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Abstract: The notion of Cartesian net is introduced in order to provide an appropriate setting for the notion 

of double limit for directed functions defined on Cartesian products of spaces. As an application, we obtain 

extensions of the Fubini-Tonelli type theorem to the setting of the extended notion of integrability recently 

introduced. 
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1. Introduction 

In the last half century, the study of the theory of vector valued integration has gained considerably in 

depth and in scope (see for example [1]-[6]). Recently, a relatively new approach to such a theory has been 

introduced in [1] and some important generalizations of the classical results have been proposed and 

studied in [7]-[10]. Such an approach strengthens the various existing classical concepts of integral and 

provides a continuous thread tying the subject matter together. The classical theorem of Fubini and Tonelli 

is another important result in the theory of integration. It proves to be very useful and oftentimes 

indispensable technical tools that provides conditions under which it is possible to compute a double 

integral using iterated integrals. However, the proof of such a theorem is always lengthy, too technical, and 

require certain level of abstraction. This is due mainly to the heaviness of the countable additivity condition 

for measures and the measurability requirement for functions in the statements of such a theorem.  

In this paper, we are concerned with the formulation of the Fubini-Tonelli theorem in the setting of the 

extended integration theory for vector valued functions. Our approach will offer, not only generalizations, 

but also and more importantly provide significantly simpler, thus easily understood proofs. Our 

development is facilitated by the introduction of the notions of Cartesian net that will allow us to generalize 

the notion of double limit.  

The exposition will be organized as follows. In Section 2, we generalize the notion of limit for double 

sequences to the case of nets. The results in this section are of importance in their own right and therefore 

can be seen as of independent interest. However, they will constitute the basics for the proofs of our main 

results that will be presented in the last section 4. A brief review of the essentials on the notion of the 

extended integral shall be presented in Section 3. 

2. Cartesian Nets 

In this section, we introduce the notion of Cartesian nets and extend the notion of double limit of 

sequences to the net limits. We essentially mimic the concept of double limit for sequences. We study the 

relationship between Cartesian limit and iterated limits for nets.  
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Recall that a nonempty set Ω is said to be a directed set if a binary relation is defined on Ω with the 
following properties: 

1) Transitivity: for 𝜔, 𝛾, 𝛿 ∈ Ω, if 𝜔 ≻ 𝛾 and 𝛾 ≻ 𝛿 then 𝜔 ≻ 𝛿; 

2) Upper-bound property: for 𝜔, 𝛾 ∈Ω, there exists 𝛿 ∈ Ω, such that 𝛿 ≻ 𝛾 and 𝛿 ≻ 𝜔. 

We then say that “the relation ≻ defines a direction on Ω” or that “the set Ω is directed by the relation ≻ ”. 

Such a notion shall simply expressed by the giving of the pair  Ω,≻ . The relation 𝜔 ≻ 𝛾 can be thought of, 

or read as “𝜔 is after 𝛾”. A function defined on a directed set is customary called a net. More precisely, a net 

of elements of a set 𝑋 is a function defined on some directed set  Ω,≻  taking values in 𝑋.  

In the special case where 𝑋 is a topological space, one can talk about the notion of convergence. We say 

that a net 𝜙 ∶  (Ω, ≻)  →  𝑋 converges to an element 𝑎 ∈ 𝑋, if for every neighborhood 𝑁 of 𝑎, there exists 

𝜔0 ∈ Ω such that 𝜙 𝜔 ∈ 𝑁 whenever 𝜔 ≻ 𝜔0. The element 𝑎 is then called the limit of the net 𝜙 along 

the direction , and we write 𝑎 = lim Ω,≻ 𝜙. For simplicity of notation, we shall omit such parts of the 

symbolism under ‘lim’ as can be without danger of confusion. For more details and expository presentation 

of the notion of net-limit, the reader is referred to [11]. 

Assume that (Ω,≻) and  Ω′, ≻ ′  are two directed sets. One can naturally define a direction ≻×≻ ′ on 

the Cartesian product Ω × Ω′ as follows: (𝜔,𝜔′) ≻×≻ ′ 𝛾, 𝛾′  if 𝜔 ≻ 𝛾 and 𝜔′ ≻ 𝛾’. Such a direction shall 

be called the Cartesian direction on and the directed set  Ω × Ω′ , ≻×≻ ′  is going to be simply called the 

Cartesian product of the directed sets (Ω,≻) and  Ω′ , ≻′ . We shall call a Cartesian net a function defined 

on a Cartesian product of two directed sets.  

Let 𝜙 ∶   Ω × Ω′ , ≻×≻ ′  →  𝑋 be a Cartesian net taking value in a topological space 𝑋. For each 
𝜔 ∈ Ω, the function 𝜔′ ↦ 𝜙 𝜔,𝜔′  is a net defined on  Ω′ , ≻′ . In what follows, by “lim Ω′ ,≻′ 𝜙 exists” 

we mean for every 𝜔 ∈ Ω, lim Ω ′ ,≻′  𝜙 (𝜔,∙) exists. Likewise, for each 𝜔′ ∈ Ω’, the function 𝜔 ↦ 𝜙 𝜔,𝜔′  

is a net defined on  Ω,≻  and by “lim Ω,≻ 𝜙 exists” we mean for every 𝜔′ ∈ Ω′, lim Ω,≻ 𝜙 (∙, 𝜔′) exists.  

For each Cartesian net, there correspond five important limits: 

1) lim≻×≻′ 𝜙; 

2) lim Ω′ ,≻′ 𝜙 ; lim Ω,≻ 𝜙 ; 

3) lim Ω,≻  lim Ω′ ,≻′ 𝜙 ; lim Ω′ ,≻′  lim Ω,≻ 𝜙  

The limit in 1. is called Cartesian limit, those in 2. are known as partial limits, whereas the limits in 3. shall 

be termed as iterated limits. 

The following example shows that existence of the iterative limits does not imply the existence of the 

Cartesian limit. 

Example 1. Let 𝜙 ∶ (ℝ × ℝ, > × >) → ℝ be the net defined by 𝜙(𝑥, 𝑦)  =
𝑥

1+𝑥+𝑦
, where > × > is the 

Cartesian direction of the two copies of ℝ, each directed towards +∞. Then lim𝑥→∞ lim𝑦→∞ 𝜙(𝑥, 𝑦) = 0, 

lim𝑦→∞ lim𝑥→∞ 𝜙(𝑥, 𝑦) = 1, and lim≻×≻′ 𝜙 = lim 𝑥,𝑦 → ∞,∞ 𝜙(𝑥, 𝑦) does not exists. 

