝑡 

𝑥

0

  

𝑣(𝑥) = 1 − 𝑥 −
𝑥2

2
−
𝑥3

2
−
𝑥5

60
+ 𝐿−1∫ (𝑢2 + (𝑥 − 𝑡)𝑣2)𝑑𝑡  

𝑥

0

   

 

By applying the new algorithm with 𝑛 = 2 and 𝑚 = 2, we obtain: 

Step 1 

{
 
 
 
 

 
 
 
 𝑢0 = 1 + 𝑥 −

𝑥2

2
+
1

6
𝑥3 −

𝑥5

60
                                          

𝑣0 = 1 − 𝑥 −
𝑥2

2
−
𝑥3

2
−
𝑥5

60
                                              

𝑢𝑘+1 = 𝐿−1∫ ((𝑥 − 𝑡)𝐴𝑘(𝑡) + 𝐵𝑘(𝑡))𝑑𝑡 
𝑥

0

,     𝑘 ≥ 0 

𝑣𝑘+1 = 𝐿−1∫ (𝐴𝑘(𝑡) + (𝑥 − 𝑡)𝐵𝑘(𝑡))𝑑𝑡 
𝑥

0

,       𝑘 ≥ 0

      

 

{
 
 
 
 
 

 
 
 
 
 𝑢1 =

1

2
𝑥2 − 

1

6
𝑥3 +

1

12
𝑥4 + 

13

360
𝑥6 +⋯                     

𝑣1 =
1

2
𝑥2 + 

1

2
𝑥3 −

1

12
𝑥4 − 

1

30
𝑥5 +⋯                        

𝑢2 =
1

12
𝑥4 + 

1

60
𝑥5 −

1

20
𝑥6 − 

31

1260
𝑥7 +⋯              

𝑣2 =
1

12
𝑥4 + 

1

20
𝑥5 −

1

45
𝑥6 + 

1

252
𝑥7 +⋯

⋮                 
 

                

 

𝜔1
1 = 𝑢0 + 𝑢1 + 𝑢2 = 1 + 𝑥 +

1

6
𝑥4 −

1

72
𝑥6 −

3

280
𝑥7 +⋯ 

𝜔2
1 = 𝑣0 + 𝑣1 + 𝑣2 = 1 − 𝑥 −

1

360
𝑥6 +

13

2520
𝑥7 +⋯ 

Step 2 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 𝑢0 = 1 + 𝑥 +

1

6
𝑥4 −

1

72
𝑥6 −

3

280
𝑥7 +⋯                                                         

𝑣0 = 1 − 𝑥 −
1

360
𝑥6 +

13

2520
𝑥7 +⋯                                                                   

𝑢1 = 1 + 𝑥 −
𝑥2

2
+
1

6
𝑥3 −

𝑥5

60
− (1 + 𝑥 +

1

6
𝑥4 −

1

72
𝑥6 −

3

280
𝑥7 +⋯)     

+  𝐿−1∫ ((𝑥 − 𝑡)𝐴0(𝑡) + 𝐵0(𝑡))𝑑𝑡 
𝑥

0

𝑣1 = 1 − 𝑥 −
𝑥2

2
−
𝑥3

2
−
𝑥5

60
− (1 − 𝑥 −

1

360
𝑥6 +

13

2520
𝑥7 +⋯) +             

+  𝐿−1∫ (𝐴0(𝑡) + (𝑥 − 𝑡)𝐵0(𝑡))𝑑𝑡 
𝑥

0

𝑢𝑘+1 = 𝐿−1∫ ((𝑥 − 𝑡)𝐴𝑘(𝑡) + 𝐵𝑘(𝑡))𝑑𝑡 
𝑥

0

,     𝑘 ≥ 1                                       

𝑣𝑘+1 = 𝐿−1∫ (𝐴𝑘(𝑡) + (𝑥 − 𝑡)𝐵𝑘(𝑡))𝑑𝑡 
𝑥

0

,     𝑘 ≥ 1                                      

  

 

{
 
 
 
 
 

 
 
 
 
 𝑢1 =

1

72
𝑥6 + 

31

2520
𝑥7 +

1

2016
𝑥8 − 

73

90720
𝑥9 +⋯                                

𝑣1 =
1

72
𝑥6 + 

1

360
𝑥7 +

1

480
𝑥8 − 

73

30240
𝑥9 + …                                    

𝑢2 =
1

2016
𝑥8 − 

23

90720
𝑥9 +

13

226800
𝑥10 − 

31

554400
𝑥11 +⋯                  

𝑣2 =
1

2016
𝑥8 + 

71

90720
𝑥9 +

23

90720
𝑥10 − 

1

142560
𝑥11 +⋯                    

⋮                  
 

                

