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Abstract: A collocation method based on quintic B-spline is presented for the numerical solution of Abel's
integral equation. The solution is collocated by quintic B-spline and then the integral equation is
approximated by the product trapezoidal formula. The error analysis of proposed numerical scheme is
studied theoretically. The presented method is tested with two examples and numerical results are given to
illustrate the efficiency of the proposed method.
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1. Introduction

We consider the integral equation of the Abel type

[1 =" ket yde=f @), te[oT], (1)

where0 < z<land k andf are given functions and y is unknown function. Equations of this type arise in

the polymer physics, atmospheric physics and many other fields see [1]-[3], thus application of numerical
methods for solving this equations are attractive. To solve the Abel’s integral equation, several numerical
approaches have been proposed, such as the discrete super convergence properties of spline collocation [4],
[5], the iterative algorithms [6], the standard numerical integration rules with one or more starting values
[7], the Adomian Decomposition and Product Integration Methods [8], the Homotopy analysis method [9],
the fractional calculus [10]-[12], the Bernstein polynomials [13], two different numerical methods with
comparison [14], the Superconvergent Nystrom and degenerate kernel methods [15], the variational
iteration method [16], the Analytical-Approximate solution [17], the Chebyshev polynomials [18], [19], the
Haar wavelet method [20], the double integral transform [21], the exact multiplicity of positive solutions of
the singular semilinear equation with Dirichlet boundary condition [22]. In this paper we propose a
product integration to approximate the Volterra integral equation and quintic B-spline collocation to
approximate the unknown function.

2. Quintic B-Spline Collocation Method

We introduce the quintic B-spline space and basis functions to construct an interpolants to be used in

formulation of quintic B-spline collocation method. Let A :{a=t,<t, <---<t, =b} beauniform partition
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of the interval [a,b] with step size h:b;a. The quintic B-spline space denote by
n

S.(A,)= {s cC4 [a,b];s |[[i M]eps,i =0,1,---,n _1}, where P, is the class of quintic polynomials. The

construction of the quintic B-spline interpolate s to the analytical solution y for (1) can be performed

with the help of the ten additional knots such thatt , <t , <t , <t , <t and t , <t <t .<t , <t ..
Following [23], [24] we can define the B-spline functions
1 if t<t<t,
Bio (t) — i . i+1
0  otherwise
t—t t t @
B (t) = [ i ] B () + [k—l_J BM(t), k=1,
G = G — b
We consider a quintic B-spline s (t) of the form
n+2 5
s(t) = > cB(t), 3)
i=—2
where
(t _ti-s)sa if teltst,)
(t=t5)°" —6(t-t.,)", if teft .t )
(t—t.4)° —6(t—t,)° +15(t-t,)", if teft 1)
BE(O) = o ()" ~6(t - ,) +15(—1.,)" ~20(t -1 ), i tel b
(t—t5)° =6(t—t_,)° +15(t -t ,)° —20(t —t)° +15(t ~t,,,)°, if teft. )
(t _ti—3)5 - G(t _ti—2)5 +15(t _ti—l)s) - 20(t _ti)5 +15(t _ti+1)5 - 6(t _ti+z)5’ if te [ti+2 J ti+3)
0 t<t , t. <t
(4)

satisfying the following interpolatory conditions s(t;)=y(t,;), 0<i <n, and the end conditions

(i) D's(t,)=D'y(t), D's(t,) =D’y(t,), i=12, or
(i) DIs(t,)=D’s(t ), j=12,3,4, or (5)
(iii) D’s(t,)=0, D’s(t)=0, j=3,4.

3. The Product Trapezoidal Method for Abel Equation

The solution of equation (1) can be replaced with quintic B-spline equation we obtain:

f(t) = jOT (t—x)k(t,x)s(x)dx, te[0,T], 6)
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. T .
We now collocate Eq.(6) at collocation points t; =ih,h =—,
n

F(R) =} (6 %)k, 0)s(9dx, 7)

the next step is the product trapezoidal method which isconstructed by approximating k (t,x)s(x) by

piecewise linear functions [7], in particular

X-t t,,—X
k(1 X)8() — - K(t.t,.)5(.0) + K(t,t))s(t,), xelt;t,..], 8)
this leads to the integration formula
: i-1
Jy =0 K (5 XSO0 K ()5 (6) + 3 K L)S) F Wk (.05 (9)
J:
When
_1 E _?ld
Wo =3, (L= )7 dx
1, ¢ta _?1 15 _71
Wy = ([ a6 =0 T dxH ] (-t (6 =) 7 o), (10)

