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Abstract: In this paper, we study a system of nonlinear second-order ordinary differential equations with 

Riemann-Stieltjes integral boundary conditions which contain some positive constants. By using the 

Schauder fixed point theorem and some properties of the associated Green's functions, we show that this 

problem has at least one positive solution for sufficiently small constants. Then, we give sufficient 

conditions for the nonexistence of positive solutions. Similar results for other three boundary value 

problems are also presented. 
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1. Introduction 

Boundary value problems with positive solutions describe many phenomena in the applied sciences such 

as the nonlinear diffusion generated by nonlinear sources, thermal ignition of gases and concentration in 

chemical or biological problems (see [1]-[6]). Problems with integral boundary conditions arise in thermal 

conduction problems ([7]), semiconductor problems ([8]) and hydrodynamic problems ([9]). In the last 

decades, many authors investigated differential equations or systems of differential equations with integral 

boundary conditions, for which they prove the existence, multiplicity and nonexistence of positive solutions 

by using various methods, such as fixed point theorems in cones, the Leray-Schauder continuation theorem, 

nonlinear alternatives of Leray-Schauder type, fixed point index theory and coincidence degree theory (see 

for example [10]-[17]). 

We consider the system of nonlinear second-order ordinary differential equations 

 𝑆           
𝑢′′ 𝑡 + 𝑝 𝑡 𝑓 𝑣 𝑡  = 0,     𝑡 ∈  0,1 ,

𝑣′′ 𝑡 + 𝑞 𝑡 𝑔 𝑢 𝑡  = 0,     𝑡 ∈  0,1 ,
  

with the integral boundary conditions 

 𝐵𝐶        

 
 
 

 
 𝛼𝑢 0 − 𝛽𝑢′ 0 =  𝑢 𝑠  𝑑𝐻1(𝑠)

1

0

,    𝛾𝑢 1 + 𝛿𝑢′ 1 =  𝑢 𝑠  𝑑𝐻2 𝑠 + 𝑎0,
1

0

𝛼 𝑣 0 − 𝛽 𝑣 ′ 0 =  𝑣 𝑠  𝑑𝐾1(𝑠)
1

0

,    𝛾 𝑣 1 + 𝛿 𝑣 ′ 1 =  𝑣 𝑠  𝑑𝐾2(𝑠) + 𝑏0,
1

0
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where the above integrals are Riemann-Stieltjes integrals, and 𝑎0  and 𝑏0 are positive constants. The 

boundary conditions  𝐵𝐶   include multi-point and integral boundary conditions and sum of these in a 

single framework. 

By using the Schauder fixed point theorem, we shall prove the existence of positive solutions of problem 

 𝑆 −  𝐵𝐶 . By a positive solution of  𝑆 −  𝐵𝐶  we mean a pair of functions  𝑢, 𝑣 ∈  𝐶2( 0,1 ,  0,∞ ) 2 

satisfying  𝑆  and (𝐵𝐶) , with 𝑢 𝑡 > 0 and 𝑣 𝑡 > 0  for all 𝑡 ∈ (0,1]. We shall also give sufficient 

conditions for the nonexistence of the positive solutions for this problem. The particular case of the above 

problem when 𝛾 = 𝛾 = 1, 𝛿 = 𝛿 = 0, the functions 𝐻1 and 𝐾1 are constant, and 𝐻2  and 𝐾2 are step 

functions has been investigated in [18]. We also mention pape [19], where the authors studied the existence 

and nonexistence of positive solutions for the 𝑚-point boundary value problem on time scales 𝑢∆∇ 𝑡 +

𝑎 𝑡 𝑓 𝑢 𝑡  = 0, 𝑡 ∈  0, 𝑇 , 𝛽𝑢 0 − 𝛾𝑢∆ 0 = 0, 𝑢 𝑇 −  𝑎𝑖𝑢 𝜉𝑖 = 𝑏, 𝑚 ≥ 3𝑚−2
𝑖=1  and 𝑏 > 0. 

We present the assumptions that we shall use in the sequel. 

(J1) 𝛼, 𝛽, 𝛾, 𝛿, 𝛼 , 𝛽 , 𝛾 , 𝛿  ∈  0,∞ . 

(J2) 𝐻1,  𝐻2,  𝐾1,  𝐾2: [0,1] → ℝ are nondecreasing functions. 

(J3) 𝛼 −  𝑑𝐻1 𝜏 > 0,
1

0
 𝛾 −  𝑑𝐻2 𝜏 > 0,

1

0
 𝛼 −  𝑑𝐾1 𝜏 > 0,

1

0
 𝛾 −  𝑑𝐾2 𝜏 > 0.

1

0
 

(J4) The functions 𝑝, 𝑞:  0,1 → [0,∞) are continuous and there exist 𝑡1, 𝑡2 ∈  0,1 such that 𝑝 𝑡1 > 0,

𝑞 𝑡2 > 0. 

(J5) 𝑓, 𝑔:  0,∞ → [0,∞) are continuous functions and there exists 𝑐0 > 0 such that 𝑓 𝑢 <
𝑐0

𝐿
,    𝑔 𝑢 <

𝑐0

𝐿
 for all 𝑢 ∈  0, 𝑐0 , where 𝐿 = max   𝑝 𝑠 𝐽1 𝑠 𝑑𝑠

1

0
,  𝑞 𝑠 𝐽2 𝑠 𝑑𝑠

1

0
  and 𝐽1, 𝐽2 are defined in Section 2. 

(J6) 𝑓, 𝑔:  0,∞ → [0,∞)  are continuous functions and satisfy the conditions 

lim𝑢→∞
𝑓(𝑢)

𝑢
= ∞,   lim𝑢→∞

𝑔(𝑢)

𝑢
= ∞.   

In the proof of our main existence result, we shall use the Schauder fixed point theorem which we present 

now. 

Theorem 1.1 Let 𝑋 be a Banach space and 𝑌 ⊂ 𝑋 a nonempty, bounded, convex and closed subset. If 

the operator 𝐴:𝑌 →Y is completely continuous, then 𝐴 has at least one fixed point. 

The paper is organized as follows. Section 2 contains some auxiliary results. The main theorems are 

presented in Section 3, and finally in Section 4 an example is given to support the new results. 