 

𝜔1
2 = 𝑢0 + 𝑢1 + 𝑢2 = 1 + 𝑥 +

1

6
𝑥4 +

1

630
𝑥7 +

1

720
𝑥8 +⋯ 

International Journal of Applied Physics and Mathematics

219 Volume 7, Number 4, October 2017



  

𝜔2
2 = 𝑣0 + 𝑣1 + 𝑣2 = 1 − 𝑥 +

1

90
𝑥6 +

1

126
𝑥7 +⋯ 

The results produced by the present method with only few components (m=2) are in a very good 

agreement with the best of the results of the methods listed in Table (1-a) and Table (1-b). The restarted 

Adomian method solution compared with exact solution in Fig. (1-a) and Fig. (1-b).  

 
Table (1-a). Comparison between Exact Solution 𝑢(𝑥) and Approximate Solution Using Method (RADM) 

 
 
 

X Exact (RADM) Absolute Error 

0.00 1.00000000 1.00000000 0.00000000e+00 

0.10 1.10000000 1.10001667 1.66670000e-05 

0.20 1.20000000 1.20026669 2.66691000e-04 

0.30 1.30000000 1.30135044 1.35043500e-03 

0.40 1.40000000 1.40427014 4.27013700e-03 

0.50 1.50000000 1.51043416 1.04341590e-02 

 
Table (1-b). Comparison between Exact Solution 𝑣(𝑥) and Approximate Solution Using Method (RADM) 

 

 

 

 

 

 

 

 Fig.
 
(1-a).

 
Comparison between exact solution 𝑢(𝑥)and approximate

 
solution using method

 
(RADM).

 

 

 

Fig.
 
(1-b).

 
Comparison between

 
exact

 
solution

 
𝑣(𝑥)

 
and approximate

 
solution using method

 
(RADM).

 

Example 2 

X Exact M5 Absolute Error 

0.00 1.00000000 1.00000000 0.00000000e+00 

0.10 0.90000000 0.90000001 1.19000000e-08 

0.20 0.80000000 0.80000081 8.12700000e-07 

0.30 0.70000000 0.70000984 9.83950000e-06 

0.40 0.60000000 0.60005857 5.85747000e-05 

0.50 0.50000000 0.50023614 2.36135000e-04 
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Consider the system of nonlinear Fredholm integro differential equation   

{
 
 

 
 𝑢′′(𝑥) = 2 +

12

5
𝑥 − ∫ 𝑥(𝑢2 + 𝑣2)𝑑𝑡,                                𝑢(0) = 1, 𝑢′(0) = 0              

1

0

𝑣′′(𝑥) = −2 +
4

3
𝑥 − ∫ 𝑥(𝑢2 − 𝑣2)𝑑𝑡,                               𝑢(0) = 1, 𝑢′(0) = 0 

1

0

           

 

With the exact solution (1 + 𝑥2,1 − 𝑥2).  

Applying  𝐿−1(. )=∫ ∫ (. )
𝑥

0
𝑑𝑥𝑑𝑥

𝑥

0
 to the both sides gives, 

{
 
 

 
 𝑢(𝑥) = 1 + 𝑥2 +

12

30
𝑥3 − 𝐿−1∫ 𝑥(𝑢2 + 𝑣2)𝑑𝑡    

1

0

  

𝑣(𝑥) = 1 − 𝑥2 +
4

18
𝑥3 − 𝐿−1∫ 𝑥(𝑢2 − 𝑣2)𝑑𝑡  

1

0

  

 

By applying the new algorithm with 𝑛 = 2 and 𝑚 = 2, we obtain: 

Step 1 

{
 
 
 
 

 
 
 
 𝑢0 = 1 + 𝑥2 +

12

30
𝑥3                                             

𝑣0 = 1 − 𝑥2 +
4

18
𝑥3                                               

𝑢𝑘+1 = −𝐿−1∫ 𝑥(𝐴𝑘 + 𝐵𝑘)𝑑𝑡 
1

0

,             𝑘 ≥ 0 

𝑣𝑘+1 = −𝐿−1∫ 𝑥(𝐴𝑘 − 𝐵𝑘)𝑑𝑡 
1

0

,             𝑘 ≥ 0

      

