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Abstract: Development of electronic devices, where the secondary electron emission is used to amplify 

input signals, requires simulation of complicated stochastic processes. The essence of the method proposed 

here consists of separating the amplification process into serial and parallel stages. The mean and variance 

of the amplitude distribution at the output of the entire system are obtained using the mean and variance of 

each stage. Theorems about serial amplification stages and parallel amplification paths constitute the key 

part of the method with partial Monte Carlo simulation for one simple stage. Here, the method is used to 

investigate the effect of the contact conducting layer on the gain and the noise factor of the channel 

amplifier. The case of image converters and intensifiers with an inverting electron-optical system and 

microchannel plate as an amplifier is taken for the consideration. 
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1. Introduction 

Amplification by secondary electron emission has many advantages and makes it possible to detect even 

single photons. If electrons or other particles strike the solid surface, secondary electrons are emitted from 

it whose number can be much higher than the number of primary particles. According to the form, in which 

the successive amplification of current is being obtained, we can distinguish photomultipliers and channel 

multipliers.  

The principle of a photomultiplier is shown in Fig. 1. Electrons emitted from the photocathode are 

focused by the input focusing system and reach the first dynode. The material of the dynode has a 

secondary emission yield (SEY) σ > 1, so that the number of electrons starting from the first dynode is σ 

times greater. These electrons are focused to the next dynode, and the process is repeated so that the 

number of electrons rises as an avalanche. 

Channel multipliers have similar to the photomultipliers principals of multiplication but have no discrete 

multiplication stages (Fig. 2). The whole multiplier consists of cylindrical dynode having a small diameter. 

The accelerating voltage is applied to the ends of this cylinder. If the inner surface has SEY σ > 1, the 

electron escaping from the surface at the entrance of the channel will provoke an avalanche developing in 

the direction towards the end of the channel. Channel multipliers are developed as single devices (channel 

trons) and as microchannel plates (MCP), which is an array of single parallel channels (Fig. 2). They are 

widely used for the detection and amplification of electrons, ions and neutrons, as well as UV and X-ray 
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photons. They are very attractive for use in particle physics, astronomy, in medical X-ray imaging, image 

converters and intensifiers etc. 

 

 
Fig. 1. Photomultiplier. 

 

 
Fig. 2. Channel amplifier and MCP. 

 

Both types of amplifiers cause an increase of noise and therefore a deterioration of the signal-to-noise 

ratio. Despite a number of remarkable properties, poor noise characteristics are the main drawback of 

systems with channel amplification. Particularly, MCP is the main noise source of low-level light image 

converters and intensifiers. 

Development of such devices require simulation of complicated stochastic processes of the secondary 

electron emission. It is usually done by the use of Monte Carlo (MC) methods [1]-[6]. However, the direct 

simulation of the entire amplification process by the MC methods requires considerable computer time. 

Optimization of a device’s parameters in terms of gain, noise and quality of image makes the simulation 

especially difficult or even impossible. Moreover, it is difficult to evaluate a contribution of different 

system's parameters to the entire amplification process, and their effect on output characteristics. 

The essence of the method proposed here consists of separating the amplification process into serial and 

parallel stages. The mean and variance of the amplitude distribution at the output of the entire system are 

obtained using the mean and variance of each stage. Theorems about serial amplification stages and 

parallel amplification paths [7] constitute the key part of the method. Combination of the theorems and MC 

simulations, which are used once for one simple stage, enables one to conduct complicated investigations 

and optimizations. The method preserves all advantages of the MC simulations: represents real physical 

processes fully and adequately, and uses experimental characteristics completely in the model. Moreover, 

splitting a stochastic process into a number of different stages, allows a contribution of each stage to the 

entire process to be easily investigated. The method provides high calculation accuracy with minimum 

expenditures of the computer time. 

Here, the method is used to investigate the effect of the contact conducting layer on the gain and the noise 

factor of the channel amplifier. The case of image converters and intensifiers with an inverting 

electron-optical system (EOS) and MCP as an amplifier is taken for consideration.  