2. Auxiliary Results 

We consider the second-order differential equations with integral boundary conditions 

 

                                                              𝑢′′  𝑡 + 𝑦 𝑡 = 0,   𝑡 ∈  0,1 ,                                                                                 (1) 

 

                           𝛼𝑢 0 − 𝛽𝑢′ 0 =  𝑢 𝑠  𝑑𝐻1(𝑠)
1

0

,    𝛾𝑢 1 + 𝛿𝑢′ 1 =  𝑢 𝑠  𝑑𝐻2 𝑠 ,                                      (2)
1

0

 

 

and 

 

                                                              𝑣 ′′  𝑡 + 𝑦  𝑡 = 0,   𝑡 ∈  0,1 ,                                                                                 (3) 

                                              

                          𝛼 𝑣 0 − 𝛽 𝑣 ′ 0 =  𝑣 𝑠  𝑑𝐾1(𝑠)
1

0

,    𝛾 𝑣 1 + 𝛿 𝑣 ′ 1 =  𝑣 𝑠  𝑑𝐾2 𝑠 .
1

0

                                       (4) 

For 𝛼, 𝛽, 𝛾, 𝛿 ∈ ℝ,  𝛼 +  𝛽 ≠ 0,  𝛾 + |𝛿| ≠ 0, we denote by 𝜓,𝜙,𝜓  and 𝜙  the solutions of the following 
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boundary value problems 

 

𝜓′′  𝑡 = 0,   0 < 𝑡 < 1;    𝜓 0 = 𝛽,   𝜓′ 0 = 𝛼, 

 

𝜙′′  𝑡 = 0,   0 < 𝑡 < 1;    𝜙 1 = 𝛿,   𝜙′ 1 = −𝛾, 

 

𝜓 ′′  𝑡 = 0,   0 < 𝑡 < 1;  𝜓  0 = 𝛽 ,   𝜓 ′ 0 = 𝛼 , 

 

𝜙 ′′  𝑡 = 0,   0 < 𝑡 < 1;  𝜙  1 = 𝛿 ,   𝜙 ′ 1 = −𝛾 , 

 

respectively, that is the functions 𝜓 𝑡 = 𝛼𝑡 + 𝛽, 𝜙 𝑡 = −𝛾𝑡 + 𝛾 + 𝛿, 𝜓  𝑡 = 𝛼 𝑡 + 𝛽  and 𝜙  𝑡 = −𝛾 𝑡 +

𝛾 + 𝛿  for all 𝑡 ∈  0,1 . We denote by 𝜏1 = 𝛼𝛾 + 𝛼𝛿 + 𝛽𝛾 and 𝜏2 = 𝛼 𝛾 + 𝛼 𝛿 + 𝛽 𝛾 . 

By using assumptions (J1)-(J3), we deduce that 𝛼 > 0, 𝛾 > 0, 𝛼 > 0 and 𝛾 > 0, and so 𝛼 + 𝛽 > 0, 𝛾 +

𝛿 > 0, 𝛼 + 𝛾 > 0, 𝛼 + 𝛽 > 0, 𝛾 + 𝛿 > 0, 𝛼 + 𝛾 > 0.  Besides 

 

𝜏1 − 𝜙 𝑠  𝑑𝐻1(𝑠)
1

0

=  𝛾 + 𝛿  𝛼 − 𝑑𝐻1 𝑠 
1

0

 + 𝛽𝛾 + 𝛾 𝑠 𝑑𝐻1(𝑠)
1

0

> 0, 

 

𝜏1 − 𝜓 𝑠  𝑑𝐻2(𝑠)
1

0

=  𝛼 + 𝛽  𝛾 −  𝑑𝐻2 𝑠 
1

0

 + 𝛼𝛿 + 𝛼 (1 − 𝑠) 𝑑𝐻2(𝑠)
1

0

> 0, 

 

𝜏2 − 𝜙  𝑠  𝑑𝐾1(𝑠)
1

0

=  𝛾 + 𝛿   𝛼 −  𝑑𝐾1 𝑠 
1

0

 + 𝛽 𝛾 + 𝛾  𝑠 𝑑𝐾1(𝑠)
1

0

> 0, 

 

𝜏2 − 𝜓  𝑠  𝑑𝐾2(𝑠)
1

0

=  𝛼 + 𝛽   𝛾 −  𝑑𝐾2 𝑠 
1

0

 + 𝛼 𝛿 + 𝛼  (1 − 𝑠) 𝑑𝐾2 𝑠 
1

0

> 0. 

 

In addition, we denote 

 

Δ1 =  𝜏1 − 𝜓 𝑠  𝑑𝐻2(𝑠)
1

0

  𝜏1 − 𝜙 𝑠  𝑑𝐻1(𝑠)
1

0

 −   𝜓 𝑠  𝑑𝐻1(𝑠)
1

0

   𝜙 𝑠  𝑑𝐻2(𝑠)
1

0

 , 

 

Δ2 =  𝜏2 − 𝜓  𝑠  𝑑𝐾2(𝑠)
1

0

  𝜏2 − 𝜙  𝑠  𝑑𝐾1(𝑠)
1

0

 −   𝜓  𝑠 𝑑𝐾1(𝑠)
1

0

   𝜙  𝑠 𝑑𝐾2(𝑠)
1

0

 . 

 

After some computations, we obtain Δ1 = τ1Δ 1 > 0, Δ2 = τ2Δ 2 > 0,  where 

 

Δ 1 =  𝛽 +   𝑠 𝑑𝐻1(𝑠)
1

0

  𝛾 −  𝑑𝐻2(𝑠)
1

0

 +  𝛼 −  𝑑𝐻1(𝑠)
1

0

  𝛾 + 𝛿 − 𝑠 𝑑𝐻2(𝑠)
1

0

 , 

 

Δ 2 =  𝛽 +   𝑠 𝑑𝐾1(𝑠)
1

0

  𝛾 −  𝑑𝐾2(𝑠)
1

0

 +  𝛼 −   𝑑𝐾1(𝑠)
1

0

  𝛾 + 𝛿 −  𝑠 𝑑𝐾2(𝑠)
1

0

 . 

 

In this way, we conclude that assumptions (I2)-(I4) from [20] are satisfied. Hence, all the auxiliary results 
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Lemmas 2.1-2.7 from [20] for problem (1)-(2), and the corresponding auxiliary results for problem (3)-(4) 

are satisfied. 

