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Abstract: In this paper, we discuss the concept of n-normed spaces and generalize a formulae of n-norm.
Further we prove the equality of seven formulae of n-norms on a Hilbert space and eight formulae of
n-norms on a separable Hilbert space. An alternative formula of n-norm on the dual of an n-normed space is
introduced. Also, we show its equality with two alternative formulae.
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1. Introduction

Let X be a real vector space with dim X = n, where n is a positive integer. A real valued function
|.-.: X" >R is called an n-norm on X if the following conditions hold:

1) |x,..x,] = Oiff x,.x, arelinearly dependent.

2)  |x,.x,| isinvariant under permutations of x,,..x,.
3)  |ex,x,x,|=le]|%,,x,| fOrany aeR-
4)  |xy + %, % X, || S [Xg X, |+ %, x| fOrall x,x,,..x,eX.

The pair (x),..]) is called an n-normed space. An n-norm is always non-negative. The combination of

conditions (3) and (4) above gives the non-negativity of an n-norm. If x is an n-normed space with dual
x',the following formula (as formulated by “Gahler [1]").

. fl(xl) ﬁ;(xl)
x| = A

= Sup : . :
fieX‘HfiH—lf‘l(Xn) fn(xn)

defines an n-normon x.
If x is equipped with an inner product (,), we can define the standard n-norm on Xx by

i =4’det [<x1., xj>] .

Note that the value of |x,,..x,| represents the volume of n-dimensional parallelepiped spanned by

[y,

X,-.x,.Let x be a Hilbert space with dual x'.Then Géhler’s formula on x becomes|x,,...x,| = Sup det[(x,,yjﬂ .

"
vexlyfa
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Also the function

<X1'.y1> <X1'_}’n>

D7

(%) 10mrX, Sup : . :
VX <1 < X,y > < X,y >
n?/'1 n’'n
defines an n-norm on a Hilbert space x. Then |...|"and |....|” are identical on a Hilbert space x [2].

If x is a separable Hilbert space and {e,e,..} is a complete orthonormal set inx, we can define an

n-normon x by

I

N ={%;m;‘det[am]

[,

where a,./.=<x,,ej> [2], [3]

<X1JY1> <X1an>
"= Sup R defines an n-norm on a Hilbert space and the

Further, the function |
Vi1 (xoys) - (%)
n’/'1 n’/n

X, e X,

function

f(x) - fi(x)
"= Sup : ’ :
sex fr

X X

1o X,

fi(x) < fix)

defines an n-norm on a normed space X with dual X" [4].

"= sup det[(x,y)]. Then [ o’ ool oo

yiexly

r

If x is a Hilbert space, |...| becomes|x,,..x,

and |....

I

are identical on a Hilbert space and they are identical with]|....|, on a separable Hilbert space.

2

, fl(xl) fn(xl) , fl(xl) fn(xl)
Also, |f,.f|= su oot and [fef = Su P

B TACA REACS B ACAREACS
are identical n-norms on x’,the dual of an n-normed space x [4].

The theory of 2-normed spaces and n-normed spaces were initially developed by Géhler [1], [5]-[7] in the
1960’s. Recent works and related works can be found in [2], [3], [8]-[10]. The most recent work can be seen
in [4]. Our interest here is to study alternative formulae of n-norms especially in a Hilbert space. The
alternative formulae are identical with the n-norms mentioned above. In the last part we study the equality
of three n-norms defined on the dual space of an n-normed space.

2. Generalization of an n-Norm

Let x be a real vector space with dim x>n equipped with an inner product(,.). Then the function

<x1,.y1> <x1,.yn>

Hxl,...,x" " — Abs

(X)) (xn..m

defines an n-norm on x for fixed linearly independent n elements y,,..y,ex [4].

The following proposition is the generalization of the above proposition.

26 Volume 6, Number 1, January 2016



Proposition 2.1. Let x be a normed space of dimX>nwith dual x’. Then the function

|

defines an n-norm on x for fixed linearly independent n funtionals f,,f,,...f,X’.

f(x) - (%)
%, x| = Abs ’ :

fi(n) - i)

Proof: (i) It is easy to show that x,,..x, are linearly dependent iff|x,,..x,|=o0.