2. The Theorems 
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2.1. Theorem about Serial Amplification Stages 

The mean and variance of the entire multiplication process can be calculated using the mean and 

variance of the separate sequential stages. Let 𝑝𝑘 𝜈  be the probability distribution of the number of 

particles at the output of the k-th stage, produced by one particle at its input. Let  𝑚𝑘  be the mean and 𝑑𝑘  

be the variance of the 𝑝𝑘 𝜈 . Then the generating function of the probability distribution 𝑝𝑘 𝜈  is 

 

𝑞𝑘 𝑢 =  𝑢𝜈𝑝𝑘 𝜈   ,∞
𝜈=0  where |u| ≤ 1. 

 

Based on the approach used in[8] we can construct the generating function for the probability 

distribution of the number of particles after the last (N-th) stage: 

 

𝑸𝑵 𝒖 = 𝒒𝟎  𝒒𝟏  𝒒𝟐 … 𝒒𝑵 𝒖  …                               (1) 

 
To find the mean M, and variance D of the amplitude distribution 𝑃𝑁(𝜈) after the N-th stage, we convert 

the expressions (1) to the logarithmic generating functions, introducing new variables: 

 

𝒗 = 𝒍𝒏𝒖 𝒉𝒌 𝒗 = 𝒍𝒏 𝒆𝒗𝝂𝒑𝒌 𝝂 
∞
𝝂=𝟎  𝑯𝑵 𝒗 = 𝒍𝒏 𝒆𝒗𝝂𝑷 𝝂 ∞

𝝂=𝟎  

 

Then the expressions (1) can be written as 𝐻𝑁 𝑣 = ℎ0 ℎ1(ℎ2(… (ℎ𝑁 𝑣 )… )) , where 𝐻𝑁 𝑣  is the 

logarithmic generating function of the distribution 𝑃𝑁(𝜈);ℎ𝑘 𝑣  is the logarithmic generating function of 

the distribution 𝑝𝑘(𝜈). 

Differentiating 𝐻𝑁 𝑣  with respect to 𝒗 once and using the propertiesof the logarithmic generating 

functions, with 𝒗=0 we obtain the mean value of 𝑃𝑁 𝜈 : 

 

𝑴 = 𝒎𝟎𝒎𝟏…𝒎𝒌…𝒎𝑵 =  𝒎𝒌
𝑵
𝒌=𝟎                                (2) 

 

Differentiating 𝐻𝑁 𝑣  with respect to 𝒗 twice, with 𝒗=0 we obtain the variance D after the N-th stage of 

this multistep sequential process. 

 

𝑫 = 𝒅𝟎(𝒎𝟏𝒎𝟐…𝒎𝑵)𝟐+ 𝒅𝟏 𝒎𝟎(𝒎𝟐𝒎𝟑…𝒎𝑵)𝟐+ 𝒅𝟐 𝒎𝟎𝒎𝟏(𝒎𝟑𝒎𝟒…𝒎𝑵)𝟐

+ ⋯+ 𝒅𝒌 𝒎𝟎𝒎𝟏…𝒎𝒌−𝟏 𝒎𝒌+𝟏𝒎𝒌+𝟐…𝒎𝑵 
𝟐 +  𝒅𝑵 𝒎𝟎𝒎𝟏…𝒎𝑵−𝟏 

 

or: 

 

𝑫 =  𝒅𝒌
𝑵
𝒌=𝟎  𝒎𝒊

𝒌−𝟏
𝒊=𝟎  𝒎𝒋

𝟐𝑵
𝒋=𝒌+𝟏                               (3) 

 

The expressions (2) and (3)constitute the theorem of serial amplification stages [7]. 

