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Abstract: In this paper a nonlinear mathematical model is proposed to analyze the effect of decreasing level 

of dissolved oxygen on the survival of aquatic species in the water body in the presence of nutrients. This 

model has four nonlinear differential equations consisting of four state variables accounting for 

concentration of nutrients, density of algae, density of fish population, and concentration of dissolved 

oxygen. The three equilibrium points have been obtained to understand the dynamic behavior of the system. 

The conditions for existence of these equilibrium points are obtained. The stability analysis is conducted on 

each equilibrium point by considering variational matrix and using Routh-Hurwitz criteria. The nonlinear 

stability behavior of an equilibrium point considered to be critical is analyzed by applying Liapunov’s direct 

method. 
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1. Introduction 

The water runoff from the farmlands and factories contains pollutants in the form of fertilizers and 

organic matters. These pollutants have nutrients such as nitrogen, phosphorus, carbon etc. The nutrient 

rich chemicals help the aquatic plants to grow better as they do for agricultural plants. The excessive 

amount of these nutrients causes excessive growth of algae resulting in the depletion of dissolved oxygen 

(DO) which in turn causes threat to the survival of aquatic species. The research work in this area started in 

the year 1925. Streeter and Phelps [1] in 1925 proposed the first dynamical model on depleting DO due to 

discharge of organic pollutants. Further Dobbins [2] and O’ Corner [3] generalized this model. Many 

researchers [4]-[8] studied depletion of DO by various sources and the survival of aquatic species. Arnold 

and Voss [9] studied numerical behavior of eutrophied lakes. Marler and Westfield [10] discussed a 

mathematical model based on ecological problem in which depletion of DO occurs due to growth of bacteria 

and protozoa. Shukla et al. [11], [12] studied the existence and survival of two competing species in a 

polluted water body and effect of changing habitat on survival of aquatic species. 

Phytoplankton also plays an important role in the dynamics of aquatic body. Khare et al. [13], [14] 

discussed the effect of the depleting DO on the survival of interacting planktonic population. However they 

didnot consider the crowding effect factor in their analysis. Many investigators [15] carried out modeling 

studies involving zooplankton, phytoplankton and nutrients. However they did not consider the 
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concentration of DO in the model. Keeping in view these aspects, in the present study a mathematical model 

is proposed to estimate the effect of decreasing DO on fish population survival in aquatic body in the 

presence of nutrients. It accounts for concentration of nutrients, density of algae, density of fish population, 

and concentration of DO. Analysis of each equilibrium point is carried out in which the existence criterion of 

each point is shown. Further, the stability behavior of these points is discussed by using Routh-Hurwitz 

criteria. Then the nonlinear stability behavior of the critical point is studied by using Liapunov’s direct 

method. To substantiate the feasibility of the model, numerical simulation is carried out.  

2. Mathematical Model 

Considering the above facts, the system is governed by following nonlinear ordinary differential 

equations. 
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Here ν1, ν2, ν3, and ν4 are depletion rate coefficients and β1, β2, α2, and α3 are positive proportionality 

constants. It is important to note here that the initial value of each parameter is positive i.e. N(0)=N10>0, 

A(0)= A10 >0, C(0) = C10>0, and F(0) = F10>0. 

3. Analysis of equilibrium points of the system 

The model discussed in the above section has following three nonnegative equilibrium points. 

1) Initially, it is considered that there is no change in the rate of flow of nutrients and concentration of 

DO, thus dN/dt = 0 and dC/dt = 0 which give the terms Q/ν1 and q/ν3. The 1st equilibrium point E1 is 

obtained which always exists and given by E1(Q/ν1, 0, q/ν3, 0). 

2) The 2nd equilibrium point is given by E2(N’, A’, C’, 0). 
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Let N be the cumulative concentration of nutrients, A be the density of algae, C be the concentration of DO, 

and F be the density of fish populations. These are the four state variables. Further let us consider Q be the 

cumulative rate of discharge of nutrients, q be the rate of growth of DO by various sources. It is further 

assumed that the growth rate of algae is proportional to the term [NA/α1+C0-C]. Let ν2, ν3, and ν4 are the 

natural depletion rate of algae, concentration of DO and fish population respectively. Predation rate of algae 

by fish is α2. It is assumed that the growth rate of fish population is proportional to the term [AF/ α4+C0-C]. 