_1 b %d
W =] (-t =307 dx

To approximate the integral Eq.(7), we can use the product trapezoidal rule (9), we get the following
nx(n+5) nonlinear system

f(t) :Wiyok(ti,to)s(to)+iiwi'jk(t.,tj)s(tj)+wiyik(ti,ti)s(ti), 1<i<n, (11)

We impose the end conditions (5) but we can obtain a system of (n +4) x (n +5), this method requires a

starting value s(0). One possible way to get this is to consider (1) in the limit as t approaches zero.
Following [7],if f(t) iscontinuousin O0<t<t

and

Limt“ f (t) = C, (12)

t—0

where C#0 and «a < u,then (1) has the solution
0 if u—a>1,

s(0) = cr'(l-a) TR (13)
T- k00 '
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Hence by associate equations (5) and (11) with (13) we have the following linear system
(n+5)x(n +5),

crl-a) : B _ .
F(l—,u)—k(O,O)_O’ jz_;vvi’l'k(t"t')s(t") f(t)=0, 1<i<n, (14

D's(t,)=0, D’s(t,)=0, j=34,

s(0)-

by solving the above linear system via iterative method we determine the coefficients c,,i =-2,...,n+2by

setting c, in (3), we obtain the approximate solution for Eq.(1).

4. Error Analysiss

We analyze convergence theorem for the Abel equation. To obtain the error estimation of our
approximation first, we recall the following definitions and theorem in [7], [25], [26].

Definition1. Let y be the solution of the Abel equation (1), approximated by the product trapezoidal

method then the function

() = [} PG 9K (G Y00 X w k(G 1Y), 15)

(where p(t,,x)=(t, —x)™*) is the local consistency error of the method.

Definition2. Let F be a class of equations of the form (1). If for every equation in F

Limmax(|E(h,t,)) =0, (16)

h—0 0<i<n

then the approximation method (11) is said to be consistent with (1) for the class of equations F .
If for every equation in F , there exists a constant m such that

max(|E(h,t;)]) <mh?, (17)

0<i<n

then the method is said to be consistent of orderq in F .

Theorem 1. Let s(t)be the quintic B-spline interpolate for a given functiony eC*°[a,b]. Then for

uniform partitions we have for i =0,...,n,

h* h* h? h*

i i 6 " " 6 6 m m 7 6 (i mr 6 8 6

s =Yy +o(h”),s'=Yy; +720 Y +o(h°),s"=y, " 540 v +o(h),s"= Y] _EYi( '+ 240 ¥ +o(h°).
Furthermore the following interpolating error estimates hold

s =y)?| =o(h®), for j=0,1,2,3,4.

Proof. See [26].
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Theorem 2. Assume that there exist constants d,,d,,d,and (, such that for all h>0,

max

I<i<n

K(t,t,) —K(t . t)| <dh, 0<j<i-1, (18)

rlr<1_a<1x|E(h,ti)— E(ht_)|<d,h?, (19)
max k(t,,t ,)[>d,. (20)
<i<n I—E

Proof. Condition (18) hold ifk (t,X)is differentiable with respect tot,while (20) follows from the
assumption that K (t,t) is bounded away from zero. To determine (19) see [7].

Theorem 3. The approximate method (11) applied to the Abel integral equation (1) is convergence if

d,h & d,h
|ei|£#2‘e,—‘+ prt (21)
d3 i=0 Wd3
where €; =S, —Y;, j=0,...,i and @g)r]( Wi'j‘ZW #0.
proof. Now we consider the convergence analysis of the Abel equation (1)
t
J.O p(t, X)k(t,x)y(x)dx = f (t), te[0,T]. (22)

. T . —
We suppose that at X =t =t, =t,+ih,i =0,...,n,h =— the corresponding approximation method
n

for Abel integral equation (22) is

_iZWi‘jk(ti,tj)S(tj): f(t), i=L...n (23)

By discretizing (22) and approximate the integrand by the product trapezoidal rule, then we can obtain

[ P60k Y000~ () = X w k(6 8,)y(E,)— T 1)+ Eh,t) =0 (24)

after simplification we have

> w, Kt t)y(E) = F ()~ ECht) (25)

where
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E () =[!G OK @ X0y G0 =Y w K 8y ),