 

{
 
 
 
 
 

 
 
 
 
 𝑢1 = − 

19847

42525
𝑥3                      

𝑣1 = − 
1666

6075
𝑥3                          

𝑢2 =
13539649

160744500
𝑥3                     

𝑣2 =
10157669

160744500
𝑥3 

⋮                     
 

                

 

𝜔1
1 = 𝑢0 + 𝑢1 + 𝑢2 = 1 + 𝑥

2 +
2815789

160744500
𝑥3 

𝜔2
1 = 𝑣0 + 𝑣1 + 𝑣2 = 1 − 𝑥2 +

1796309

160744500
𝑥3 

Step2 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 𝑢0 = 1 + 𝑥2 +

2815789

160744500
𝑥3                                                                      

𝑣0 = 1 − 𝑥2 +
1796309

160744500
𝑥3                                                                     

𝑢1 = 1 + 𝑥
2 +

12

30
𝑥3 − (1 + 𝑥2 +

2815789

160744500
𝑥3)                                

−  𝐿−1∫ 𝑥(𝐴0(𝑡) + 𝐵0(𝑡))𝑑𝑡 
1

0

𝑣1 = 1 − 𝑥
2 +

4

18
𝑥3 − (1 − 𝑥2 +

1796309

160744500
𝑥3) +                           

−  𝐿−1∫ 𝑥(𝐴0(𝑡) − 𝐵0(𝑡))𝑑𝑡 
1

0

𝑢𝑘+1 = −𝐿
−1∫ 𝑥(𝐴𝑘 + 𝐵𝑘)𝑑𝑡 

1

0

,     𝑘 ≥ 1                                            

𝑣𝑘+1 = −𝐿−1∫ 𝑥(𝐴𝑘 − 𝐵𝑘)𝑑𝑡 
1

0

,     𝑘 ≥ 1                                            

  

 

{
 
 
 

 
 
 
𝑢1 = −0.02027080626𝑥3                                           

𝑣1 = −0.01330179127𝑥
3                                            

𝑢2 = 0.003208871286𝑥3                                             

𝑣2 = 0.002455726061𝑥3                                                  
⋮
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𝜔1
2 = 𝑢0 + 𝑢1 + 𝑢2 = 1 + 𝑥

2 + 0.0004552366791𝑥3 

𝜔2
2 = 𝑣0 + 𝑣1 + 𝑣2 = 1 − 𝑥

2 + 0.0003288676839𝑥3 

The results produced by the present method with only few components (m=2) are in a very good 

agreement with the best of the results of the methods listed in Table (2-a) and Table (2-b). The (RADM) 

solution compared with exact solution in Fig. (2-a) and Fig. (2-b).  

 
     

 

    

    

    

    

    

    

    

 
     

 

    

    

    

    

    

    

    

 

 
Fig. (2-a). Comparison between exact solution 𝑢(𝑥) and approximate solution using method (RADM). 

 

 

Fig. (2-b). Comparison between exact solution 𝑣(𝑥) and approximate solution using method (RADM). 
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Table (2-a). Comparison between Exact Solution 𝑢(𝑥) and Approximate Solution Using Method (RADM)

X Exact M5 Absolute Error

0.00 1.00000000 1.00000000 0.00000000e+00

0.10 1.01000000 1.01000046 4.55000000e-07

0.20 1.04000000 1.04000364 3.64200000e-06

0.30 1.09000000 1.09001229 1.22910000e-05

0.40 1.16000000 1.16002914 2.91350000e-05

0.50 1.25000000 1.25005690 5.69050000e-05

Table (2-b). Comparison between exact solution 𝑣(𝑥) and Approximate Solution Using Method (RADM)

X Exact M5 Absolute Error

0.00 1.00000000 1.00000000 0.00000000e+00

0.10 0.99000000 0.99000033 3.28900000e-07

0.20 0.96000000 0.96000263 2.63090000e-06

0.30 0.91000000 0.91000888 8.87940000e-06

0.40 0.84000000 0.84002105 2.10475000e-05

0.50 0.75000000 0.75004111 4.11085000e-05



  

4. Conclusion 

The present modification of Adomian decomposition method (RADM) has been successfully applied in 

this paper to finding the approximate solutions of system of nonlinear integro differential equations. The 

investigated examples show that better accuracy was achieved via the present method. 
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