2.2. Theorem of Parallel Amplification Paths 

The mean and variance of the amplitude distribution at the output of the system with some parallel 

amplification paths can be calculated using the mean and variance of each path. Let the primary particle be 

multiplied along one of n possible parallel paths, and 𝜌𝑘  be the probability of choosing the k-th path. If 

each path gives an average of 𝑔𝑘  particles at the output with a variance of 𝑣𝑘 , then the mean G and the 

variance V of this multiplication process can be obtained. 
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Let 𝜑𝑘(𝜈) be the probability distribution of the numberof particles 𝜈 at the output of the k-th path 

produced by one particle at its input. Then the probability distribution 𝛷 𝜈  of the number of particles at 

the output of the entiresystem of n parallel paths will be 𝛷 𝜈 =  𝜌𝑘𝜑𝑘(𝜈)𝑛
𝑘=1 . Then the mean G is: 

 

𝑮 =  𝜱 𝝂 𝝂 =  𝝆𝒌 𝝋𝒌 𝝂 𝝂 =  𝝆𝒌𝒈𝒌
𝒏
𝒌=𝟏

∞
𝝂=𝟎

𝒏
𝒌=𝟏

∞
𝝂=𝟎                    (4) 

 
The variance V of the distribution at the output of the system can be written as 

 

𝑽 =  𝜱 𝝂 𝝂𝟐 −∞
𝝂=𝟎   𝜱(𝝂)𝝂∞

𝝂=𝟎  𝟐, 

 
where the first sum can be transformed to  

 

 𝚽 𝝂 𝝂𝟐 =  𝝆𝒌𝒗𝒌 +  𝝆𝒌𝒈𝒌
𝟐

𝒏

𝒌=𝟏

𝒏

𝒌=𝟏

∞

𝝂=𝟎

 

 
Taking into account that   Φ(𝜈)𝜈∞

𝜈=0  2 = 𝐺2the final expression is: 

 

𝑉 =  𝜌𝑘𝜈𝑘
𝑛
𝑘=1 +  𝜌𝑘𝑔𝑘

𝟐𝑛
𝑘=1 − 𝐺2,                             (5) 

 
where G is determined by (4). Equations (4) and (5) constitute the theorem of parallel amplification paths 

[7] and can be used for discrete and for continuous systems, where sums should be replaced by integrals. 

3. Electron Multiplication in Channel Amplifier 

3.1. Physical Picture 

The theorems above with combination of partial MC simulation enable one to optimize the channel 

amplifier in terms of the noise factor, which is a measure of the loss of available information. Particularly, 

the effect of the contact conducting layer on the noise factor is under investigation. The following real 

physical picture is considered in the modeling. Electrons of a primary parallel monochromatic beam hit the 

walls of the channel at different incidence coordinates and angles (Fig. 3). Different incident angles increase 

the divergence of SEY after the first collision of the primary electrons. Due to the spread of the incident 

coordinates, the lengths of the channel, along which the multiplication of primary electrons occur, are 

different.  

After the first collision each primary electron produces secondary electrons with different emission 

energy and directions. The secondary electrons are multiplied until they leave the channel. When all 

electrons have emerged from the channel, the yield of the individual pulse is known.  

 

 
Fig. 3. Input of the primary electron beam.  
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The gain of individual pulses is fluctuated considerably, and the pulse amplitude distribution changes 

from Poisson distribution at the beginning of the channel to a negative exponential form at its output. The 

length of the channel, where the amplitude distribution changes and stabilizes, is determined in [7] and 

called "the effective channel length". The mean gain and the variance of the amplitude distribution at the 

output of a system define the noise factor of an amplifier, which is greater for the negative exponential 

distribution than for the peaked one.  

In this work the case of image converters and intensifiers with an inverting EOS and MCP as an amplifier 

is taken for consideration. The MCP is placed behind the anode diaphragm close to the screen [9]. To 

accelerate the secondary electrons toward the exit of the channel, the voltage is applied by depositing a 

contact conducting layer at its ends. The electrostatic field of the EOS, the field inside the channel and 

contact conducting layer create a nonuniform electrostatic field at the entrance of the channel. Since there is 

no potential drop along the conducting layer, the conditions for the movement of secondary electrons in this 

region are different from motion of electrons in a uniform field inside the channel. 

Existing models, based only on full MC simulations, neglect the effect of the nonuniform field and the 

spread in incident coordinates of the primary electron beam, but all these factors are taken into account in 

the computational model, proposed here.  