Therefore, under assumptions (J1)-(J3) and for 𝑦, 𝑦 ∈ 𝐶 0,1 ∩ 𝐿1 0,1 , the solutions 𝑢  and 𝑣  for 

problems (1)-(2) and (3)-(4), respectively, are given by 𝑢 𝑡 =  𝐺1 𝑡, 𝑠 𝑦 𝑠  𝑑𝑠
1

0
and 

𝑣 𝑡 =  𝐺2 𝑡, 𝑠 𝑦  𝑠 𝑑𝑠
1

0
 for all 𝑡 ∈  0,1 , where 𝐺1 and 𝐺2 are given by 

 

𝐺1 𝑡, 𝑠 = 𝑔1 𝑡, 𝑠 +
1

Δ1
  𝛼𝑡 + 𝛽   −𝛾𝑠 + 𝛾 + 𝛿  𝑑𝐻2 𝑠 

1

0

+  −𝛾𝑡 + 𝛾 + 𝛿  𝛼𝛾 + 𝛼𝛿 + 𝛽𝛾   

 

  −  𝛼𝑠 + 𝛽  𝑑𝐻2(𝑠)
1

0

   𝑔1 𝜏, 𝑠  𝑑𝐻1 𝜏 +
1

Δ1

1

0

 (𝛼𝑡 + 𝛽)  𝛼𝛾 + 𝛼𝛿 + 𝛽𝛾  

 

  −  −𝛾𝑠 + 𝛾 + 𝛿  𝑑𝐻1(𝑠)
1

0

 + (−𝛾𝑡 + 𝛾 + 𝛿)  𝛼𝑠 + 𝛽  𝑑𝐻1(𝑠)
1

0

  𝑔1 𝜏, 𝑠  𝑑𝐻2(𝜏)
1

0

, 

 

𝐺2 𝑡, 𝑠 = 𝑔2 𝑡, 𝑠 +
1

Δ2
  𝛼 𝑡 + 𝛽    −𝛾 𝑠 + 𝛾 + 𝛿   𝑑𝐾2 𝑠 

1

0

+  −𝛾 𝑡 + 𝛾 + 𝛿   𝛼 𝛾 + 𝛼 𝛿 + 𝛽 𝛾    

 

  −  𝛼 𝑠 + 𝛽   𝑑𝐾2(𝑠)
1

0

   𝑔2 𝜏, 𝑠  𝑑𝐾1 𝜏 +
1

Δ2

1

0

 (𝛼 𝑡 + 𝛽 )  𝛼 𝛾 + 𝛼 𝛿 + 𝛽 𝛾   

 

  −  −𝛾 𝑠 + 𝛾 + 𝛿   𝑑𝐾1(𝑠)
1

0

 + (−𝛾 𝑡 + 𝛾 + 𝛿 )  𝛼 𝑠 + 𝛽   𝑑𝐾1(𝑠)
1

0

  𝑔2 𝜏, 𝑠 𝑑𝐾2(𝜏)
1

0

, 

 

and 

 

𝑔1 𝑡, 𝑠 =
1

𝛼𝛾 + 𝛼𝛿 + 𝛽𝛾
 
 −𝛾𝑡 + 𝛾 + 𝛿  𝛼𝑠 + 𝛽 ,   0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
 −𝛾𝑠 + 𝛾 + 𝛿  𝛼𝑡 + 𝛽 ,   0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

  

 

𝑔2 𝑡, 𝑠 =
1

𝛼 𝛾 + 𝛼 𝛿 + 𝛽 𝛾 
 
 −𝛾 𝑡 + 𝛾 + 𝛿   𝛼 𝑠 + 𝛽  ,   0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

 −𝛾 𝑠 + 𝛾 + 𝛿   𝛼 𝑡 + 𝛽  ,   0 ≤ 𝑡 ≤ 𝑠 ≤ 1.
  

 

By Lemma 2.6 from [20], the Green's functions 𝐺1 and 𝐺2 above satisfy the inequalities 𝐺1 𝑡, 𝑠 ≤ 𝐽1 𝑠 ,

      𝐼𝑛 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛, 𝑏𝑦 𝐿𝑒𝑚𝑚𝑎 2.7 𝑓𝑟𝑜𝑚 [2],𝑤𝑒 𝑑𝑒𝑑𝑢𝑐𝑒 𝑡𝑕𝑎𝑡 𝑓𝑜𝑟 𝐺2 𝑡, 𝑠 ≤ 𝐽2 𝑠  for all  𝑡, 𝑠 ∈  0,1 ×  0,1 , 

and for every 𝜎 ∈  0,
1

2
 , we have 𝑚𝑖𝑛𝑡∈ 𝜎,1−𝜎 𝐺1(𝑡, 𝑠) ≥ 𝜈1𝐽1(𝑠) and 𝑚𝑖𝑛𝑡∈ 𝜎,1−𝜎 𝐺2(𝑡, 𝑠) ≥ 𝜈2𝐽2(𝑠) for all 

𝑠 ∈  0,1 , where  

 

𝐽1 𝑠 = 𝑔1 𝑠, 𝑠 +
1

Δ1
  𝛼 + 𝛽   −𝛾𝑠 + 𝛾 + 𝛿  𝑑𝐻2 𝑠 

1

0

+  𝛾 + 𝛿  𝛼𝛾 + 𝛼𝛿 + 𝛽𝛾   

  −  𝛼𝑠 + 𝛽  𝑑𝐻2(𝑠)
1

0

   𝑔1 𝜏, 𝑠  𝑑𝐻1 𝜏 +
1

Δ1

1

0

 (𝛼 + 𝛽)  𝛼𝛾 + 𝛼𝛿 + 𝛽𝛾  

  −  −𝛾𝑠 + 𝛾 + 𝛿  𝑑𝐻1(𝑠)
1

0

 + (𝛾 + 𝛿)  𝛼𝑠 + 𝛽  𝑑𝐻1(𝑠)
1

0

  𝑔1 𝜏, 𝑠  𝑑𝐻2(𝜏)
1

0

, 
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𝐽2 𝑠 = 𝑔2 𝑠, 𝑠 +
1

Δ2
  𝛼 + 𝛽    −𝛾 𝑠 + 𝛾 + 𝛿   𝑑𝐾2 𝑠 

1

0

+  𝛾 + 𝛿   𝛼 𝛾 + 𝛼 𝛿 + 𝛽 𝛾    

  −  𝛼 𝑠 + 𝛽   𝑑𝐾2(𝑠)
1

0

   𝑔2 𝜏, 𝑠  𝑑𝐾1 𝜏 +
1

Δ2

1

0

 (𝛼 + 𝛽 )  𝛼 𝛾 + 𝛼 𝛿 + 𝛽 𝛾   

  −  −𝛾 𝑠 + 𝛾 + 𝛿   𝑑𝐾1(𝑠)
1

0

 + (𝛾 + 𝛿 )  𝛼 𝑠 + 𝛽   𝑑𝐾1(𝑠)
1

0

  𝑔2 𝜏, 𝑠  𝑑𝐾2(𝜏)
1

0

, 

 

and 𝜐1 = min  
𝛾𝜎+𝛿

𝛾+𝛿
,
𝛼𝜎+𝛽

𝛼+𝛽
 , 𝜐2 = min  

𝛾 𝜎+𝛿 

𝛾 +𝛿 
,
𝛼 𝜎+𝛽 

𝛼 +𝛽 
 . 