Conversely, the existence of the Cartesian limit does not guarantee the existence of the iterative limits. 

Example 2. Let 𝜙 ∶ (ℕ × ℕ, > × >) → ℝ be the net defined by 𝜙(𝑛,𝑚)  =  −1 𝑚  
1

𝑛
+

1

𝑚
 , where > × > 

is the Cartesian direction of the two copies of ℕ , each directed towards +∞ . Then 

lim𝑚→∞ lim𝑛→∞ 𝜙(𝑛,𝑚) = 0,  lim𝑛→∞ lim𝑚→∞ 𝜙(𝑛,𝑚)  does not exists, lim≻×≻′ 𝜙 = 0.  

It is also worth noticing that the existence of the Cartesian limit lim≻×≻′ 𝜙 does not imply the existence 

of the partial limitslim Ω′ ,≻′ 𝜙 or lim Ω,≻ 𝜙 as the following example shows.  

Example 3. Let 𝜙 ∶ ℕ × ℕ, > × >) → ℝ be the net defined by 𝜙(𝑛,𝑚)  =  −1 𝑛  
1

𝑚
 . Then the Cartesian 

limit lim≻×≻′ 𝜙 is 0 while lim𝑛→∞ 𝜙(𝑛,𝑚) does not exist. 

Our first result gives a necessary and sufficient conditions for the existence of the iterated limit of a 

convergent Cartesian net taking values in a metric space (𝑋, 𝑑). 
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Theorem 1. Let 𝜙 ∶   Ω × Ω′ , ≻×≻ ′  →  𝑋 be a Cartesian net taking value in a metric space  𝑋, 𝑑 . 

Assume that Cartesian limit lim≻×≻′ 𝜙 exists and is equal to 𝑎 in 𝑋. Then 

1) lim Ω,≻  lim Ω′ ,≻′ 𝜙  exists and equals to 𝑎 if and only if lim Ω′ ,≻′ 𝜙 exists. 

2) lim Ω′ ,≻′  lim Ω,≻ 𝜙  exists and equals to 𝑎 if and only if lim Ω,≻ 𝜙 exists. 

Proof. By symmetry, we only need to show the equivalence in 1. The necessity is obvious. For the 

sufficiency, assume that the inner limit lim Ω ′ ,≻′  𝜙 (𝜔,∙)  exists for every 𝜔 ∈ Ω . Let 𝜀 > 0 . Since 

lim≻×≻′ 𝜙 = 𝑎 there exists  𝜔0, 𝜔′0 ∈ Ω × Ω′ such that if 𝜔 ≻ 𝜔0 and 𝜔′ ≻ 𝜔′0 then 𝑑 𝜙 𝜔,𝜔′ , 0 <
𝜀

2
.  

Since for each  𝜔 ∈ Ω , lim Ω ′ ,≻′  𝜙  𝜔,∙ : = 𝑏𝜔  exists, there exists 𝜔′1 ∈ Ω′  such that if 𝜔′ ≻ 𝜔′1 

then  𝑑(𝜙(𝜔,𝜔′), 𝑏𝜔) <
𝜀

2
. Choose 𝜔′2 ∈ Ω

′  such that 𝜔′2 ≻ 𝜔′
0, 𝜔′

1.  It follows that if 𝜔 ≻ 𝜔0 and 

𝜔′2 ≻ 𝜔′
0 we have 𝑑 𝑎, 𝑏𝜔 ≤ 𝑑 𝑎, 𝜙 𝜔,𝜔′  + 𝑑 𝜙 𝜔,𝜔′ , 𝑏𝜔  ≤ 𝜀. This completes the proof.  

As an immediate corollary, we have 

Theorem 2. Let 𝜙 ∶   Ω × Ω′ , ≻×≻ ′  →  𝑋 be a Cartesian net taking value in a metric space  𝑋, 𝑑 . 

Assume that the Cartesian limit lim≻×≻′ 𝜙  exists and is equal to 𝑎  in 𝑋 . Then the iterated limits 

lim Ω,≻  lim Ω′ ,≻′ 𝜙  and lim Ω′ ,≻′  lim Ω,≻ 𝜙  exist and both are equal to 𝑎 if and only if both partial 

limitslim Ω′ ,≻′ 𝜙 and lim Ω,≻ 𝜙 exist. 

The next result can be considered as a partial converse of the previous theorem. 

Theorem 3. Let 𝜙:  Ω × Ω′ , ≻×≻ ′ → 𝑋 be a Cartesian net taking values in a metric space  𝑋, 𝑑 . 

Assume that  

1) lim Ω′ ,≻′  lim Ω,≻ 𝜙  exists and is equal to 𝑎 and 

2) lim Ω,≻ 𝜙 (∙, 𝜔′) exists uniformly on 𝜔′ ∈ Ω’.  

Then the Cartesian limit lim≻×≻′ 𝜙 exists and is equal to 𝑎. 

Proof. By the second condition, the net 𝜔 ↦ 𝜙 𝜔,𝜔′  converges to 𝜔 ↦ 𝑓 𝜔′ : = lim Ω,≻ 𝜙 𝜔,𝜔′  

uniformly on 𝜔′ ∈ Ω’. Given 𝜀 > 0, there exists 𝜔0 ∈ Ω such that whenever 𝜔 ≻ 𝜔0,  

 

sup 𝑑 𝜙 𝜔,𝜔′ , 𝑓(𝜔′) :𝜔′ ∈ Ω′ < 𝜀/2. 

 

By the first condition, there exists 𝜔′0 ∈ Ω′ such that whenever 𝜔′ ≻ 𝜔′0, 𝑑 𝑓 𝜔′ , 𝑎 < 𝜀/2. It follows 

that if 𝜔 ≻ 𝜔0 and 𝜔′ ≻ 𝜔′
0,  we have 𝑑 𝑎, 𝜙 𝜔,𝜔′  ≤ 𝑑 𝑎, 𝑓(𝜔′) + 𝑑 𝑓 𝜔′ , 𝜙 𝜔,𝜔′  ≤ 𝜀.  This 

completes the proof.  