Subtracting (25) from (23) we get

2w k(1) e =E(ht), (26)
i—0
where €; =s(tj)—y(tj),j =0,...,i. Nowbyreplacing I by I —1 in(26) we have
i1
D Wkt ty) e =E(ht). (27)
=0

Now subtracting (27) from (26) we get

i i1
oWkt t)e; = > wiy k(tt)e; =E(h ) —E(ht), (28)
=0 =0

then we get

i1
\Ni,ik(ti'ti)ei _Z[Wi,jk(ti’tj)_Wi—l,jk(ti—lltj)]ej = E(h’ti)_ E(h’ti—l)’ (29)
=0
i-1
= [k (6] &)< D0 k(1) —w k()| | |+ Eh t ) —Eh,t)]- (30)
=0

We know that maxw, ; ‘ =W =0, for fixed | we get

0<i<n

i—-1
WG4 o< SW KK )+ EG) )] @
i=0

i1
by using Theorem (2) we get Wd3|ei | SWdlhIZ‘ej Hdzhq :>|e.
=0

When h — Qthen the above first and second terms are zero and also the first term in the above tends to

zero because this term is due to interpolating of Y (t) by quintic B-spline (see Theorem(1)).

We get for a fixed i,|ei|—>0as h —0.

5. Numerical Examples

We test our presented method on two examples to examine the applicability and efficiency of our method,
all the programs run by Mathematica.
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Table 1. The Errors ||E|| in Solution of Example 1 at Particular Points

X —a__ 20 50 100 150
01 3.67(-05) 6.02(-06) 1.53(-06) 6.87(-07)%
0.2 5.15(-05) 8.40(-06) 2.12(-06) 9.49(-07)
0.3 5.58(-05) 9.05(-06) 2.28(-06) 1.02(-06)
0.4 5.53(-05) 8.93(-06) 2.25(-06) 1.00(-06)
0.5 5.26(-05) 8.48(-06) 2.13(-06) 9.48(-07)
0.6 4.91(-05) 7.91(-06) 1.98(-06) 8.82(-07)
0.7 4.55(-05) 7.31(-06) 1.83(-06) 8.14(-07)
0.8 419(-05) 6.73(-06) 1.68(-06) 7.49(-07)
0.9 3.86(-05) 6.19(-06) 1.55(-06) 6.89(-07)
1 3.56(-05) 5.70(-06) 1.43(-06) 6.34(-07)

*6.87(-07) = 6.87x107".

Table 2. The Errors ||E|| in Solution of Example 2 at Particular Points

X T—a__ 20 50 100 150
0.1 312(-04)  575(-05) 145(-:05)  651(-06)
0.2 323(-04)  533(-05) 135(-05)  6.03(-06)
03 3.04(-04)  4.96(-05) 126(-05)  559(-06)
0.4 284(-04)  4.63(-05) 117(-05)  520(-06)
05 267(-04)  433(-05) 109(-05)  486(-06)
0.6 251(-04)  4.07(-05) 102(-05)  457(-06)
0.7 237(-04)  3.84(-05)  9.65(-05)  430(-06)
0.8 224(-04)  3.63(05)  913(-05)  4.07(-06)
0.9 213(-04)  344(05)  865(-05)  3.86(-06)
1 202(-04)  327(-05)  823(-05)  3.66(-06)

. . o . 1
Example 1. Consider the following Abel equation with exact solution Y (t) =—,

-1
We must obtain value S(0) of (13) when ? =a<pU=—as

-1

i 2
i (g

1
2

1+t

2o ( [+ 24 = [ EEEEOYO)
mtanh ( t+l)+2\/f IO N dx, t €[0,1].

tanh-l(/ D=2 = u-a-1=50)- 2ld5)

I(0.5)

Example 2. Consider the following Abel equation with exact solution Y (t) =t,

165 43

i (1+x)y(x>:l

t €[0,1].

1
We must obtain value S(0) of (13) when—1.5=a < u= > as

5
I|mt 2 (—6t2 +4

249

3t5) 1.33333 = y—a>1=s(0)=0.
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Now we apply the system of (14) and we solve these examples with n =20,50,100,150 the absolute

errors in particular points are tabulated in Table 1 and Table 2.

6. Conclusion

This paper presents method to find the solution of the Abel's integral equation by using the product
trapezoidal method and collocation quintic B-spline. The equation is converted to a system of linear
algebraic equation in terms of the linear combination coefficients appearing in the representation of the
solution in spline basic function. We verified that the presented method can be applied with large number
of N. The presented method is stable because when n is increasing the error in the solution is also

decreasing.
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