 In addition, by Lemma 2.7 from [20], we deduce that for 𝜎 ∈ (0,
1

2
) and 𝑦, 𝑦 ∈ 𝐶 0,1 ∩ 𝐿1 0,1 , with 

𝑦 𝑡 ≥ 0,  𝑦 (𝑡) ≥ 0 for all 𝑡 ∈  0,1 , the solutions 𝑢 and 𝑣 of problems (1)-(2) and (3)-(4), respectively,  

satisfy the inequalities 𝑖𝑛𝑓𝑡∈ 𝜎,1−𝜎 𝑢(𝑡) ≥ 𝜐1𝑠𝑢𝑝𝑡 ′∈ 0,1 𝑢(𝑡′) and  𝑖𝑛𝑓𝑡∈ 𝜎,1−𝜎 𝑣 𝑡 ≥ 𝜐2𝑠𝑢𝑝𝑡 ′∈ 0,1 𝑣 𝑡
′ . 

3. Main Results 

Our first theorem is the following existence result for problem  𝑆 −  𝐵𝐶 . 

Theorem 3.1 Assume that assumptions (J1)-(J5) hold. Then problem  𝑆 −  𝐵𝐶  has at least one 

positive solution for 𝑎0 > 0 and 𝑏0 > 0 sufficiently small. 

Proof. By (J4) and (J5), we deduce that  𝑝 𝑠 𝐽1 𝑠 𝑑𝑠 > 0
1

0
 and  𝑞 𝑠 𝐽2 𝑠 𝑑𝑠 > 0

1

0
, that is the constant 

𝐿 from (J5) is positive. 

We consider the problems 

 

                   

𝑕′′  𝑡 = 0,   𝑡 ∈  0,1 ,

𝛼𝑕 0 − 𝛽𝑕′ 0 =  𝑕 𝑠  𝑑𝐻1(𝑠)
1

0

,   𝛾𝑕 1 + 𝛿𝑕′ 1 =  𝑕 𝑠  𝑑𝐻2 𝑠 
1

0

+ 1,
                                      (5)  

 

                   

𝑘 ′′  𝑡 = 0,   𝑡 ∈  0,1 ,

𝛼 𝑘 0 − 𝛽 𝑘′ 0 =  𝑘 𝑠  𝑑𝐾1(𝑠)
1

0

,   𝛾 𝑘 1 + 𝛿 𝑘′ 1 =  𝑘 𝑠  𝑑𝐾2 𝑠 
1

0

+ 1.
                                      (6)  

 

The above problems (5) and (6) have the solutions 

 

                                 𝑕 𝑡 =
𝜏1

∆1
 𝑡  𝛼 −  𝑑𝐻1 𝑠 

1

0

 + 𝛽 +  𝑠 𝑑𝐻1 𝑠 
1

0

 , 𝑡 ∈  0,1 ,                                              (7) 

𝑘 𝑡 =
𝜏2

∆2
 𝑡  𝛼 − 𝑑𝐾1 𝑠 

1

0

 + 𝛽 +  𝑠 𝑑𝐾1 𝑠 
1

0

 , 𝑡 ∈  0,1 ,                  

 

respectively. 

By assumptions (J1)-(J3) we obtain 𝑕 𝑡 > 0 and 𝑘 𝑡 > 0 for all 𝑡 ∈  0,1 . 

We define the functions 𝑥(𝑡) and 𝑦 𝑡 , 𝑡 ∈ [0,1] by 

 

𝑥 𝑡 = 𝑢 𝑡 − 𝑎0𝑕 𝑡 , 𝑦 𝑡 = 𝑣 𝑡 − 𝑏0𝑘 𝑡 , 𝑡 ∈  0,1 , 

where  𝑢, 𝑣  is a solution of  𝑆 − (𝐵𝐶). Then  𝑆 − (𝐵𝐶) can be equivalently written as 

 

                                               
𝑥 ′′  𝑡 + 𝑝 𝑡 𝑓 𝑦 𝑡 + 𝑏0𝑘 𝑡  = 0,   𝑡 ∈  0,1 ,

𝑦′′  𝑡 + 𝑞 𝑡 𝑔 𝑥 𝑡 + 𝑎0𝑕 𝑡  = 0,   𝑡 ∈  0,1 
                                                                 (8)  
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with the boundary conditions 

 

                                
𝛼𝑥 0 − 𝛽𝑥′ 0 =  𝑥 𝑠  𝑑𝐻1(𝑠)

1

0
,    𝛾𝑥 1 + 𝛿𝑥 ′ 1 =  𝑥 𝑠  𝑑𝐻2 𝑠 ,

1

0

𝛼 𝑦 0 − 𝛽 𝑦′ 0 =  𝑦 𝑠  𝑑𝐾1(𝑠)
1

0
,    𝛾 𝑦 1 + 𝛿 𝑦′ 1 =  𝑦 𝑠  𝑑𝐾2 𝑠 .

1

0

                (9) 

 

Using the Green's functions 𝐺1, 𝐺2 from Section 2, a pair  𝑥, 𝑦  is a solution of problem (8)-(9) if and 

only if  𝑥, 𝑦  is a solution for the nonlinear integral equations 

 

                    

 
 
 

 
 𝑥 𝑡 =  𝐺1 𝑡, 𝑠 𝑝 𝑠 𝑓   𝐺2 𝑠, 𝜏 𝑞 𝜏 (𝑔 𝑥 𝜏 + 𝑎0𝑕 𝜏   𝑑𝜏 + 𝑏0𝑘(𝑠)

1

0

  𝑑𝑠,
1

0

𝑦 𝑡 =  𝐺2 𝑡, 𝑠 𝑞 𝑠 𝑔 𝑥 𝑠 + 𝑎0𝑕 𝑠   𝑑𝑠,   0 ≤ 𝑡 ≤ 1,
1

0

                           (10)  

 

where 𝑕 𝑡 , 𝑘 𝑡 , 𝑡 ∈ [0,1] are given by (7). 

