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Abstract: In this study, we examine the approximate solutions of complex differential equations in 

rectangular domains by using Euler polynomials. We construct the matrix forms of Euler polynomials and 

their derivatives to transform the considered differential equation to matrix equation with unknown Euler 

coefficients. This matrix equation is also equivalent to a system of linear algebraic equations. Linear system 

is solved by substituting collocation points into those matrix forms to get the unknown Euler coefficients. 

Determining these coefficients provides the approximate solutions of the given complex differential 

equations under the given conditions.  
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1. Introduction 

Do not change the font sizes or line spacing to squeeze more text into a limited number of pages. Use 

italics for emphasis; do not underline.  

Complex differential equations arise from many important applications in physics, engineering, applied 

science, etc. Vibrations of a one-mass system with two DOFs (degree of freedom) are a good example to 

illustrate the one of the many implementations of them. Complex differential equations have been tried to 

solve by some techniques [1]-[4]. However, it is not always possible to have the solution of these differential 

equations explicitly. So, researchers need some numerical techniques to cope with difficulties generated 

from the structure of complex differential equations. Collocation methods are one of the well-known 

methods for solving many differential equations [5]-[10] and they are also useful for complex differential 

equations.  

This paper offers Euler matrix method for solving linear complex differential equations with variable 

coefficients in a rectangular domain such as:  
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under the conditions: 

International Journal of Applied Physics and Mathematics

69 Volume 7, Number 1, January 2017



  

( ) (0) , 0,1,..., 1.r

rf r m                                 (2) 

 

Here we assume that the coefficients ( )kP z , known function  S z
 

and unknown function ( )f z  

are analytic functions in the rectangular domain

 : , , : , , ,D z C z x iy a x b c y d a b c d R          where the coefficients r  are suitable 

constants. We assume that the solution of Eq. (1) under the given conditions (2) is given in the form: 
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which is the truncated Euler series of the unknown function ( )f z . In order to determine the Euler 

coefficients nf  , we use the collocation points [5], [6]: 
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2. Revision of Euler Polynomials and Operational Matrix Review Stage 

The classical Euler polynomials  nE x  are defined as [11]-[13]: 
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The first few Euler polynomials are: 
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Some basic properties about these polynomials are as follows: 
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They also satisfy the relations: 
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   1 2 n

n nE x E x x                                   (10) 
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and also the following differential equation: 
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If we define the Euler vector  E x  in the form           0 1 2, , , , nE x E x E x E x E x    , we can 

write the following relation by means of the property (9) 
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M  is called the operational matrix of differentiation. Note that if we use the complex variable z  

instead of the real variable x  in the matrix relation (13), we get the same result since the well-known  

property  
'

1n nz nz  . Hence, thk derivative of   E x  can be constructed as: 
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3. Method of Solution 

Let us consider the complex differential equation with variable coefficients (1) and the truncated series 

or its approximated solution  Nf z . Evidently,  Nf z  can be written as: 

   Nf z E z F                                      (15) 

where 
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0 1                                 
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                     (16) 

Thus, by considering the Eq.(14) we can get 
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Nf z E z M F N                               (17) 

 

Using the collocation points   0,1, ,ppz z p N   , the matrix relation (17) becomes 

      
      

      

00 00

11 11

,    

,  

               

.

kk T

N

kk T

N

kk T

N NN NN

f z E z M F

f z E z M F

f z E z M F









                                (18) 

where 

       0 1 pp pp pp N ppE z E z E z E z 
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or briefly 
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where 
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Substituting the collocation points 
ppz z  into Eq. (1) yields 
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where 
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We now consider fundamental matrix Eq. (23) corresponding to Eq. (1). Eq. (23) can be rewritten in the 

form as: 

 

WF S    or  ; ;       , 0,1, ,pq pW S w s p q N                        (26) 
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One can also obtain the corresponding matrix form for the given conditions (2) by using the relation (17) 

as follows: 

 

      0 0 ,   0,1, , 1
rr T

rf E M F r m                           (28) 

 
or in vector form 

 

r rU F                                          (29) 

 
where 

  0 ,  0,1, , 1
r

T

rU E M r m   .                             (30) 
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Equivalently, it can be written as the augmented matrix form: 

 

   0 1 2
; ,    0,1, , 1.;r r r rNr r r

U u u r mu u                  (31) 

 
Eventually, we replace the m   row matrices (31) by the last m  rows of the augmented matrix (27) to 

get the unknown Euler coefficients ,  0,1, ,nf n N   to obtain the approximate solution of the problem 

consisting of Eq. (1) and the conditions (2). By doing so, we have new augmented matrix 
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or the corresponding matrix-vector equation 

 

ˆŴF S .                                         (33) 

  

If  ˆdet 0W  , we can write (32) as 

 

    
1
ˆˆF W S



                                        (34) 

 

and the matrix F  can be uniquely determined. Thus the mth -order complex differential equation with 

variable coefficients (1) with the given conditions (2) has a unique solution. This solution is given by the 

truncated Euler series (3). For stability analysis of differential equations, we refer to [14] 

4. Examples 

Example 1. Consider the linear first order complex differential equation (5) 

 

       2' 2 2,  ,  0,1 ,  y 0,1f z zf z z z z x iy x                       (35) 

 

with  0 1f   . 

Collocation points for 3N  are 

 

   00 11 22 330,  z 1 / 3,  z 2 2 / 3 and z =1+i.z i i                     (36) 

 

We need to find the Euler coefficients 0 1 2 3,  ,  , f f f f by accepting the approximate solution as in the form 
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of Eq. 3 
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We have  0P z z  and   22 2S z z z   , then 

    

0

0 0 0 0

0 0.3333 0.3333 0 0

0 0 0.6667 0.6667 0

0 0 0 1.0000

i
P

i

 
 


 
 
 
 

,                     (38) 

 

 

 

 

 

00

11

22

33

2.0000

1.6667 0.1111

1.3333 1.1111

1.0000 3.0000

S z

S z i
S

S z i

S z i

   
   

    
   
   

    

                              (39) 

 

and for 3N   we get 
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where  
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According to (27), we obtain the coefficients matrix 
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For the initial condition  0 1f   , we have  
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Substituting the matrix form of initial conditions into W  and S , we obtain fundamental matrix 
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Computing  
1

F W S





, we have   

 

.                                (46) 

  

Substituting these coefficients into the Eq.(3), we obtain  3 2 1f E z F z    which is the exact 

solution of the given problem. 

Example 2. Let us consider the following second order complex differential equation (5) 

      2z zf z zf z zf z e ze                                 (47) 

under the initial conditions    0 0 1f f   .  

Here    0 1P z P z z   and   2z zS z e ze  . 

We have collocation points  
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for 5N  . Hence, we obtain 
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Also, we can write matrix forms of initial conditions as follows: 
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We proceed as in the previous example by replacing rows, then we find the coefficients matrix of the 

approximate solution 
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The exact solution is given as     e e cos sinz x iy x xe y i e y   . 

We compare this solution with the approximate solution for 5,6,7N   in Tables 1. 

 
     

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

5. Conclusions 

Complex differential equations are very complicated to obtain an analytic solution. So, researchers need 

to use some numerical methods to deal with them. We here offer Euler operational matrix method for 

solving high order complex differential equations with variable coefficients. Using collocation points with 

this method yields good results as in the given examples. Especially, if the considered problems have  exact 

solution which is a polynomial of degree   or less than  ,then we can obtain the exact solution. In other 

cases, we can also have the approximate solutions which are compatible with the solution of the considered 

problem. 
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