3. Extended Notion of Integral 

The ordinary definition of the Lebesgue-Bochner integral has a straight forward generalization with the 

so-called vector valued McShane integral, but this generalization does not prove perfectly satisfactory. In 

this section, we recall the essential elements for the definition of the extended notion of integrability of 

vector valued functions as introduced in [1] and further developed in [10]. 

In what follows by an integral space we always mean a triplet  Ω, Σ, 𝜇  consisting of a nonempty set Ω, a 

semiring Σ and a scalar set function 𝜇: 2Ω → 𝔽, where 𝔽 = ℝ or ℂ satisfying  

 𝜇 ∅ = 0; 
  𝜇(𝐴) ≤  𝜇 𝐵   whenever 𝐴 ⊂ 𝐵 in Σ (monotone);  
  𝜇  𝐴𝑖𝑖∈𝐼   ≤   𝜇 𝐴𝑖  𝑖∈𝐼  for every finite set 𝐼 and 𝐴𝑖 ∈ Σ (subadditive). 

Such a set function will simply be called an integrator. 

Given an integral space  Ω, Σ, 𝜇  and a subset 𝐴 ∈ 2Ω , a 𝛴-subpartition 𝑃 of 𝐴 is any finite collection 

{𝐼𝑖 : 𝐼𝑖 ⊂ 𝐴, 𝐼𝑖 ∈ 𝛴, 𝑖 = 1,… , 𝑛} with the following properties that µ(𝐼𝑖)  <  ∞ for all 𝑖 ∈ {1, . . . , 𝑛}, 𝐼𝑖 ⊂ 𝐴, 
𝐼𝑖 ∈ Σ, and Ii ∩ Ij = ∅ whenever 𝑖 ≠ 𝑗. A 𝛴-subpartition 𝑃 = {𝐼𝑖 ∶ 𝑖 = 1, . . . , 𝑛} is said to be tagged if a point 
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𝑡𝑖 ∈ 𝐼𝑖  is chosen for each 𝑖 ∈ {1, . . . , 𝑛}. We shall write = {(𝐼𝑖 , 𝑡𝑖) ∶ 𝑖 = 1, . . . , 𝑛} if we wish to specify the 
tagging points. We denote by Π(𝐴, Σ) the collection of all tagged Σ-subpartitions of the set 𝐴. The mesh or 
the norm of 𝑃 ∈ Π(𝐴, Σ) is defined to be  𝑃 = max 𝜇 𝐼 : 𝐼 ∈ 𝑃 . We denote by ⨆𝑃 ≔  𝐼𝐼∈𝑃 . 

If 𝑃, 𝑄 ∈ Π(𝐴, Σ), we say that 𝑄 is a refinement of P and we write 𝑄 ≻ 𝑃 if  𝑄 ≤  𝑃  and ⨆𝑃 ⊂ ⨆𝑄. 

It is readily seen that the relation ≻ is transitive on Π(𝐴, Σ), and if 𝑃, 𝑄 ∈ Π(𝐴, Σ), then 

 

𝑃 ∨ 𝑄 ≔  𝐼 ∖ ⨆𝑄, 𝐼 ∩ 𝐽, 𝐽 ∖ ⨆𝑃: 𝐼 ∈ 𝑃, 𝐽 ∈ 𝑄  
 

and we have 𝑃 ∨ 𝑄 ≻ 𝑃, 𝑄. Thus the relation ≻ has the upper bound property on Π(𝐴, Σ). Therefore the set 

Π(𝐴, Σ) is directed by the binary relation ≻. It is worth noticing that the refinement does not depend on the 

choice of the tagging points. 

Let f: Ω → X, where  𝑋,  .    is either a real or a complex normed vector space. Given a 

𝛴 -subpartition  𝑃 ∈ Π(𝐴, 𝛴) , we define the Σ, 𝜇 -Riemann sum of 𝑓  at 𝑃  to be the vector 𝑓𝜇  𝑃 : =

 𝜇 𝐼 𝑓 𝑡𝐼 .𝐼∈𝑃  We notice that the function 𝑃 ↦ 𝑓𝜇  𝑃  is an 𝑋-valued net defined on the directed set 

 Π 𝐴, Σ , ≻ . Our extended notion of integrability is as follows:  

Definition 4. Let  𝑋,  .    Be a normed space. A function f: Ω → X is said to be Σ, 𝜇-integrable over a 

set 𝐴 ∈ Σ, with Σ, 𝜇-integral ∫ 𝑓𝑑𝜇
𝐴

 if for every 𝜀 > 0, there exists 𝑃0 ∈ Π(𝐴, Σ), such that for every 𝑃 ∈

Π(𝐴, Σ), 𝑃 ≻ 𝑃0 we have  ∫ 𝑓𝑑𝜇
𝐴

− 𝑓𝜇  𝑃  ≤ 𝜀.  

We shall denote by ℐ 𝐴, Σ, 𝜇, 𝑋  the space of all X-valued Σ, 𝜇-integrable functions on a set 𝐴 ∈ 2Ω . It is 

worth noticing that if 𝜇 𝐴 = 0 then 𝑓𝜇  𝑃 = 0 for all 𝑃 ∈ Π(𝐴, Σ), and therefore ∫ 𝑓𝑑𝜇
𝐴

= 0. Therefore 

if 𝜇  𝜔 ∈ 𝐴: 𝑓(𝜔) ≠ 𝑔(𝜔)  = 0 , then ∫ 𝑓𝑑𝜇
𝐴

= ∫ 𝑔𝑑𝜇
𝐴

.  It is quickly seen that the relation 𝑓~𝑔  if 

𝜇  𝜔 ∈ 𝐴: 𝑓(𝜔) ≠ 𝑔(𝜔)  = 0 is an equivalence relation on ℐ 𝐴, Σ, 𝜇, 𝑋 . We shall denote  

 

𝐼 𝐴, Σ, 𝜇, 𝑋 ≔ ℐ 𝐴, Σ, 𝜇, 𝑋 /~. 
 

For 𝑝 ∈ (0,∞), a function f: Ω → X is said to be Σ, 𝜇,p-integrable if the scalar function 𝜔 ↦  𝑓(𝜔) 𝑝  is 

Σ, 𝜇- integrable. We shall denote by ℐ𝑝 𝐴, Σ, 𝜇, 𝑋  (resp. 𝐼𝑝 𝐴, Σ, 𝜇, 𝑋  the space of all (resp. classes of) 

X-valued Σ, 𝜇,𝑝 -integrable functions on a set 𝐴 ∈ 2Ω . It is easy to see that ℐ𝑝 𝐴, Σ, 𝜇, 𝑋 ⊂ ℐ 𝐴, Σ, 𝜇, 𝑋  

(resp. and 𝐼𝑝 𝐴, Σ, 𝜇, 𝑋 ⊂ 𝐼 𝐴, Σ, 𝜇, 𝑋 . 