We consider the Banach space 𝑋 = 𝐶( 0,1 ) with the supremum norm  ∙  and define the set 

 

𝐸 =  𝑥 ∈ 𝐶  0,1  , 0 ≤ 𝑥 𝑡 ≤ 𝑐0, ∀𝑡 ∈  0,1  ⊂ 𝑋. 

 

We also define the operator 𝑆: 𝐸 → 𝑋 by 

 

 𝑆𝑥  𝑡 =  𝐺1 𝑡, 𝑠 𝑝 𝑠 𝑓   𝐺2 𝑠, 𝜏 𝑞 𝜏 (𝑔 𝑥 𝜏 + 𝑎0𝑕 𝜏   𝑑𝜏 + 𝑏0𝑘(𝑠)
1

0

  𝑑𝑠,
1

0

  0 ≤ 𝑡 ≤ 1, 𝑥 ∈ 𝐸. 

 

For sufficiently small 𝑎0 > 0 and 𝑏0 > 0, by (J5), we deduce 

 

𝑓 𝑦 𝑡 + 𝑏0𝑘 𝑡  ≤
𝑐0

𝐿
, 𝑔 𝑥 𝑡 + 𝑎0𝑕 𝑡  ≤

𝑐0

𝐿
,   ∀𝑡 ∈  0,1 , ∀𝑥, 𝑦 ∈ 𝐸. 

 

Then, by using some remarks from Section 2, we obtain  𝑆𝑥 (𝑡) ≥ 0 for all 𝑡 ∈ [0,1] and 𝑥 ∈ 𝐸. In 

addition, for all 𝑥 ∈ 𝐸, we have 

 

 𝐺2 𝑠, 𝜏 𝑞 𝜏 (𝑔 𝑥 𝜏 + 𝑎0𝑕 𝜏   𝑑𝜏 ≤
1

0

 𝐽2 𝜏 𝑞 𝜏 (𝑔 𝑥 𝜏 + 𝑎0𝑕 𝜏   𝑑𝜏
1

0

 

≤
𝑐0

𝐿
 𝐽2 𝜏 𝑞 𝜏  𝑑𝜏

1

0

≤ 𝑐0, ∀𝑠 ∈  0,1 , 

 

and 

 

 𝑆𝑥  𝑡 ≤  𝐽1 𝑠 𝑝 𝑠 𝑓   𝐺2 𝑠, 𝜏 𝑞 𝜏 (𝑔 𝑥 𝜏 + 𝑎0𝑕 𝜏   𝑑𝜏 + 𝑏0𝑘(𝑠)
1

0

  𝑑𝑠
1

0

 

≤
𝑐0

𝐿
 𝐽1 𝑠 𝑝 𝑠  𝑑𝑠

1

0

≤ 𝑐0, ∀𝑡 ∈  0,1 . 

 

Therefore 𝑆 𝐸 ⊂ 𝐸. 

Using standard arguments, we deduce that 𝑆 is completely continuous (𝑆 is compact, that is for any 
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bounded set 𝐵 ⊂ 𝐸, 𝑆(𝐵) ⊂ 𝐸 is relatively compact by Arzèla-Ascoli theorem, and 𝑆 is continuous). By 

Theorem 1.1, we conclude that 𝑆 has a fixed point 𝑥 ∈ 𝐸. This element together with 𝑦 given by (10) 

represents a solution for (8)-(9). This shows that our problem  𝑆 −  𝐵𝐶  has a positive solution (𝑢, 𝑣)   

with 𝑢 = 𝑥 + 𝑎0𝑕, 𝑣 = 𝑦 + 𝑏0𝑘 for sufficiently small 𝑎0 > 0 and 𝑏0 > 0.  

In what follows, we present sufficient conditions for the nonexistence of positive solutions of problem 

 𝑆 − (𝐵𝐶).  

Theorem 3.2 Assume that assumptions (J1)-(J4) and (J6) hold. Then problem  𝑆 − (𝐵𝐶) has no 

positive solution for 𝑎0 and 𝑏0 sufficiently large. 

Proof. We suppose that (𝑢, 𝑣) is a positive solution of  𝑆 −  𝐵𝐶 . Then (𝑥, 𝑦) with 𝑥 = 𝑢 − 𝑎0𝑕, 𝑦 =

𝑣 − 𝑏0𝑘 is a solution for (8)-(9), where 𝑕 and 𝑘 are the solutions of problems (5) and (6), respectively,  

(given by (7)).  By (J4) there exists 𝜎 ∈ (0,
1

2
) such that 𝑡1, 𝑡2 ∈  𝜎, 1 − 𝜎 , and then  𝑝 𝑠 𝐽1 𝑠  𝑑𝑠 >

1−𝜎

𝜎

0,   𝜎1−𝜎𝑞𝑠𝐽2𝑠 𝑑𝑠>0.   Now by using some remarks from Section 2, we have 𝑥𝑡≥0,  𝑦(𝑡 ≥0 for all 𝑡∈0,1, 

and 𝑚𝑖𝑛𝑡∈ 𝜎,1−𝜎 𝑥(𝑡) ≥ 𝜐1 𝑥  and 𝑚𝑖𝑛𝑡∈ 𝜎,1−𝜎 𝑦 𝑡 ≥ 𝜐2 𝑦 .  

Using now (7), we deduce that 

 

min
𝑡∈[𝜎,1−𝜎]

𝑕(𝑡) = 𝑕 𝜎 =
𝑕(𝜎)

𝑕(1)
 𝑕 , min

𝑡∈[𝜎,1−𝜎]
𝑘(𝑡) = 𝑘 𝜎 =

𝑘(𝜎)

𝑘(1)
 𝑘 . 

