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Abstract: This paper aims to study the robustness of Double Exponentially Weighted Moving Average 

(DEWMA) in order to detect a change in parameter when process are underlying skew distributions. In 

general, an Average Run Length (ARL) is used as a common measurement to compare the performance of 

control chart in term of quick detection. The performance of GWMA chart are compared with Exponentially 

Weighted Moving Average (EWMA) and Generally Weighted Moving Average Control Chart (GWMA) charts 

which the former outperforms and give a minimal ARL1 for all magnitudes of shift. 
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1. Introduction 

In manufacturing process, standards of quality and low cost products are key factors of industrial success. 

Achieving the quality standards, the manufacture requires either process control and quickly fault detection. 

In fact, the production still has a variation at any point of time even the process is well controlled. Two types 

of the variation have been described, which are the nature variation due to chance causes and the variation 

due to assignable causes, including man, machine, methods, and materials. 

The Statistical Quality Control (SQC) play a vital rule in measuring, controlling, monitoring and improving 

process quality. The SQC is categorized into three parts, which are descriptive statistics, statistical process 

control charts, and acceptance sampling plans. The most common tool for detecting and monitoring a 

changing in the process is the control charts. Theirs major functions are the manufacturing standards 

setting, the production goal's achievement, and the productivity improvement. The control charts have been 

classified into variables and attributes. The control chart for variables such as x -chart, R-chart and S-chart 

using for detecting the characteristics are measurable and valued continuous. Whereas the control chart for 

attributes such as p-chart, np-chart, c-chart, and u-chart using for detecting the characteristics that have a 

discrete value and are countable. Ideally, the parameters changing should be detected as soon as possible, 

which is the main purpose of a control chart in manufacture. An in-control process setting, the false alarm 

rate should be sufficient large. Otherwise, the true alarm rate should be minimum when the process is 

out-of-control.In literature reviews, the control chart known as the Shewhart chart, namely Cumulative Sum 

[1], Exponentially Weighted Moving Average (EWMA) [2], is commonly used and widely applied in many 

fields. The Shewhart control chart was discovered by Shewhart in 1931 [3]. This kind of control chart is 

acceptable to detect the large changes in process, but it is insensitive to minor change detection. To 

overcome this problem, there are many memory-type effective alternatives to the Shewhart chart, namely 
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Cumulative Sum (CUSUM) [1], Exponentially Weighted Moving Average (EWMA) [2], Double Exponentially 

Weighted Moving Average (DEWMA) [4] and Generally Weighted Moving Average (GWMA) [5] charts have 

been developed to detect small shifts (about 1.5σ or less). 

In general, the performance of control chart is measures by Average Run Length (ARL). According to the 

expectation of the stopping times, ARL is classified into ARL0 and ARL1. The ARL0 (in - control ARL) is the 

expectation of the stopping time when the process is in-control. On the other hand, ARL1 (out - of - control 

ARL) is the expectation of delay of true alarm times when the process is out-of-control. From previous 

studies, there are many literatures studied the ability in order to detect a change in process of control charts 

which the assumption of process normality [6]. However, in the practice, this assumption always deviated 

from normal distribution such as skew processes. The performance of the EWMA chart for non-normal 

distributions has been investigated by [7]. The effect of non-normality and autocorrelation on the 

performance of EWMA control charts was presented by [8] found that the EWMA chart robust to 

non-normality assumption for detecting small shifts in a process mean and variance. Then, the robustness 

of control chart should be investigated to violation of the normality assumption. There are some literatures 

to compare the performance between DEWMA and EWMA for non-normality process [9], [10] 

Consequently, the aims of this paper is to study the robustness of memory-type control charts as EMWA, 

DEWMA and GWMA charts in order to detect of a change in parameter of skew processes such as gamma 

and log-normal distributions.  