In the particular case where Σ is a σ-algebra containing the Borel sets of a set Ω, and the integrator µ is 

the Lebesgue measure on Σ, the Bochner integrable functions are Σ, 𝜇,1-integrable. An extended version of 

the Dvoretski-Rogers theorem proved in [6] shows that if X is an infinite dimensional vector space, the 

space of all X-valued Bochner integrable functions is a proper subspace of all Σ, 𝜇- integrable functions. 

It is worth noticing that although the integrator is a function that may be defined on the whole 2Ω, the 

value of the Σ, 𝜇-integral ∫ 𝑓𝑑𝜇
𝐴

 depends only on values taken by the integrator on Σ. Another important 

feature of the above definition of the integral is also the fact that no measurability conditions are required. 

Hence, integration can be defined for non-measurable functions. Integration can also be defined even over 

non-measurable sets. In fact, the integral does not depend on any topological structure of the domain space. 

For the latest developments on the new approach to integration, the reader is referred to [7]-[9]. 

We finish this section with a useful characterization of integrability.  Assume that f: Ω → X is Σ, 𝜇  
-integrable over a set 𝐴 ∈ 2Ω . Fix 𝜀 > 0 and let 𝑃0 ∈ Π 𝐴, Σ  be such that for every 𝑄 ∈ Π(𝐴, Σ), 𝑄 ≻

𝑃0 we have  ∫ 𝑓𝑑𝜇
𝐴

− 𝑓𝜇  𝑄  ≤ 𝜀/2. Fix such a subpartition 𝑄. Then we also have for every 𝑃 ∈ Π(𝐴, Σ) 

that does not intersect P0, we have 𝑃 ∨ 𝑄 ≻ 𝑃0, and therefore  ∫ 𝑓𝑑𝜇
𝐴

− 𝑓𝜇  𝑃 ∪ 𝑄  ≤ 𝜀/2. It follows that 
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 𝑓𝜇  𝑃  =  𝑓𝜇  𝑃 − 𝑓𝜇  𝑃 ∪ 𝑄  ≤   𝑓𝑑𝜇
𝐴

− 𝑓𝜇  𝑄  +   𝑓𝑑𝜇
𝐴

− 𝑓𝜇  𝑃 ∪ 𝑄  < 𝜀. 

 

Thus we have the following proposition. 

Proposition 5. If f: Ω → X is Σ, 𝜇- integrable over a set 𝐴 ∈ 2Ω , then for every 𝜀 > 0, there exists 

𝑃0 ∈ Π 𝐴, Σ  such that for every 𝑃 ∈ Π(𝐴, Σ) that does not intersect P0, we have  𝑓𝜇  𝑃  < 𝜀. 

We introduce the following definition. 

Definition 6. A function f: Ω → X is said to satisfy the Cauchy criterion for integrability over a set A if for 

every 𝜀 > 0, there exists 𝑃0 ∈ Π 𝐴, Σ  such that for every 𝑃 ∈ Π 𝐴, Σ , 𝑃⋂𝑃0 = ∅, we have  𝑓𝜇  𝑃  < 𝜀. 

For the special case where X is a Banach space, the Cauchy criterion for integrability over A is exactly the 

Cauchy condition for the net 𝑃 ↦ 𝑓𝜇  𝑃 . The next theorem is immediate from the general well known fact 

that for nets taking values in a Banach space, the Cauchy net condition is equivalent to the net convergence. 

Theorem 7. Let X be a Banach space. Then a function f: Ω → X is Σ, 𝜇- integrable over a set 𝐴 ∈ 2Ω  if and 

only if it satisfies the Cauchy criterion for integrability over the set A. 

Let  Ω, Σ, 𝜇  be an integral space and let 𝜙:Ω′ → Ω be an injective function. It is easily follows from the 

injective property of ϕ that for every subpartition P of the set Ω, the set ϕ−1(P) = {ϕ−1(I) : I ∈ P} is a 

subpartition of Ω′. We denote 𝜙−1 Π Ω, 𝛴  ≔  𝜙−1 𝑃 : 𝑃 ∈ Π Ω, Σ  .  

We also notice that the set function 𝐾 ↦ 𝜇 𝜙 𝐾  =:𝜙−1 𝜇  𝐾  defines an integrator on 𝜙−1 Σ = 𝐾 ∈

2Ω
′
: 𝜙 𝐾 ∈ Σ .  Now, let f: Ω → X be a function and consider the net of its Riemann sums 

𝑃 ↦ 𝑓𝜇  𝑃  on Π Ω, Σ . For every 𝑅 ∈ 𝜙−1 Π Ω, Σ  , we have 

 

𝑓𝜇 ∘ 𝜙 𝑅 =  𝜇 𝜙 𝐾  𝑓 𝑡𝐾 
𝐾∈𝑅

=  𝜙−1 𝜇  𝐾 𝑓 𝑡𝐾 
𝐾∈𝑅

=  𝑓 ∘ 𝜙 𝜙−1 𝜇  𝑅 . 

 
Thus the mapping 𝑅 ↦  𝑓 ∘ 𝜙 𝜙−1 𝜇  𝑅  is the Riemann sums of the function f ◦ ϕ with respect to the 

integrator ϕ−1(µ). 

On the other hand, if we assume that the set Ω is directed by a relation ≻, then one can naturally define a 

direction on the set 𝜙−1 Σ  by the relation 𝜙 ≻  defined by 𝑅 𝜙 ≻  𝑆 if 𝜙 𝑅 ≻ 𝜙 𝑆 . It then follows 

that every injective function 𝜙:Ω′ → Ω defines a subnet 𝑅 ↦  𝑓 ∘ 𝜙 𝜙−1 𝜇  𝑅  of the net of Riemann 

sums 𝑃 ↦ 𝑓𝜇  𝑃 . The principal uses of subnets come by way of the theorem that if a net converges, every 

subnet converges to the same limit (see for example [11]). This fact implies at once the following: 

Proposition 8. Let  𝑋,  .    be a normed vector space and let µ: Σ ⊂ 2Ω → 𝔽 be a scalar integrator. A 

function       f: Ω → X is Σ,µ-integrable over a subset 𝐴 of Ω if and only if for every injective function 

𝜙: Γ → Ω, the composition𝑓 ∘ 𝜙: Γ → 𝑋 is ϕ−1(Σ),ϕ−1(µ)-integrable over A, where 𝜙−1 Σ = 𝐾 ∈ 2Ω
′
: 𝜙 𝐾 ∈

Σ  and 𝜙−1 𝜇  𝐾 = 𝜇 𝜙 𝐾   for every 𝐾 ∈ 𝜙−1 Σ .  