 

Therefore, we obtain 

 

min
𝑡∈[𝜎,1−𝜎]

(𝑥 𝑡 + 𝑎0𝑕 𝑡 ) ≥ 𝜐1 𝑥 + 𝑎0

𝑕(𝜎)

𝑕(1)
 𝑕 ≥ 𝑟1  𝑥 + 𝑎0 𝑕  ≥ 𝑟1 𝑥 + 𝑎0𝑕 , 

 

min
𝑡∈[𝜎,1−𝜎]

(𝑦 𝑡 + 𝑏0𝑘 𝑡 ) ≥ 𝜐2 𝑦 + 𝑏0

𝑘(𝜎)

𝑘(1)
 𝑘 ≥ 𝑟2  𝑦 + 𝑏0 𝑘  ≥ 𝑟2 𝑦 + 𝑏0𝑘 , 

 

where 

 

𝑟1 = min  𝜐1,
𝑕(𝜎)

𝑕(1)
 = min 𝜐1,

𝜎  𝛼 −  𝑑𝐻1(𝑠)
1

0
 + 𝛽 +  𝑠 𝑑𝐻1(𝑠)

1

0

𝛼 −  𝑑𝐻1(𝑠)
1

0
+ 𝛽 +  𝑠 𝑑𝐻1(𝑠)

1

0

 , 

 

𝑟2 = min  𝜐2,
𝑘(𝜎)

𝑘(1)
 = min 𝜐2,

𝜎  𝛼 −  𝑑𝐾1(𝑠)
1

0
 + 𝛽 +  𝑠 𝑑𝐾1(𝑠)

1

0

𝛼 −  𝑑𝐾1(𝑠)
1

0
+ 𝛽 +  𝑠 𝑑𝐾1(𝑠)

1

0

 . 

 

We now consider 𝑅 =  min  𝜐2𝑟1  𝑞 𝑠 𝐽2 𝑠  𝑑𝑠,  𝜐1𝑟2  𝑝 𝑠 𝐽1 𝑠  𝑑𝑠 
1−𝜎

𝜎
 

1−𝜎

𝜎
  

−1
> 0. 

By (J6), for 𝑅 defined above, we conclude that there exists 𝑀 > 0 such that 𝑓 𝑢 > 2𝑅𝑢, 𝑔 𝑢 > 2𝑅𝑢 

for all 𝑢 ≥ 𝑀. We consider 𝑎0 > 0 and 𝑏0 > 0 sufficiently large such that 

 

min
𝑡∈[𝜎,1−𝜎]

(𝑥 𝑡 + 𝑎0𝑕 𝑡 ) ≥ 𝑀, min
𝑡∈[𝜎,1−𝜎]

(𝑦 𝑡 + 𝑏0𝑘 𝑡 ) ≥ 𝑀. 

 

By (J4), (8), (9) and the above inequalities, we deduce that  𝑥 > 0 and  𝑦 > 0.  

Now by the above considerations, we have 
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𝑦 𝜎 =  𝐺2 𝜎, 𝑠 𝑞 𝑠 𝑔 𝑥 𝑠 + 𝑎0𝑕 𝑠   𝑑𝑠
1

0

≥ 𝜐2  𝐽2 𝑠 𝑞 𝑠 𝑔 𝑥 𝑠 + 𝑎0𝑕 𝑠   𝑑𝑠
1

0

 

≥ 𝜐2  𝐽2 𝑠 𝑞 𝑠 𝑔 𝑥 𝑠 + 𝑎0𝑕 𝑠   𝑑𝑠
1−𝜎

𝜎

≥ 2𝑅𝜐2  𝐽2 𝑠 𝑞 𝑠  𝑥 𝑠 + 𝑎0𝑕 𝑠   𝑑𝑠
1−𝜎

𝜎

 

≥ 2𝑅𝜐2  𝐽2 𝑠 𝑞 𝑠  min
𝜏∈[𝜎,1−𝜎]

 𝑥 𝜏 + 𝑎0𝑕 𝜏   𝑑𝑠 
1−𝜎

𝜎

 

≥ 2𝑅𝜐2𝑟1  𝐽2 𝑠 𝑞 𝑠  𝑥 + 𝑎0𝑕  𝑑𝑠 
1−𝜎

𝜎

≥ 2 𝑥 + 𝑎0𝑕 ≥ 2 𝑥 . 

 

Therefore we obtain 

 

                                                                                   𝑥 ≤
𝑦 𝜎 

2
≤
 𝑦 

2
.                                                                               (11) 

 

In a similar manner, we deduce 

 

𝑥 𝜎 =  𝐺1 𝜎, 𝑠 𝑝 𝑠 𝑓 𝑦 𝑠 + 𝑏0𝑘 𝑠   𝑑𝑠
1

0

≥ 𝜐1  𝐽1 𝑠 𝑝 𝑠 (𝑓 𝑦 𝑠 + 𝑏0𝑘 𝑠   𝑑𝑠
1

0

 

≥ 𝜐1  𝐽1 𝑠 𝑝 𝑠 𝑓 𝑦 𝑠 + 𝑏0𝑘 𝑠   𝑑𝑠
1−𝜎

𝜎

≥ 2𝑅𝜐1  𝐽1 𝑠 𝑝 𝑠  𝑦 𝑠 + 𝑏0𝑘 𝑠   𝑑𝑠
1−𝜎

𝜎

 

≥ 2𝑅𝜐1  𝐽1 𝑠 𝑝 𝑠  min
𝜏∈[𝜎,1−𝜎]

 𝑦 𝜏 + 𝑎0𝑘 𝜏  𝑑𝑠 
1−𝜎

𝜎

 

≥ 2𝑅𝜐1𝑟2  𝐽1 𝑠 𝑝 𝑠  𝑦 + 𝑏0𝑘  𝑑𝑠 
1−𝜎

𝜎

≥ 2 𝑦 + 𝑏0𝑘 ≥ 2 𝑦 . 

 

So, we obtain 

 

                                                                                   𝑦 ≤
𝑥 𝜎 

2
≤
 𝑥 

2
.                                                                               (12) 

 

By (11) and (12), we conclude that  𝑥 ≤
 𝑦 

2
≤

 𝑥 

4
, which is a contradiction, because  𝑥 > 0. Then, 

for 𝑎0 and 𝑏0 sufficiently large, our problem  𝑆 − (𝐵𝐶) has no positive solution.  