2. Control Charts and Theirs Properties 

2.1. Exponentially Weighted Moving Average (EWMA) Charts 

The Exponentially Weighted Moving Average (EWMA) statistics is defined as the following form 
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Then, an asymptotic standard deviation is used to find the control limits of the EWMA chart is the 

following: 
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is the width of EWMA’s control limit. The process will be declared to be in an out-of-control state 
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2.2. Double Exponentially Weighted Moving Average (DEWMA) Chart 

This control chart was developed from EWMA chart by taking account to double EWMA statistics which 

has been proposed by [5] as following 

 

 

 
  

 
 

 

 

and  0 1= ( ) 1 .t t tZ X Z      The expectation and variance of DEWMA statistics are as follows: 
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If t   from Eq. (5) then the asymptotical variance of DEWMA statistics is 

2
2

3

(2 2 )
( )

(2 )
xV Y

  




  
    

 

Therefore, the control limits of DEMWA can be written as 
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where 2L  is the width of DEWMA’s control limit. 

2.3. Generally Weighted Moving Average (GWMA) Chart 

The GWMA chart was initial presented by [6] and extensive studied by [11] is weighted moving average of 

sequential historical observations. Since, each observation is differently weighted that decreases from the 

present period to past periods then it could be reflected to the important observations on recent process. 

This chart was extended and developed from EWMA chart by adding an adjustment smoothing constant

  .  If the weighted historical observation constant equal to 1q    and 1,   then the GWMA chart 

coincides the EWMA chart. 

The GWMA statistic is as following 
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Taking geometric series to Eq. (6) then can be rewritten as 
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where 
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Table 1. Comparison When Processes Are Gamma (1, 2) 0.1,   =0.8  and 0 370.ARL   

  EWMA 

1 3.739L 
 

DEWMA 

2 5.031L 
 

GWMA 

3 2.927L 
 

0.00 370.723 
(1.4754) 

370.518 
(1.422) 

370.562 
(4.27) 

0.01 356.269 
(1.4136) 

353.274* 
(1.342) 

359.968 
(4.213) 

0.05 304.372 
(1.181) 

297.022* 
(1.09) 

320.555 
(3.99) 

0.1 254.524 
(0.9689) 

244.337* 
(0.864) 

275.051 
(3.704) 

0.2 184.943 
(0.6582) 

175.643* 
(0.561) 

206.229 
(3.202) 

0.3 142.62 
(0.4715) 

135.864* 
(0.389) 

155.028 
(2.747) 

0.5 96.51 
(0.2692) 

85.117* 
(0.213) 

88.616 
(1.973) 

 Note: the standard error is showed in parentheses. 
 

Table 2. Comparison When Processes Are Gamma (1, 2) 0.1,   =0.8  and 0 500.ARL   

  EWMA 

1 3.761L 
 

DEWMA 

2 5.066L 
 

GWMA 

3 3.00L 
 

0.00 500.858  
(2.04) 

500.523 
(1.97) 

500.884 
(4.875) 

0.01 480.741  
(1.957) 

475.99* 
(1.867) 

486.752 
(4.816) 

0.05 406.439  
(1.636) 

393.45* 
(1.514) 

435.169 
(4.586) 

0.1 334.012 
(1.312) 

361.091* 
(1.169) 

379.678 
(4.312) 

0.2 235.835 
(0.879) 

217.873* 
(0.742) 

285.485 
(3.765) 

0.3 175.992 
(0.613) 

162.396* 
(0.50) 

217.583 
(3.284) 

0.5 113.354  
(0.339) 

107.513* 
(0.262) 

127.412 
(2.448) 

Note: the standard error is showed in parentheses. 

 

3. Average Run Length (ARL) 

Generally, the performance of control chart are compared by considering the Average Run Length (ARL). 