Here α1 and α4 are assumed to be half saturation constants, C0 is the saturation value of DO and C0-C is 

oxygen deficit.
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3) The 3rd equilibrium point is given by E3(N*, A*, C*, 0), where 
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Thus E3 exists if these conditions are satisfied:  
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4. Stability Analysis 

In this section the stability behavior of each equilibrium point is discussed. The variational matrix Jiof  

The system“(1)–(4)” is given as follows : 
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4.1. Case 1: Stability of E1 (Q/ν1, 0, q/ν3, 0) 

Consider the following jacobian matrix J1corresponding to E1 
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Eigen values are 11   , 32   , ,43  and 
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Upon implementing Routh-Hurwitz criteria, all the eigen values of matrix J1 must be negative. It is 

observed that λ1, λ2, and λ3 are negative. Therefore, E1 will be stable only if λ4 is also negative and thus the 

following condition is obtained   ).0213232101321 qννQνβνννCαννν  (  

4.2. Case 2: Stability of E2 (N’, A’, C’, 0) 

Corresponding to the point E2, jacobian matrixJ2 is obtained. 
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Upon substituting the values of 'N  and 'C  we get 
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Characteristic equation corresponding to the above jacobian J2 is 
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The eigen values of “(5)”are given by the following equations 
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Upon applying Routh–Hurwitz criteria, it is found that all the eigenvalues with respect to E2 are negative. 

Therefore, the equilibrium point E2is locally asymptotically stable. 

4.3. Case 3: Stability of 






 *F,*C,*A,*NE3  
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Consider the Jacobian matrix J3 corresponding to the point E3 
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Therefore, one value of λ is λ1 = -ν3 which is negative. Now consider the following cubic equation 
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Upon implementing Routh-Hurwitz criteria it is shown that the coefficients of λ2, λ, and the constant term 

in the above cubic equation are positive and the product of coefficients of λ2 and λ is greater than the 

constant term. This shows that all the eigen values of jacobian J3 are negative and thus the equilibrium point 

E3 is asymptotically stable. The dynamic behavior of point E3is analyzed by using Liapunov’s direct method 

in the following theorem. 

5. Nonlinear Stability Analysis of E3 

Theorem: The equilibrium point E3 is nonlinearly stable if the following conditions are satisfied: 
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Proof: Let us consider the positive definite function 
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where n1 , n2 and n3 are positive constants, to be chosen appropriately. Let us consider the derivative 
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where 1 2 3 4( *), ( *), ( *), ( *)Y N N Y A A Y C C Y F F       
 

Upon substituting the values of dN/dt, dA/dt, dC/dt and dF/dt from the model “(1)–(4)” and then applying 

some algebraic manipulations by using the inequality x2+y2≥2xy, dV/dt is reduced into following inequality 
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Hence, the sufficient conditions for dV/dt to be negative definite are given by the following inequalities  
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Hence, V is a Liapunov’s function with respect to E3. 

6. Numerical Simulation 

The validity of the proposed model for verifying the results obtained by stability analysis is carried out. 

The following values for various parameters of the model are taken from the literature [16]. 

 

Q = 3, 1 0.5  , 2 0.35  , 1 0.1  , 2 0.009  , 3 3  , 4 0.01   

 

1 0.51  , 2 0.41  , 3 0.33  , 4 0.3  , 24q  , 0 30C   

 

The values obtained for E3 (N*, A*, C*, F*) are N*= 6.8191, A*= 0.6799, C* = 7.9994, and F* = 0.2367.
 

These points are further checked for the conditions of existence of equilibrium point E3. This gives 

 

4 3 0 3 66.9 0C q      ,  *

4 0 22.3 0C C     ,  * *

2 2 1 0 2.19491 0N C C       , and 
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 *

1 0 22.51 0C C      

 

It shows that the non negativity conditions are satisfied and thus E3 is nonlinear stable. 

7. Conclusion 

In this paper, a mathematical model is proposed and analyzed to understand the effect of the growth of 

algae population in aquatic body in the presence of nutrients and its impact on the survival of fish 

population. Three equilibrium points are identified and the criteria of their existence are obtained. By 

applying stability analysis, it is shown that all the feasible equilibrium points are locally asymptotically 

stable if they satisfy these conditions. The nonlinear stability behavior of the point E3is studied by applying 

Liapunov’s direct method. By numerical solution of the model, it is shown that E3 is a nonlinear stable for 

the considered values of parameters. This shows that the proposed model is valid and can effectively 

estimate the effect of depleting dissolved oxygen on the survival of fish population in aquatic body in the 

presence of nutrients. 