4. Extended Formulation of the Fubini-Tonnelli Theorem 

Let  Ω, Σ, 𝜇  and  Ω′, Σ′, 𝜇  be two integral spaces. The set Σ × Σ′ =  𝐴 × 𝐴′ : 𝐴 ∈ Σ, A′ ∈ Σ′  is a 

semiring of subsets of the Cartesian product Ω × Ω′. The elements of Σ × Σ′  are called rectangles. We shall 

call Cartesian product of the integrators 𝜇 and 𝜇′ any integrator 𝜋:Ω × Ω′ → 𝔽 satisfying 𝜋 𝐴 × 𝐴′ =

𝜇(𝐴)𝜇′(𝐴′) for all 𝐴 ∈ Σ and all 𝐴′ ∈ Σ’. Since in defining the integral over some subsets of Ω × Ω′, we only 

need the values taken by the integrator on the semiring Σ × Σ′ , we shall use the notation 𝜇 × 𝜇′ for any 

Cartesian integrator. We then call the integral space  Ω × Ω′ , Σ × Σ′ , 𝜇 × 𝜇′  the Cartesian integral space 

(product of the two integral spaces  Ω, Σ, 𝜇  and  Ω′, Σ′, 𝜇′ ). 
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In what follows, we shall denote by Π Ω × Ω′ , Σ × Σ′  the collection of all rectangle subpartitions of the 

form 𝑃 =  𝐼 × 𝐽: 𝐼 ∈ Π Ω, Σ , 𝐽 ∈ Π Ω′ , Σ′  .  Given 𝑃 ∈ Π Ω × Ω′ , Σ × Σ′ , we denote 𝑃Ω ≔  𝐼: 𝐼 × 𝐽 ∈ 𝑃  

and 𝑃Ω ′ ≔  𝐽: 𝐼 × 𝐽 ∈ 𝑃 . On the set Π Ω × Ω′ , Σ × Σ′ , we shall consider the Cartesian direction ≻×≻ ′,  

where ≻ is the refinement on Π Ω, Σ  and ≻ ′ is the refinement on Π Ω′ , Σ′ .  

Given a metric space  𝑋, 𝑑  and a function f: 𝐴 × 𝐴′  → X a function, the Cartesian-Riemann sum at a 

given rectangular subpartition 𝑃 =  𝐼 × 𝐽: 𝐼 ∈ Π 𝐴, Σ , 𝐽 ∈ Π(𝐴′, Σ′)  is  

 

𝑓𝜇×𝜇 ′  𝑃 =  𝜇(𝐼)𝜇′(𝐽)𝑓 𝑡𝐼 , 𝑠𝐽 
𝐼×𝐽∈𝑃

 

 

If 𝑓 is Σ × Σ′ , 𝜇 × 𝜇′-integrable over 𝐴 × 𝐴′ , that is, if ∫ 𝑓𝑑𝜇 × 𝜇′
𝐴×𝐴′

= lim≻×≻′  𝜇(𝐼)𝜇′(𝐽)𝑓 𝑡𝐼 , 𝑠𝐽 𝐼×𝐽∈𝑃  

exists, then ∫ 𝑓𝑑𝜇 × 𝜇′
𝐴×𝐴′

 shall be called the Cartesian-integral of 𝑓 over 𝐴 × 𝐴′ . 

On the other hand, each 𝜔 ∈ 𝐴 gives rise to a function 𝑓𝜔  defined on 𝐴′  by 𝑓𝜔 𝜔′ = 𝑓 𝜔,𝜔′ . The 

Σ′, 𝜇′-Riemann sum of 𝑓𝜔  at 𝑃𝐴′ ≔  𝐽: 𝐼 × 𝐽 ∈ 𝑃  is given by 𝑓𝜔,𝜇 ′  𝑃
𝐴′
 =  𝜇′ 𝐽 𝑓 𝜔, 𝑠𝐽 𝐽∈𝑃𝐴′

. If 𝑓𝜔  is 

Σ′, 𝜇′-integrable over 𝐴′ , then its Σ′, 𝜇′-integral is given by ∫ 𝑓𝜔𝑑𝜇
′

𝐴′
= lim≻′  𝜇′(𝐽)𝑓 𝜔, 𝑠𝐽 𝐽∈𝑃𝐴′

. 

Assume that for every  𝜔 ∈ 𝐴 , the function 𝑓𝜔  is Σ′, 𝜇′-integrable over  𝐴′ . Then the relation 𝜔 ↦

𝜙A 𝜔 ≔ ∫ 𝑓𝜔𝑑𝜇
′

𝐴′
 obviously defines a function 𝜙𝐴: 𝐴 → 𝑋. The Σ,µ-Riemann sum of 𝜙𝐴  at 𝑃𝐴  is given by 

 

𝜙𝐴
𝜇
 𝑃𝐴 =  𝜇 𝐼 𝜙𝐴 𝑡𝐼 

𝐼∈𝑃𝐴

=  𝜇 𝐼  𝑓𝜔𝑑𝜇
′

𝐴′
.

𝐼∈𝑃𝐴

 

 

If 𝜙𝐴  is Σ,µ- integrable over 𝐴, then its integral ∫ 𝜙𝐴𝑑𝜇
𝐴

 is denoted by ∫  ∫ 𝑓𝑑𝜇′
𝐴′

 𝑑𝜇
𝐴

 and is given 

by 

 

lim
≻
 𝜇 𝐼  lim

≻′
 𝜇′ 𝐽 𝑓 𝑡𝐼 , 𝑠𝐽 

𝐽∈𝑃𝐴′

 
𝐼∈𝑃𝐴

= lim
≻

lim
≻′

  𝜇(𝐼)𝜇′(𝐽)𝑓 𝑡𝐼 , 𝑠𝐽 
𝐽∈𝑃𝐴′𝐼∈𝑃𝐴

. 

