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Abstract: A collocation method based on quintic B-spline is presented for the numerical solution of Abel's 

integral equation. The solution is collocated by quintic B-spline and then the integral equation is 

approximated by the product trapezoidal formula. The error analysis of proposed numerical scheme is 

studied theoretically. The presented method is tested with two examples and numerical results are given to 

illustrate the efficiency of the proposed method. 
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1. Introduction 

We consider the integral equation of the Abel type 
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where 0 1  and k and f are given functions and y is unknown function. Equations of this type arise in 

the polymer physics, atmospheric physics and many other fields see [1]-[3], thus application of numerical 

methods for solving this equations are attractive. To solve the Abel’s integral equation, several numerical 

approaches have been proposed, such as the discrete super convergence properties of spline collocation [4], 

[5], the iterative algorithms [6], the standard numerical integration rules with one or more starting values 

[7], the Adomian Decomposition and Product Integration Methods [8], the Homotopy analysis method [9], 

the fractional calculus [10]-[12], the Bernstein polynomials [13], two different numerical methods with 

comparison [14], the Superconvergent Nyström and degenerate kernel methods [15], the variational 

iteration method [16], the Analytical-Approximate solution [17], the Chebyshev polynomials [18], [19], the 

Haar wavelet method [20], the double integral transform [21], the exact multiplicity of positive solutions of 

the singular semilinear equation with Dirichlet boundary condition [22]. In this paper we propose a 

product integration to approximate the Volterra integral equation and quintic B-spline collocation to 

approximate the unknown function. 

2. Quintic B-Spline Collocation Method 

We introduce the quintic B-spline space and basis functions to construct an interpolants to be used in 

formulation of quintic B-spline collocation method. Let  0 1:n na t t t b     
 

be a uniform partition 
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of the interval  ,a b with step size .
b a

h
n


 The quintic B-spline space denote by 
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      where 
5 is the class of quintic polynomials. The 

construction of the quintic B-spline interpolate s  to the analytical solution y  for (1) can be performed 

with the help of the ten additional knots such that
5 4 3 2 1 1 2 3 4 5.n n n n nt t t t t and t t t t t                  

Following [23], [24] we can define the B-spline functions 
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We consider a quintic B-spline ( )s t of the form 
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where 
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(4) 
 

satisfying the following interpolatory conditions ( ) ( ), 0 ,i is t y t i n    
and the end conditions 
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3. The Product Trapezoidal Method for Abel Equation  

The solution of equation (1) can be replaced with quintic B-spline equation we obtain:  
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We now collocate Eq.(6) at collocation points , , 0, ,i

T
t ih h i n

n
   

 
as 

 

0
( ) ( ) ( , ) ( ) ,

it

i i if t t x k t x s x dx                              (7) 

 
the next step is the product trapezoidal method which isconstructed by approximating ( , ) ( )k t x s x  by 

piecewise linear functions [7], in particular 
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this leads to the integration formula 
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To approximate the integral Eq.(7), we can use the product trapezoidal rule (9), we get the following 

( 5)n n   nonlinear system 
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We impose the end conditions (5) but we can obtain a system of ( 4) ( 5)n n   , this method requires a 

starting value (0)s . One possible way to get this is to consider (1) in the limit as t approaches zero. 

Following [7], if ( )f t  is continuous in 0 it t   

and 
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where 0C   and   , then (1) has the solution 
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Hence by associate equations (5) and (11) with (13) we have the following linear system 

( 5) ( 5),n n    
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          (14) 

 
by solving the above linear system via iterative method we determine the coefficients , 2, , 2ic i n   by 

setting 
ic in (3), we obtain the approximate solution for Eq.(1). 

4. Error Analysiss 

We analyze convergence theorem for the Abel equation. To obtain the error estimation of our 

approximation first, we recall the following definitions and theorem in [7], [25], [26]. 

Definition1. Let y  be the solution of the Abel equation (1), approximated by the product trapezoidal 

method then the function 
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(where ( , ) ( )i ip t x t x   ) is the local consistency error of the method. 

Definition2. Let F be a class of equations of the form (1). If for every equation in ,F  
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then the approximation method (11) is said to be consistent with (1) for the class of equations F . 

If for every equation in F , there exists a constant m  such that 
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then the method is said to be consistent of orderq  in F . 