Similar results as Theorems 3.1 and 3.2 can be obtained if instead of boundary conditions (𝐵𝐶) we have 

 

 𝐵𝐶1        

 
 
 

 
 𝛼𝑢 0 − 𝛽𝑢′ 0 =  𝑢 𝑠  𝑑𝐻1(𝑠)

1

0

+ 𝑎0,    𝛾𝑢 1 + 𝛿𝑢′ 1 =  𝑢 𝑠  𝑑𝐻2 𝑠 ,
1

0

𝛼 𝑣 0 − 𝛽 𝑣 ′ 0 =  𝑣 𝑠  𝑑𝐾1(𝑠)
1

0

+ 𝑏0,    𝛾 𝑣 1 + 𝛿 𝑣 ′ 1 =  𝑣 𝑠  𝑑𝐾2(𝑠),
1

0

  

 

or 

 

 𝐵𝐶2        

 
 
 

 
 𝛼𝑢 0 − 𝛽𝑢′ 0 =  𝑢 𝑠  𝑑𝐻1(𝑠)

1

0

+ 𝑎0,    𝛾𝑢 1 + 𝛿𝑢′ 1 =  𝑢 𝑠  𝑑𝐻2 𝑠 ,
1

0

𝛼 𝑣 0 − 𝛽 𝑣 ′ 0 =  𝑣 𝑠  𝑑𝐾1(𝑠)
1

0

,    𝛾 𝑣 1 + 𝛿 𝑣 ′ 1 =  𝑣 𝑠  𝑑𝐾2(𝑠) + 𝑏0 ,
1

0
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or 

 

 𝐵𝐶3        

 
 
 

 
 𝛼𝑢 0 − 𝛽𝑢′ 0 =  𝑢 𝑠  𝑑𝐻1(𝑠)

1

0

,    𝛾𝑢 1 + 𝛿𝑢′ 1 =  𝑢 𝑠  𝑑𝐻2 𝑠 + 𝑎0,
1

0

𝛼 𝑣 0 − 𝛽 𝑣 ′ 0 =  𝑣 𝑠  𝑑𝐾1(𝑠)
1

0

+ 𝑏0,    𝛾 𝑣 1 + 𝛿 𝑣 ′ 1 =  𝑣 𝑠  𝑑𝐾2(𝑠),
1

0

  

 

where 𝑎0 and 𝑏0 are positive constants. 

For problem  𝑆 −  𝐵𝐶1 , instead of functions 𝑕 and 𝑘 from the proof of Theorem 3.1, the solutions of 

problems 

 

                   

𝑕1
′′  𝑡 = 0,   𝑡 ∈  0,1 ,

𝛼𝑕1 0 − 𝛽𝑕1
′ 0 =  𝑕1 𝑠  𝑑𝐻1(𝑠)

1

0

+ 1,   𝛾𝑕1 1 + 𝛿𝑕1
′ 1 =  𝑕1 𝑠  𝑑𝐻2 𝑠 

1

0

,
                         (13)  

 

                   

𝑘1′′ 𝑡 = 0,   𝑡 ∈  0,1 ,

𝛼 𝑘1 0 − 𝛽 𝑘1
′ 0 =  𝑘1 𝑠  𝑑𝐾1(𝑠)

1

0

+ 1 ,   𝛾 𝑘1 1 + 𝛿 𝑘1
′ (1) =  𝑘1 𝑠  𝑑𝐾2 𝑠 

1

0

,
                          (14)  

 

are 

 

𝑕1 𝑡 =
𝜏1

∆1
 −𝑡  𝛾 −  𝑑𝐻2 𝑠 

1

0

 + 𝛾 + 𝛿 − 𝑠 𝑑𝐻2 𝑠 
1

0

 , 𝑡 ∈  0,1 ,   

 

𝑘1 𝑡 =
𝜏2

∆2
 −𝑡  𝛾 −  𝑑𝐾2 𝑠 

1

0

 + 𝛾 + 𝛿 −  𝑠 𝑑𝐾2 𝑠 
1

0

 , 𝑡 ∈  0,1 ,  

 

respectively. By assumptions (J1)-(J3) we obtain 𝑕1 𝑡 > 0 and 𝑘1 𝑡 > 0 for all 𝑡 ∈  0,1 . 

For problem  𝑆 −  𝐵𝐶2 , instead of functions 𝑕 and 𝑘 from the proof of Theorem 3.1, the solutions of 

problems (13) and (6) are the functions 𝑕1 and 𝑘, respectively, which satisfy 𝑕1 𝑡 > 0 for all 𝑡 ∈  0,1  

and 𝑘 𝑡 > 0 for all 𝑡 ∈  0,1 . For problem  𝑆 −  𝐵𝐶3 , instead of functions 𝑕 and 𝑘 from the proof of 

Theorem 3.1, the solutions of problems (5) and (14) are the functions 𝑕 and 𝑘1, respectively, which satisfy 

𝑕 𝑡 > 0 for all 𝑡 ∈ (0,1] and 𝑘1 𝑡 > 0 for all 𝑡 ∈  0,1 . 

Therefore we also obtain the following results. 

Theorem 3.3 Assume that assumptions (J1)-(J5) hold. Then problem  𝑆 −  𝐵𝐶1  has at least one 

positive solution (𝑢 𝑡 > 0 and 𝑣 𝑡 > 0 for all 𝑡 ∈ [0,1)) for 𝑎0 > 0 and 𝑏0 > 0 sufficiently small. 

Theorem 3.4 Assume that assumptions (J1)-(J4) and (J6) hold. Then problem  𝑆 −  𝐵𝐶1   has no 

positive solution (𝑢 𝑡 > 0 and 𝑣 𝑡 > 0 for all 𝑡 ∈ [0,1))  for 𝑎0 and 𝑏0 sufficiently large. 

Theorem 3.5 Assume that assumptions (J1)-(J5) hold. Then problem  𝑆 −  𝐵𝐶2  has at least one 

positive solution (𝑢 𝑡 > 0  for all 𝑡 ∈  0,1 ,  and 𝑣 𝑡 > 0  for all 𝑡 ∈ (0,1] ) for 𝑎0 > 0  and 𝑏0 >

0 sufficiently small. 

Theorem 3.6 Assume that assumptions (J1)-(J4) and (J6) hold. Then problem  𝑆 −  𝐵𝐶2   has no 

positive solution (𝑢 𝑡 > 0 for all 𝑡 ∈  0,1 ,  and 𝑣 𝑡 > 0 for all 𝑡 ∈ (0,1]) for 𝑎0  and 𝑏0 sufficiently 

large. 

Theorem 3.7 Assume that assumptions (J1)-(J5) hold. Then problem  𝑆 −  𝐵𝐶3  has at least one 
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positive solution (𝑢 𝑡 > 0  for all 𝑡 ∈ (0,1],  and 𝑣 𝑡 > 0  for all 𝑡 ∈ [0,1) ) for 𝑎0 > 0  and 𝑏0 >

0 sufficiently small. 