 
Likewise, if each 𝜔′ ∈ 𝐴′  gives rise to a function 𝑓ω ′  defined by 𝑓ω ′  𝜔 = 𝑓 𝜔,𝜔′  that is 

Σ, 𝜇-integrable over 𝐴, then its Σ, 𝜇-integral is given by ∫ 𝑓ω ′𝑑𝜇
𝐴

= lim≻ 𝜇(𝐼)𝑓 𝑡𝐼 , 𝜔′ 𝐼∈𝑃𝐴 . Also if the 

function 𝜔′ ↦ 𝜙𝐴′  𝜔′ ≔ ∫ 𝑓ω ′𝑑𝜇
𝐴

 is Σ’,µ’- integrable over 𝐴′, then its Σ’,µ’-integral ∫ 𝜙𝐴′𝑑𝜇′
𝐴′

 is denoted 

by ∫  ∫ 𝑓𝑑𝜇
𝐴

 𝑑𝜇′
𝐴′

 and is given by 

 

lim
≻′

 𝜇′ 𝐽  lim
≻
 𝜇 𝐼 𝑓 𝑡𝐼 , 𝑠𝐽 

𝐼∈𝑃𝐴

 
𝐽∈𝑃𝐴′

= lim
≻′

lim
≻
  𝜇(𝐼)𝜇′(𝐽)𝑓 𝑡𝐼 , 𝑠𝐽 

𝐼∈𝑃𝐴𝐽∈𝑃𝐴′

. 

 

The integrals ∫  ∫ 𝑓𝑑𝜇′
𝐴′

 𝑑𝜇
𝐴

 and ∫  ∫ 𝑓𝑑𝜇
𝐴

 𝑑𝜇′
𝐴′

 are called the iterative integrals of the function f 

over the rectangle 𝐴 × 𝐴′ . 

Our first main result follows immediately from Theorem 2. It gives necessary and sufficient conditions 

for the equality of the iterative integrals and the Cartesian integral of a Cartesian integrable function. The 

result clearly extends the special case of the Fubini-Tonelli Theorem. 

Theorem 9. Let  𝑋, 𝑑  be a given metric space and f:Ω × Ω′  → X a function that is Cartesian-integrable 

over a rectangle 𝐴 × 𝐴′ ⊂ Ω × Ω′ . Then 
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   𝑓𝑑𝜇′
𝐴′

 𝑑𝜇
𝐴

=    𝑓𝑑𝜇
𝐴

 𝑑𝜇′
𝐴′

=  𝑓𝑑𝜇 × 𝜇′

𝐴×𝐴′
 

 
if and only if 

1) for every 𝜔 ∈ 𝐴, the function 𝜔′ ↦ 𝑓 𝜔,𝜔′  is Σ′, 𝜇′-integrable over 𝐴′, and 

2) for every 𝜔′ ∈ 𝐴′, the function 𝜔 ↦ 𝑓 𝜔,𝜔′  is Σ, 𝜇-integrable over A. 

Example 4. Using the Abel convergence test, the double series  
 −1 𝑛+𝑚

𝑛𝑚
∞
𝑛,𝑚=1   is quickly seen to be 

convergent. Its sum is in fact the integral in the extended sense of the function  𝑛,𝑚 ↦
 −1 𝑛+𝑚

𝑛𝑚
  over ℕ×ℕ 

with respect to the integrator µ × µ where 𝜇 𝐴 =  
1 if 𝐴 ≠ ∅
0 otherwise.

  It follows from the theorem that 

 
 −1 𝑛+𝑚

𝑛𝑚
∞
𝑛,𝑚=1 = ∫  ∫

 −1 𝑛+𝑚

𝑛𝑚ℕ
𝑑𝜇 𝑛  𝑑𝜇 𝑚 =  ln 2 2.

ℕ
 It is worth noticing that the function  𝑛,𝑚 ↦

 −1 𝑛+𝑚

𝑛𝑚
 is not absolutely µ×µ-integrable, that is, the double series  

 −1 𝑛+𝑚

𝑛𝑚
∞
𝑛,𝑚=1  is not absolutely 

convergent. 

Example 5. By comparison with the summable function  𝑛,𝑚 ↦
1

 𝑛2+1  𝑚2+1 
, it is easy to see that the 

function  𝑥, 𝑦 ↦
1

 𝑥2+1  𝑦2+1 
 is Cartesian-integrable with respect to the Lebesgue integrator over 

[0,∞) × [0,∞). We also notice that for each 𝑦 ∈ [0,∞) (resp. 𝑥 ∈ [0,∞)) the function 𝑥 ↦
1

 𝑥2+1  𝑦2+1 
 

(resp. 𝑦 ↦
1

 𝑥2+1  𝑦2+1 
) is integrable over [0,∞). It follows from the theorem that 

 

 
1

 𝑥2 + 1  𝑦2 + 1 [0,∞)×[0,∞)

𝑑𝑥 × 𝑑𝑦 =    
1

 𝑥2 + 1  𝑦2 + 1 
𝑑𝑥

∞

0

 𝑑𝑦
∞

0

=  
𝜋

2 𝑦2 + 1 
𝑑𝑦 =

𝜋2

4

∞

0

. 

 

The following result follows immediately from Theorem 3. 

Theorem 10. Let  𝑋, 𝑑  be a given metric space and f:Ω × Ω′  → X. Assume that 

1) ∫  ∫ 𝑓𝑑𝜇
𝐴

 𝑑𝜇′
𝐴′

 exists and 

2) 𝜔 ↦ 𝑓 𝜔, 𝜔′  is  Σ, 𝜇-integrable over A uniformly in 𝜔′ ∈ 𝐴′.  

Then f is Cartesian integrable over the rectangle 𝐴 × 𝐴′  and ∫ 𝑓𝑑𝜇 × 𝜇′
𝐴×𝐴′

= ∫  ∫ 𝑓𝑑𝜇
𝐴

 𝑑𝜇′
𝐴′

. 

Example 6. It is known that the function 𝑥 ↦
sin 𝑥

𝑥
 is not Lebesgue-integrable on [0,∞).  In fact, one 

has ∫  
sin 𝑥

𝑥
 𝑑𝑥 = ∞.