The ARL is the expected number of samples obtained before a change in process is detected. It has two 
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values under two states- ARL before an out-of-control state is detected when the process is in control 

defined as ARL0 and ARL1 before an out-of-control state is detected after process mean changed defined as 

ARL1. In this research, Monte Carlo simulation is used to evaluate the ARL which is classical method and 

very useful while the closed-form formula and the explicit expression of ARL are not exist. In addition, the 

results obtained from MC use for checking an accuracy the results from other approaches. 

 
Table 3. Comparison When Processes Are Log-Normal (0, 1) 0.1,   =0.8 and 0 370.ARL   

  EWMA 

1 4.211L 
 

DEWMA 

2 2.638L 
 

GWMA 

3 14.66L 
 

0.00 370.815 
(1.654) 

370.87 
(1.632) 

370.015 
(4.05) 

0.01 350.20 
(1.559) 

348.36* 
(1.529) 

353.833 
(4.124) 

0.05 281.107 
(1.261) 

266.197* 
(1.171) 

292.833 
(4.03) 

0.1 212.893 
(0.950) 

187.309* 
(0.83) 

211.713 
(4.087) 

0.2 126.54 
(0.576) 

94.19* 
(0.426) 

120.352 
(3.855) 

0.3 75.805 
(0.35) 

46.361* 
(0.232) 

68.214 
(3.747) 

0.5 27.716 
(0.14) 

1.00* 
(0.001) 

22.885 
(1.141) 

Note: the standard error is showed in parentheses. 
 

Table 4. Comparison When Processes Are Log-Normal (0, 1) 0.1,   =0.8 and 0 500.ARL   

  EWMA 

1 4.678L 
 

DEWMA 

2 2.907L 
 

GWMA 

3 14.7L 
 

0.00 500.666 
(2.208) 

500.293 
(2.194) 

493.032 
(4.966) 

0.01 474.086 
(2.098) 

464.936* 
(2.048) 

471.364 
(4.051) 

0.05 378.745 
(1.690) 

343.288* 
(1.52) 

362.258 
(4.005) 

0.1 286.307 
(1.282) 

235.821* 
(1.044) 

241.455 
(3.992) 

0.2 167.791 
(0.754) 

116.417* 
(0.522) 

125.564 
(3.552) 

0.3 99.181 
(0.449) 

58.363* 
(0.279) 

62.484 
(3.234) 

0.5 36.432 
(0.177) 

1.00* 
(0.001) 

11.478 
(1.1) 

Note: the standard error is showed in parentheses. 
 

The approximation ARL by MC is given by 

1 .

N

t
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RL
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N
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The standard deviations of ARL (SDRL) as 
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N

t

t
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where tRL  is the number of observations used to monitoring before out-of-control in simulation tht  

round and N =50,000 runs is the number simulation each situations. 
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4. Numerical Results 

In this section, the performance of EWMA, DEMWA and GWMA charts in order to detect a change in 

parameter are compare by considering an out-of-control average run length  1ARL  when observations 

are underlying gamma (2, 1) and log-normal (0, 1). The weighted parameter    of EWMA, DEWMA and 

GWMA chart is given to equal 0.1, adjustment smoothing constant    is 0.8 and the magnitudes of shift 

are given to be   = 0.01, 0.05, 0.1, 0.2, 0.3 and 0.5. The comparison of 1ARL  for gamma distribution when 

0ARL = 370 and 500 are shown on Table 1 and 2, respectively. When processes are log-normal distributed, 

the numerical comparison of 1ARL  are presented on Table 3 and 4. 

5. Conclusions 

According to the numerical results, the performance of memory-type control charts as EWMA, DEWMA 

and GWMA are investigated to study the robustness to skew process such gamma and log-normal 

distributions. The historical weighted of those control charts are given equally to 0.1 that means the past 

information are concerned similarly of all three control charts. Since, the value of 1ARL  obtained from 

DEWMA is minimum it can explain that the DEWMA outperforms to detect a change in parameter when 

observations are both gamma and log-normal distributions. Therefore, DEWMA’s performance robust to the 

skew processes. 
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