Theorem 3.8 Assume that assumptions (J1)-(J4) and (J6) hold. Then problem  𝑆 −  𝐵𝐶3   has no 

positive solution (𝑢 𝑡 > 0 for all 𝑡 ∈ (0,1],  and 𝑣 𝑡 > 0 for all 𝑡 ∈ [0,1)) for 𝑎0  and 𝑏0 sufficiently 

large. 

4. An Example 

We consider 𝑝 𝑡 = 𝑎𝑡, 𝑞 𝑡 = 𝑏𝑡 for all 𝑡 ∈ [0,1] with 𝑎, 𝑏 > 0, 𝛼 = 3, 𝛽 = 2, 𝛾 = 2, 𝛿 = 1, 𝛼 = 5,  𝛽 =

2, 𝛾 = 2, 𝛿 = 1/2, 𝐻1 𝑡 = 𝑡,  𝐻2 𝑡 = 𝑡2, 𝐾1 𝑡 = 𝑡3, 𝐾2 𝑡 =  𝑡 for all 𝑡 ∈  0,1 . We also consider the 

functions 𝑓, 𝑔:  0,∞ →  0,∞ ,  𝑓 𝑥 =
𝑐𝑥3

𝑥+1
 , 𝑔 𝑥 =

𝑑𝑥4

2𝑥+3
 for all 𝑥 ∈ [0,∞)   with 𝑐, 𝑑 > 0.  We have 

lim𝑥→∞
𝑓(𝑥)

𝑥
= lim𝑥→∞

𝑔(𝑥)

𝑥
= ∞.  

Therefore, we consider the nonlinear second-order differential system 

 

 𝑆0          

 
 
 

 
 𝑢′′ 𝑡 + 𝑎𝑡

𝑐𝑣3(𝑡)

𝑣 𝑡 + 1
= 0,     𝑡 ∈  0,1 ,

𝑣′′ 𝑡 + 𝑏𝑡
𝑑𝑢4(𝑡)

2𝑢 𝑡 + 3
= 0,     𝑡 ∈  0,1 ,

  

 

with the boundary conditions 

 

 𝐵𝐶0        

 
 
 

 
 3𝑢 0 − 2𝑢′ 0 =  𝑢 𝑠  𝑑𝑠

1

0

,   2𝑢 1 + 𝑢′ 1 = 2 𝑠𝑢 𝑠  𝑑𝑠 + 𝑎0,
1

0

5𝑣 0 − 2𝑣′ 0 = 3 𝑠2𝑣 𝑠  𝑑𝑠
1

0

,   2𝑣 1 +
1

2
𝑣′ 1 =

1

2
 

1

 𝑠
𝑣 𝑠  𝑑𝑠 + 𝑏0.

1

0

          

 

We obtain 𝛼 −  𝑑𝐻1 𝜏 = 2 > 0,
1

0
  𝛾 −  𝑑𝐻2 𝜏 = 1 > 0,

1

0
  𝛼 −  𝑑𝐾1 𝜏 = 4 > 0,

1

0
 𝛾 −  𝑑𝐾2 𝜏 =

1

0

1>0,  𝜓𝑡=3𝑡+2, 𝜙𝑡=−2𝑡+3 for all 𝑡∈0,1, 𝜏1=13,  Δ1=436,  ∆1=5596,   

𝜓  𝑡 = 5𝑡 + 2, 𝜙  𝑡 = −2𝑡 +
5

2
 for all 𝑡 ∈  0,1 , 𝜏2 =

33

2
, Δ 2 =

137

12
, ∆2=

1507

6
.   So assumptions (J1)-(J4) 

and (J6) are satisfied. 

In addition, we have 

 

𝑔1 𝑡, 𝑠 =
1

13
 
 −2𝑡 + 3  3𝑠 + 2 ,   0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
 −2𝑠 + 3  3𝑡 + 2 ,   0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

  

 

𝑔2 𝑡, 𝑠 =
2

33
 
 −2𝑡 + 5/2  5𝑠 + 2 ,   0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
 −2𝑠 + 5/2  5𝑡 + 2 ,   0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

  

and the functions 𝐽1 and 𝐽2 are of the form 

𝐽1 𝑠 = 𝑔1 𝑠, 𝑠 +
212

559
 𝑔1 𝜏, 𝑠  𝑑𝜏

1

0

+
786

559
 𝜏𝑔1 𝜏, 𝑠  𝑑𝜏

1

0

=
424 + 464𝑠 − 364𝑠2 − 131𝑠3

559
 , 

𝐽2 𝑠 = 𝑔2 𝑠, 𝑠 +
98

137
 𝜏2𝑔2 𝜏, 𝑠  𝑑𝜏

1

0

+
983

3014
 

1

 𝜏
𝑔2 𝜏, 𝑠  𝑑𝜏

1

0

=
4312 + 8588𝑠 − 3932𝑠3/2 − 5480𝑠2 − 539𝑠4

9042
 . 
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Then we deduce 𝐿 = max  𝑎  𝑠𝐽1 𝑠  𝑑𝑠, 𝑏  𝑠𝐽2 𝑠  𝑑𝑠
1

0

1

0
 , with  𝑠𝐽1 𝑠  𝑑𝑠 ≈ 0.4462731

1

0
 and 

 𝑠𝐽2 𝑠  𝑑𝑠 ≈ 0.2693436.
1

0
  We choose 𝑐0 = 1  and if we select 𝑐  and 𝑑  satisfying the conditions 

𝑐 <
2

𝐿
 , 𝑑 <

5

𝐿
 ,  then we obtain 𝑓 𝑥 ≤

𝑐

2
<

1

𝐿
, 𝑔 𝑥 ≤

𝑑

5
<

1

𝐿
 for all 𝑥 ∈  0,1 . For example, if 𝑎 = 1, 𝑏 =

1/2, then for 𝑐 ≤ 4.48 and 𝑑 ≤ 11.2 the above conditions for 𝑓 and 𝑔 are satisfied. So, assumption (J5) 

is also satisfied. By Theorems 3.1 and 3.2 we conclude that problem  𝑆0 − (𝐵𝐶0) has at least one positive 

solution for sufficiently small a0 > 0 and b0 > 0, and no positive solution for suficiently large 𝑎0 and 𝑏0. 
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