(ii) The absolute value of a determinant remains invariant under the interchange of rows (or columns).
= |x,,...x,| is invariant under the permutations of x,,...x, .
(iii) vaer,

fl(axl) fn(axl)
X, X, = Abs : - :

=Ab{

fx) o h(x%)

aﬁ(xl) zxf"‘(xl)

%) - A

=[edl |

(iv) For x,,x,,...x, €X,

fl(XO.+X1) fn(XO.+X1) fl(XO) f;(xo) f1(X1) fn(.xl)

+

fi(x,) - fn('xn)

[y Xy o X, | S| X X, | [ X s X, | -

A o A | A - )

f1(Xo'+X1) fn(xﬂ.+xl) fl(.XO) fn(’x(,)

= Ab{

f) e A ) o A UAG) o A

This completes the proof.

Remark: If X is a Hilbert space with dual X', the above n-norm |,..,| becomes HHR It follows from:

By Riesz-representation theorem, for each fixed bounded linear functional f,x’, there exists unique y,ex

fi(x) o f(x)
such that £,(x,)=(x,y,)&|f|=]y,|- Then, |x,....x,| = Abs o

fx) i)
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<X1uV1> <X1'J’n>

=Abs|| i . i for linearly independent n elements y,,...y, =[x ,..x,|"
(xo31) o (x0)
3. Identicalness of Alternative n-Norms
<X1'.y1> <X1'Yn>
Proposition 3.1. The function |x,,...x,|" (o) o (ot
yexbyesf=o Yy,

X.

Proof: (i) It is easy to show thatx,,..,x, are linearly dependent iff|x,,...x,| =0.

(ii) By the properties of determinant and definition of supremum, |x,,...x,

permutations of x,,...x, .

n

(iii) vaer,

<ax1'Y1> <0!X1,y">
HO{X cIF = <any1> <Xann>
1204y
X a0 A
0(<X1,y1> a<X1'.yn>
_ (xoyi) (%)
VX 20 |Vsre 2l
<X1uV1> <X1’yn>
al :
_ (xpdn) (%)
VX 40 [P
<X1'Y1> <X1'Yn>
Xp Y1) 0 XY
el s ) o G
yexbymsfeo Yy Y,
=loffx, x|
(iv) For X)Xy X, €X,
<X0+X1'Y1> <X0+X1'Yn> <XO'Y1>+<X1'/V1> <X0'Yn>+<x1'Yn>
(xop) o xow) || (o) (%)
(A (P
(xoxn) o (o) [xoy) o (xoy)

(X)) - (xn.yn>+<xn,y1> (X0
(VA

= Sup . defines an n-norm on a Hilbert space

" remains invariant under the
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(Xltm

(x0o32)

<X0'Y1> <X0Jy,1> <X1uV1>
< (xo) = (x.0,) (x,01) -
VX sl 40 [irees Y VX sl 20 (e
<X0+X1'J/1> <X0+X1Jy,1>
<X"'yl> S<x",y"> SHXU,XZ,...,X" F+Hx1,x .........
117090

= Hxn +x1,x2,...,anF S‘xo,xz,...,anF +‘

X1 Xy X

This completes the proof.

Proposition 3.2. On a Hilbert space X with dimx >n, the two formulae

Proof:
<X17y1> <X1‘yn>
Hx1 ..... x”‘ = Sup KR :
i PR P
And
<X1IY1> <X1'yn>
| = (o) - (xo)
120 %n .
T R |
Clearly,
‘xl,...,x"HE S‘xl,...,anF.
Conversely, we choose z,= J ..... y|'#0 for j=1.2,.
J’u 'yn
Then,
<X1'Y1> <X1'yn> <X1'azl> <X1'azn>
(x,p,) - (x,»,)| [x,02z,) - (x,0az,)
arr faz, ..z,

(x,2,) - <X1'Z>
Sup : . :

serbaeaf a2 . (x , )

n’

29

® %0.

F
nH *

loer” @and |....|" are identical.

I
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® #0.

(Xl,‘y1> <X1'.yn>

() = (x)

Gl AP I

P M A
:>‘ Xy X, ‘F S‘xl,...,xn ‘E
This completes the proof.
Corollary 3.1. |...J o o Jor]” @and |....] are identical.

Proposition 3.3.0n a separable Hilbert space X ,|....

| and |...|, areidentical.

Proof: Let {e,e,., be a complete orthonormal set inX .Then, |..,|, may be derived directly from

.

standard n-norm |,..|° [6]= |...J and |...|, are identical. Also, |...| and|...| are identical. So, |...|"
and|...|, are identical. But, |...| and|...| are identical [proposition 3.2]. Therefore, |...| and |...|, are
identical.

Corollary 3.2.0n a separable Hilbert space X, ||| sl sl s oo are identical.

and |,..|"

2
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