3.2. Computational Model 

A computational model for simulation of stochastic processes of an electron multiplication in channel 

amplifiers is based on 3D MC simulations, and theorems about serial amplification stages and parallel 

amplification paths. The entire multiplication process in the channel amplifier is split into a number of 

sequential stages and parallel multiplication paths. Multiplication of a single electron, emitted at the 

beginning of the channel, is considered as a separate stage. It is simulated by 3D MC methods in the 

homogeneous field along the "effective channel length" which is equal half of the channel [7]. The functions 

g(z), the mean, and d(z), the variance (z is the coordinate directed along the channel axis and measured 

from its beginning), are calculated for 0 ≤ z ≤ L/2, where L is the coordinate of the end of the channel. 

The process of MC simulations uses a random number generating procedure [4], [7] to sample the 

various distributions such as: the distribution of the actual yield of secondaries after each collision, the 

emission energy, and the direction of each secondary electron. 

For n electrons, leaving the first half of the channel, the incidence coordinates 𝜉𝑘  > 𝐿/2  and SEY 𝜍𝑘   

are determined. The amplification in the second half of the channel is considered to consist of n parallel 

paths. Each path has two sequential stages: first collision and multiplication of a single electron until it 

leaves the channel. The functions g(z) and d(z) along the entire channel length (0 ≤ z ≤ L) are calculated 

using expressions (2)-(5).The functions g(z) and d(z),and the theorems allow us to conduct further 

investigations and optimizations without any additional MC simulations, what significantly reduces the cost 

of computations, and provides highly accurate results. 

The part of the channel with nonuniform field is considered as a separate stage. If the initial conditions of 

the collision of the primary electrons with the channel walls are changed (incident angle or energy, length 

of the conducting layer or a high-efficiency emitter etc.), MC simulations are conducted only in the region of 

nonuniform electrostatic field. Then functions g(z) and d(z) are used to find the mean and variance of the 

distribution at the output of the channel, using the theorems. The nonuniform field at the entrance of the 

channel is calculated by solving the Laplace's partial differential equation in cylindrical coordinate system. 

The trajectories of the electrons in the nonuniform field are calculated by the Runge-Kutta method.  

Fig. 4 shows the nonuniform field at the entrance of the channel. Computational results have been 

obtained for the channel diameter d=10 µm, the voltage on the channel U=800 V, and the sputtering depth 

of the contact layer at the channel input h=0.5d. 
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Fig. 4. Nonuniform field at the entrance of the channel. 

 

The portion of the channel from an elementary area at its input, where the collision occurred, to the 

output of the channel (Fig. 3) can be considered as the amplification path when the spread in incidence 

coordinates of the input electrons was taken into account [10]. In such case, the variance D and the average 

gain G at the output of the multiplier can be defined using (4) and (5), where the sums should be replaced 

by integrals over the surface of the channels, bombarded by the electrons of the primary beam: 

 

𝐺 =  𝜓 𝑠 𝑔 𝑠 𝑑𝑠
𝑠

, 𝐷 =  𝜓
𝑠

 𝑠 𝑑 𝑠 𝑑𝑠 +  𝜓 𝑠 𝑔2 𝑠 𝑑𝑠 − 𝐺2
𝑠

, 

 

where ψ is the probability density for the particle to strike the elementary surface ds; g(s) is the average 

number of particles with variance d(s) at the output of the path. 

Using the theorems, finally we obtain [10]: 

 

𝐺 =
2

𝜋𝑅
𝑐𝑜𝑡𝜃  𝜍(𝜑,𝑉,𝜃)

𝜋/2

0
𝑐𝑜𝑠𝜑𝑑𝜑 𝑔  𝑧,𝐿 𝑑𝑧

2𝑅𝑡𝑎𝑛𝜃𝑐𝑜𝑠𝜑

0
                   (6) 

 

𝐷 =      
2

𝜋𝑅
𝑐𝑜𝑡𝜃 𝜍 𝜑,𝑉,𝜃 

𝜋

2

0

𝑐𝑜𝑠𝜑𝑑𝜑 [𝑔2 𝑧, 𝐿 + 𝑑(𝑧, 𝐿])𝑑𝑧
2𝑅𝑡𝑎𝑛𝜃𝑐𝑜𝑠𝜑

0

+ 

     
2

𝜋𝑅
𝑐𝑜𝑡𝜃  𝜍2(𝜑,𝑉,𝜃)

𝜋/2

0
𝑐𝑜𝑠𝜑𝑑𝜑 𝑔2 𝑧, 𝐿 𝑑𝑧

2𝑅𝑡𝑎𝑛𝜃𝑐𝑜𝑠𝜑

0
− 𝐺2,                 (7) 

 

where φ is the azimuthal coordinate in the cylindrical system; 𝑧 = 2𝑅𝑡𝑎𝑛𝜃𝑐𝑜𝑠𝜑 is the border of the area of 

the cylindrical channel, bombarded by the electrons of the primary beam (Fig. 3). 