Theorem 1.  Let ( )s t be the quintic B-spline interpolate for a given function 10[ , ]y C a b . Then for 

uniform partitions we have for 0, , ,i n   
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Furthermore the following interpolating error estimates hold 

( ) 6( ) ( ), 0,1,2,3,4.j js y h for j 


    

Proof. See [26]. 
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Theorem 2. Assume that there exist constants 
1 2 3, ,d d d and q , such that for all 0h  , 
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Proof. Condition (18) hold if ( , )k t x is differentiable with respect to ,t while (20) follows from the 

assumption that ( , )k t t  is bounded away from zero. To determine (19) see [7]. 

Theorem 3. The approximate method (11) applied to the Abel integral equation (1) is convergence if 
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where , 0, ,j j je s y j i     and 
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proof. Now we consider the convergence analysis of the Abel equation (1) 
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By discretizing (22) and approximate the integrand by the product trapezoidal rule, then we can obtain 
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after simplification we have 
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Subtracting (25) from (23) we get 
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where ( ) ( ), 0, , .j j je s t y t j i    Now by replacing i  by 1i   in (26) we have 
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Now subtracting (27) from (26) we get 
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then we get 
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We know that ,
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by using Theorem (2) we get 
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When 0h  then the above first and second terms are zero and also the first term in the above tends to 

zero because this term is due to interpolating of ( )y t by quintic B-spline (see Theorem(1)).  

We get for a fixed ,i 0 0.ie as h   

5. Numerical Examples 

We test our presented method on two examples to examine the applicability and efficiency of our method, 

all the programs run by Mathematica. 
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Table 1. The Errors E  in Solution of Example 1 at Particular Points 

x       n  20 50 100 150 

0.1 3.67(-05) 6.02(-06) 1.53(-06) 6.87(-07)* 

0.2 5.15(-05) 8.40(-06) 2.12(-06) 9.49(-07) 

0.3 5.58(-05) 9.05(-06) 2.28(-06) 1.02(-06) 

0.4 5.53(-05) 8.93(-06) 2.25(-06) 1.00(-06) 

0.5 5.26(-05) 8.48(-06) 2.13(-06) 9.48(-07) 

0.6 4.91(-05) 7.91(-06) 1.98(-06) 8.82(-07) 

0.7 4.55(-05) 7.31(-06) 1.83(-06) 8.14(-07) 

0.8 4.19(-05) 6.73(-06) 1.68(-06) 7.49(-07) 

0.9 3.86(-05) 6.19(-06) 1.55(-06) 6.89(-07) 

1 3.56(-05) 5.70(-06) 1.43(-06) 6.34(-07) 

*6.87(-07) = 6.87×10−7. 

 

Table 2. The Errors E  in Solution of Example 2 at Particular Points 

x       n  20 50 100 150 

0.1 3.12(-04) 5.75(-05) 1.45(-05) 6.51(-06) 

0.2 3.23(-04) 5.33(-05) 1.35(-05) 6.03(-06) 

0.3 3.04(-04) 4.96(-05) 1.26(-05) 5.59(-06) 

0.4 2.84(-04) 4.63(-05) 1.17(-05) 5.20(-06) 

0.5 2.67(-04) 4.33(-05) 1.09(-05) 4.86(-06) 

0.6 2.51(-04) 4.07(-05) 1.02(-05) 4.57(-06) 

0.7 2.37(-04) 3.84(-05) 9.65(-05) 4.30(-06) 

0.8 2.24(-04) 3.63(-05) 9.13(-05) 4.07(-06) 

0.9 2.13(-04) 3.44(-05) 8.65(-05) 3.86(-06) 

1 2.02(-04) 3.27(-05) 8.23(-05) 3.66(-06) 

 

Example 1. Consider the following Abel equation with exact solution 
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Example 2. Consider the following Abel equation with exact solution ( ) ,y t t  
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Now we apply the system of (14) and we solve these examples with 20,50,100,150n   the absolute 

errors in particular points are tabulated in Table 1 and Table 2. 

6. Conclusion 

This paper presents method to find the solution of the Abel's integral equation by using the product 

trapezoidal method and collocation quintic B-spline. The equation is converted to a system of linear 

algebraic equation in terms of the linear combination coefficients appearing in the representation of the 

solution in spline basic function. We verified that the presented method can be applied with large number 

of .n  The presented method is stable because when n is increasing the error in the solution is also 

decreasing. 
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