∞

0
 On the other hand, we have ∫

sin 𝑥

𝑥
𝑑𝑥 =

𝜋

2
 

∞

0
 and ∫

1

1+𝑥2 𝑑𝑥 = 𝜋 
∞

−∞
in the sense of the 

extended integral with respect to the Lebesgue measure respectively on [0,∞) and on (−∞,∞). We have 

 

   
sin 1 + 𝑦2 𝑥

 1 + 𝑦2 𝑥
𝑑𝑥

∞

0

 𝑑𝑦 =
∞

−∞

𝜋

2
 

1

1 + 𝑦2
𝑑𝑦

∞

−∞

=
𝜋2

2
 

 

and for every 𝑦 ∈ (−∞,∞) 

  
sin 1 + 𝑦2 𝑥

 1 + 𝑦2 𝑥
𝑑𝑥

∞

0

 ≤
𝜋

2

1

1 + 𝑦2
≤
𝜋

2
. 

It follows from the above theorem that the function  𝑥, 𝑦 ↦
sin  1+𝑦2 𝑥

 1+𝑦2 𝑥
 is integrable in the extended 

sense over (−∞,∞) × [0,∞) with respect to the integrator dx × dy and 
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sin 1 + 𝑦2 𝑥

 1 + 𝑦2 𝑥(−∞,∞)×[0,∞)

𝑑𝑥 × 𝑑𝑦 =    
sin 1 + 𝑦2 𝑥

 1 + 𝑦2 𝑥
𝑑𝑥

∞

0

 𝑑𝑦 =
∞

−∞

𝜋2

2
. 

 

Again, it is worth noticing that  𝑥, 𝑦 ↦
sin  1+𝑦2 𝑥

 1+𝑦2 𝑥
 is not Lebesgue-integrable over (−∞,∞) × [0,∞).  

The following rearrangement theorem constitutes the essentials for the proof of the extended Fubini 

-Tonelli theorem whose full statement is postponed for a moment. 

Theorem 11. Let X be a normed space. Let  Ω, Σ, 𝜇  and  Ω′, Σ′, 𝜇′  be two integral spaces where 𝜇 and 

𝜇′ are nonnegative integrators. Let f:Ω × Ω′  → X. Then for every one-to-one function 𝜑: Γ → Ω × Ω′ , one 

has 

 

  𝑓 ∘ 𝜑 
Γ

𝑑𝜑−1 𝜇 × 𝜇′ =     𝑓 𝑠, 𝑡  𝑑𝜇′(𝑡)
Ω ′

 𝑑𝜇 𝑠 
Ω

=     𝑓 𝑠, 𝑡  𝑑𝜇(𝑠)
Ω

 𝑑𝜇′ 𝑡 
Ω ′

 

 

where 𝜑−1 𝜇 × 𝜇′  𝐾 = 𝜇 × 𝜇′ 𝜑 𝐾   for every 𝐾 ∈ 𝜑−1 Σ × Σ′ .  

Proof. Let 0 ≤ 𝛼 ≤ ∫  𝑓 ∘ 𝜑 
Γ

𝑑𝜑−1 𝜇 × 𝜇′ . Choose 𝑅0 ∈ Π Γ, 𝜑−1 Σ × Σ′   such that  

𝛼 <   𝑓 ∘ 𝜑 𝑡𝐾  𝜑
−1 𝜇 × 𝜇′  𝐾 

𝐾∈𝑅0

. 

Choose 𝑃0 ∈ Π Ω, Σ  and 𝑄0 ∈ Π Ω′, Σ′  such that 𝜑 𝑅0 ⊂ 𝑃0 × 𝑄0. Then we have 

 

𝛼 <   𝑓 ∘ 𝜑 𝑡𝐾  𝜑
−1 𝜇 × 𝜇′  𝐾 

𝐾∈𝑅0

≤    𝑓 𝑟𝐼 , 𝑠𝐽  𝜇′ 𝐽 
𝐽∈𝑄0

 𝜇 𝐼 
𝐼∈𝑃0

≤    𝑓 𝑟𝐼 , 𝑠  𝑑𝜇′ 𝑠 
Ω ′

 𝜇 𝐼 
𝐼∈𝑃0

≤     𝑓 𝑟, 𝑠  𝑑𝜇′ 𝑠 
Ω ′

 𝑑𝜇 𝑟 .
Ω

 

 

Since α is arbitrary, we have ∫  𝑓 ∘ 𝜑 
Γ

𝑑𝜑−1 𝜇 × 𝜇′ ≤ ∫  ∫  𝑓 𝑟, 𝑠  𝑑𝜇′ 𝑠 
Ω ′  𝑑𝜇 𝑟 .

Ω
 

For the reverse inequality, let 0 ≤ 𝛽 ≤ ∫  ∫  𝑓 𝑟, 𝑠  𝑑𝜇′ 𝑠 
Ω ′  𝑑𝜇 𝑟 .

Ω
 Choose 𝑃1 ∈ Π Ω, Σ  such that  

 

𝛽 ≤    𝑓 𝑟𝐼 , 𝑠  𝑑𝜇
′ 𝑠 

Ω ′

 𝜇 𝐼 
𝐼∈𝑃1

=    𝑓 𝑟𝐼 , 𝑠  𝜇 𝐼 
𝐼∈𝑃1

𝑑𝜇′ 𝑠 
𝛺 ′

. 

 

We pick 𝑄1 ∈ Π Ω′, Σ′  such that 𝛽 <     𝑓 𝑟𝐼 , 𝑠𝐽  𝜇 𝐼 𝐼∈𝑃1
 𝜇 ′  𝐽  .𝐽∈𝑄1

 Then we choose 

𝑅1 ∈ Π Γ, 𝜑−1 Σ × Σ′   such that 𝜑−1 𝑃1 × 𝑄1 ⊂ 𝑅1. Then we have 

 

𝛽 <     𝑓 𝑟𝐼 , 𝑠𝐽  𝜇 𝐼 

𝐼∈𝑃1

 𝜇′ 𝐽 

𝐽∈𝑄1

≤   𝑓 ∘ 𝜑 𝑡𝐾  𝜑
−1 𝜇 × 𝜇′  𝐾 

𝐾∈𝑅1

≤   𝑓 ∘ 𝜑 
Γ

𝑑𝜑−1 𝜇 × 𝜇′ . 