The noise factor F can be defined as [4, 7]: 

 

𝐹 = 𝛾−1(1 +
𝐷

𝐺2
) , 

 

where G and D are defined by (6) and (7). 

3.3. Computational Results 

The computational results, obtained here, reflect the influence of the nonuniform electrostatic field and 

the spread of the incident coordinates of the primary electrons on the gain and the noise factor. The area 

covered by the input electron beam depends on the direction angle θ (Fig. 3). 

At small angles θ the collision of the primary electrons with the channel wall occurs near the channel 

edge in the region of the week electrostatic field. The secondary electrons in this region are not accelerated 
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sufficiently to continue the multiplication process. As a result, the gain is less than in the case of the uniform 

field at the entrance of the channel. Moreover, a considerable part of the secondary electrons with a 

negative velocity does not turn back because of the absence of the field, and leaves the channel. 

At large angles θ the large spread in the collision coordinates of the input electrons with the channel walls 

increases the variance of the amplitude distribution at the output of the channel. When the penetration 

depth of the input electrons is increasing the number of multiplication stages is decreasing, and the gain is 

decreasing as well. For the angle θ, where the effects, described above, are in balance, a minimum noise 

factor is observed, and such angle θ can be considered as an optimum for the given coverage depth. 

In order to increase gain and reduce the noise factor, a layer with increased SEY is deposited on the top of 

the contact conducting layer at the entrance of channels. However, due to the effect of nonuniform 

electrostatic field and spread in incidence coordinates of the input electron beam, the noise factor can even 

increase [11]. 

Fig. 5 shows the dependence of the mean gain g(z, L) on the emission coordinate z of a secondary 

electron exiting the high efficiency emitter of the length h=5d, deposited on the top of the contact 

conducting layer. Curve 1 has been calculated for the uniform field at the entrance of the channel, curve 2 is 

relevant to nonuniform field formed by the contact conducting layer (what is the practical case). When the 

high efficiency emitter is deposited on the top of a contact conducting layer (curve 2) only electrons, 

emitted from the border of the high efficiency emitter (here, it is z>4d), take part in multiplication. It is seen 

that the loss of secondary electrons, emitted in the area of “week” field, is significant. 

 

 
Fig. 5. Mean gain g as function of emission coordinatez (1 – uniform field; 2 - nonuniform field).  

 

 
Fig. 6. Dependence of gain G on length h of contact conducting layer for different SEY. 
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Fig. 6 and Fig. 7 show dependence of the gain G and the noise factor F at the output on the length of the 

contact conducting layer h for different values of SEY. It is seen that the gain is decreasing and the noise is 

increasing regardless of the value of SEY. 

 

 
Fig. 7. Dependence of noise F on length h of contact conducting layer for different SEY. 

 

 
Fig. 8. Dependence of noise factor on incidence angle θ and length h of high-efficiency emitter. 

 

The summary results are shown on the Fig. 8 as the function F(θ, h), where θ is the incidence angle of the 

primary electron beam, and h is the length of the high-efficiency emitter deposited on the top of the contact 

conducting layer. The energy of the primary electron beam was V = 1 kV. These results make it possible to 

determine the optimum combination of the parameters, providing the minimal noise factor and the region 

where it is stable. Thus, here θ ⋍ 70 and h ⋍ 5d are optimum values, which provide the minimum noise 

factor F = 1.4. It must be pointed out that the range of parameter values 50 < θ < 75 and h ⋍ 2d - 5d ensures 

the smallest value of the noise factor which practically does not depend on variations in θ and h. 
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