References 

[1] Streeter, M. W., & Phelps, E. E. (1925). A Study of Pollution and Natural Purification of the Ohio River (pp. 

146-150). U.S. Public Health Service Bill. 

[2] Dobbins, W. E. (1964). BOD and oxygen relationship in streams. J. San. Eng. Div., 53-78. 

[3] O’Conner, D. J. (1967). The temporal and spatial distribution of dissolved oxygen in steams. Water 

Resour .Res, 3, 65-79. 

[4] Misra, A. K. (2008). Mathematical modeling and analysis of the depletion of dissolved oxygen in water 

bodies. Nat. Acad. Sci. India. A, 78(iv), 331-340. 

[5] Freedman, H. I., & So, J. W. H. (1985). Global Stability and persistence of simple food chains. Math, 

Biosciences, 76, 69-86. 

[6] Gates, W. E., Marler, J. T., & Westfield. J. D. (1969). The application of bacterial process kinetics in stream 

simulation and stream analysis. Water Research, 3, 663-686. 

[7] Hale, J. K. (1969). Ordinary Differential Equations. Wiley Interscience, Newyark. 

[8] Jorgensen, S. E. (1988). Fundamental of Ecological Modeling. Elsevier Science Publisher. 

[9] Arnold, E. M., & Voss, D. A. (1981). Numerical behavior of zooplankton, phytoplankton and phosphorus 

system. Ecol. Modeling, 13, 183-193. 

[10] Gates, W. E., Marler, J. T., & Westfield, J. D. (1969). The application of bacterial process kinetics in stream 

simulation and stream analysis. Water Research, 3, 663-686. 

[11] Shukla, J. B., et al. (2001). Existence and survival of two competing species in a polluted environment. J. 

Biol. Syst., 9, 89-103. 

[12] Shukla, J. B., et al. (1996). Effect of changing habitant on survival of species. Ecol. Model., 87, 205-216. 

[13] Dhar, J., et al. (2010). Role of toxin producing phytoplankton on a plankton ecosystem. Nonlinear 

Analysis: Hybrid Systems, 4, 496-502. 

[14] Swati, K., et al. (2009). Effect of soil pollutant on the plant-herbivore interacting system incorporating 

nutrient cycling: A mathematical model. J. Scientific Research, 53, 163-174. 

[15] Edwards, A. M., et al. (1999). Zooplankton mortality and dynamical behavior of plankton population 

models. Bul. Math. Biol., 61, 303-339.        

[16] Swati, K., et al. (2013). Modelling effect of the depleting oxygen on the existence of interacting 

planktonic population. Elixir Appl. Math., 55, 12739-12742. 

 

International Journal of Applied Physics and Mathematics

15 Volume 6, Number 1, January 2016



  

Shikha Chaturvedi was born at Etawah (U.P.), India on July 12, 1981. She got the 

bachelor of science (B.Sc.) in mathematics, physics, chemistry from C.S.J.M. University, 

UP, India in 2000, and got the master of science (M.Sc.) in applied mathematics from 

Indian Institute of Technology, Kanpur, India in 2003. Now she is pursuing her Ph.D. 

degree in applied mathematics from Shri J.J.T., University, Rajasthan, India. 

She has 12 years of teaching experience in various Engineering Institutes. Currently 

she is working as an assistant professor in Fr. C. Rodrigues Institute of Technology, Navi Mumbai, 

Maharashtra, India. She has worked as a research associate in Indian Institute of Technology, Kanpur, India. 

She published some articles. 

Her area of research is mathematical modeling. Ms. Chaturvedi has got some professional awards and 

achievements. 

 

Prabha S. Rastogi was born at Lucknow (U.P.), India on October 21, 1954. She got the 

B.Sc., M.Sc., and PhD degrees in mathematics from Lucknow, UP, India in 1973, 1975, 

1985 respectively. 

She has 31 years of teaching experience as Professor in Bhavans College, Andheri, 

Mumbai, India. Currently she is associated with Shri JJT University, Rajasthan, India. 

Dr Prabha has given her valuable guidance to many research scholars. She is on 

editorial board of research journal Research Dimensions and core committee member of 

registered International Research society Prerna Society of Technical Education and Research, New Delhi. 

She is also associated with Reliable Publications (educational publishers). 

 

 

 

 
 
 

International Journal of Applied Physics and Mathematics

16 Volume 6, Number 1, January 2016