 

Since β is arbitrary, it follows that ∫  ∫  𝑓 𝑟, 𝑠  𝑑𝜇′ 𝑠 
Ω ′  𝑑𝜇 𝑟 ≤ ∫  𝑓 ∘ 𝜑 

Γ
𝑑𝜑−1 𝜇 × 𝜇′ .

Ω
 Thus we 

have established that ∫  𝑓 ∘ 𝜑 
Γ

𝑑𝜑−1 𝜇 × 𝜇′ = ∫  ∫  𝑓 𝑟, 𝑠  𝑑𝜇′ 𝑠 
Ω ′  𝑑𝜇 𝑟 .

Ω
 In a similar fashion, we 

obtain ∫  𝑓 ∘ 𝜑 
Γ

𝑑𝜑−1 𝜇 × 𝜇′ = ∫  ∫  𝑓 𝑟, 𝑠  𝑑𝜇 𝑟 
Ω

 𝑑𝜇′ 𝑠 
Ω ′ . ⧠ 

We are in a position to state our main result that will take over the classical Fubini-Tonelli theorem. 

Theorem 12. Let  𝑋,  ∙   be a normed vector space,  Ω, Σ, 𝜇  and  Ω′, Σ′, 𝜇′  two integral spaces where 
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𝜇 and 𝜇′ are nonnegative integrators, and f:Ω × Ω′  → X a function. If one of the integrals 

 

  𝑓 
Ω×Ω ′

𝑑 𝜇 × 𝜇′ ,    𝑓 𝑑𝜇
Ω

 𝑑𝜇′ ,
Ω ′

    𝑓 𝑑𝜇′

Ω ′

 𝑑𝜇
Ω

 

 
exists, then each one of the other integrals exists and for every injective function 𝜑: Γ → Ω × Ω′ , 

  𝑓 
Ω×Ω ′

𝑑 𝜇 × 𝜇′ =     𝑓 𝑑𝜇
Ω

 𝑑𝜇′

Ω ′

=     𝑓 𝑑𝜇′

Ω ′

 𝑑𝜇
Ω

=   𝑓 ∘ 𝜑 
Γ

𝑑𝜑−1 𝜇 × 𝜇′ ; 

∫ 𝑓
Ω×Ω ′ 𝑑 𝜇 × 𝜇′ = ∫  ∫ 𝑓𝑑𝜇

Ω
 𝑑𝜇′

Ω ′ = ∫  ∫ 𝑓𝑑𝜇′
Ω ′  𝑑𝜇

Ω
= ∫ 𝑓 ∘ 𝜑

Γ
𝑑𝜑−1 𝜇 × 𝜇′ . 

Let us notice that for 1 ≤ 𝑝 < ∞, the space 𝐼𝑝 𝐴, Σ, 𝜇, 𝑋  of the classes of 𝑝-norm integrable functions is 

naturally normed by  𝑓 𝑝 =  ∫  𝑓 𝑝𝑑𝜇
𝐴

 
1/𝑝

. It is easy to see that when Σ is a σ-algebra and when the 

integrator is the Lebesgue measure then the Lebesgue-Bochner space L1(Ω,Σ,µ,X) is a closed linear subspace 

of I1(Ω,Σ,µ,X). Also if X is a Banach space, then I1(Ω,Σ,µ,X) is a Banach space (see for example [6]). The 

following theorem gives an alternative formulation of the Fubini-Tonelli theorem. 

Theorem 13. Let X be a normed space,  Ω, Σ, 𝜇  and  Ω′, Σ′, 𝜇′  two integral spaces where 𝜇 and 𝜇′ 

are nonnegative integrators. Then each one of the following spaces is isometrically isomorphic to the other: 

 

𝐼1 Ω × Ω′ , Σ × Σ′ , 𝜇 × 𝜇′ , 𝑋 , 𝐼1 Ω′ , Σ′ , 𝜇′ , 𝐼1 Ω, Σ, 𝜇, 𝑋  , 𝑎𝑛𝑑  𝐼1 Ω, Σ, 𝜇, 𝐼1 Ω′, Σ′, 𝜇′, 𝑋  . 

 
We end this paper with an application: we prove the following theorem concerning the multiplication of 

independent integrable functions. 

Theorem 14. Let X be a normed space. Let 𝑓 ∈ 𝐼1 Ω, Σ, 𝜇, 𝑋  and 𝑔 ∈ 𝐼1 Ω′, Σ′, 𝜇′, 𝑋 . Define on Ω × Ω′  

the function  𝑥, 𝑦 ↦ 𝑕 𝑥, 𝑦 = 𝑓 𝑥 𝑔(𝑦). Then 𝑕 ∈ 𝐼1 Ω × Ω′ , Σ × Σ′, 𝜇 × 𝜇′, 𝑋  and 

 

 𝑕𝑑𝜇 × 𝜇′

Ω×Ω ′

=   𝑓𝑑𝜇
Ω

   𝑔𝑑𝜇′
Ω ′

 . 

 
Proof. It suffices to notice that for every 𝑃 × 𝑄 ∈ Π Ω, Σ × Π Ω′ , Σ′ = Π Ω × Ω′ , Σ × Σ′ , one has 

 

    𝑕 𝑡𝐼 , 𝑠𝐽  𝜇(𝐼)

𝐼∈𝑃

 𝜇′ 𝐽 

𝐽∈𝑄

=    𝑓 𝑡𝐼  𝜇(𝐼)

𝐼∈𝑃

    𝑔 𝑠𝐽  𝜇′(𝐽) ≤   𝑓𝑑𝜇
Ω

   𝑔𝑑𝜇′

Ω ′

 < ∞. 

 

This implies that the iterative integral ∫  ∫  𝑕 𝑑𝜇
Ω

 
Ω ′ 𝑑𝜇′  exists. Hence, the above Tonelli-Fubini 

Theorem applies and yields the desired equality. ⧠ 

5. Conclusions 

This paper can be considered as a continuation of recent works by the author on new approach 

integration theory. We define the notion of Cartesian net in order to extend the idea of iterated limit. We 

then suggest significantly simpler formulations and proofs of some extended forms of the Fubini and Tonelli 

theorems in the more general setting of vector valued functions. The strength of such extensions is the fact 

that the considered functions are no longer required to be measurable but just merely that the two iterated 

integrals are well defined and exist. The author believes that the interest of this paper lies not only in the 

obtained extension theorems, but also in the light it sheds on the very foundation of the study of integration 
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theory. 
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