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Abstract: This paper presents a simpler and shorter method of evaluating integrals of powers of sine. The 

reduction formula for sine is repeatedly applied to the integral of the nth power of sine until generalized 

formulas are derived. Since the derivation process involves recursive relations, the coefficients and 

exponents of the derived formulas showed certain patterns and sequences which were used as the basis for 

developing an easier algorithm. 
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1. Introduction 

Evaluating integrals of powers of trigonometric functions is always part of the study of Integral Calculus. 

Integrals of powers of sine are usually evaluated using trigonometric identities and the solution depends on 

whether the power is odd or even. For odd powers, the integrand is transformed by factoring out one sine 

and the remaining even powered sine is converted into cosine using the identity 
2 2sin 1 cosx x  . The 

integral is then evaluated using power formula with the factored sine used as the differential of cosine. For 

even powers, the double angle identity 2 1
sin (1 cos 2 )

2
x x   is used to reduce the power of sine into an 

expression where direct integration formulas can already be applied [1]-[3]. 

Another method used to evaluate powers of sine is by using reduction formula. A reduction formula 

transforms the integral into an integral of the same or similar expression with a lower integer exponent [4]. 

It is repeatedly applied until the power of the last term is reduced to two or one, and the final integral can 

be evaluated. Using integration by parts, the reduction formula for sine is [5]. 

 

1 21 1
sin sin cos sin

( )

n n nn
axdx ax ax axdx

a n n

 
    

 

The methods discussed above are normally tedious and time consuming depending on the given power of 

sine. As shown in the study of Dampil [6], deriving generalized formulas can simplify solutions, hence, the 

objective of this paper is to come up with a shorter and simpler method of integrating powers of sine.  

Generalized formulas are derived by successive application of the reduction formula to the integral of the 

nth power of sine. Because of the recursive nature of the reduction formula, an algorithm is developed 
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based on the sequences and patterns of the coefficients and exponents of the terms of the derived formulas. 

2. Derivation of Formulas 

Given: sinnaxdx , where n is any integer 

Using the reduction formula, 
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sin sin cos sin
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Applying the reduction formula to the last term 
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Applying the reduction formula again, 
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Simplifying, 
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The same trend continues until the last term becomes 

sin axdx  if n is odd, or 

2sin axdx  if n is even 

2.1. Odd Powers 
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Integrating the last term, 
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Factoring out the common factor gives the formula, 
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It can also be written as 
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2.2. Even Powers 
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Applying the reduction formula to the last term, 
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Simplifying, 
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Factoring out the common factor gives, 
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The formula may also be written as, 
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3. Development of the Algorithm for the New Method 

A simpler and easier procedure can be developed from the observed trends of the coefficients and 

exponents of the derived formulas. These are summarized as follows: 

3.1. Odd Powers 

 Write 
a

axcos
 . This will be followed by a series of sine terms. For example, xdx2sin 5

  

cos 2

2

x
  

 The first term of the series has a coefficient of 
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1

 
and the exponent of sine is n-1. This coefficient and 

exponent will be used in determining the coefficient and exponent of the next term. 

 





 x

x
2sin

5

1

2

2cos 4  

 

 For the next term, the coefficient has a numerator equal to the product of the exponent and the 

numerator of the preceding term. The denominator is the product of the denominator and exponent 

minus one of the preceding term. The exponent of sine is the exponent of the preceding term minus two. 
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 Follow the same procedure until the exponent of sine becomes zero which terminates the series. 
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 Add a constant of integration. 
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3.2. Even Powers 

 Write 
a

axcos
 .  This will be followed by a series of sine terms. For example, xdx3sin 6

  

 

3
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  

 

 The first term of the series has a coefficient of 
n

1

 
and the exponent of sine is n-1.  This coefficient and 

exponent will be used in determining the coefficient and exponent of the next term. 
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 For the next term, the coefficient has a numerator equal to the product of the exponent and the 

numerator of the preceding term. The denominator is the product of the denominator and exponent 

minus one of the preceding term. The exponent of sine is the exponent of the preceding term minus two. 
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 Follow the same procedure until the exponent of sine becomes one which terminates the series. 
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 The next term is the product of x and the coefficient of the last term in the sine series. 
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 Add a constant of integration. 
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4. Comparison between the Old and the New Method 

Evaluate 
7sin 4xdx  

Using the Old Method 

 
 

7 6 51 6
sin 5 sin 5 cos5 sin 5

5(7) 7
xdx x x xdx     
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Using the New Method 
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Evaluate 
4sin 2x  

Using the Old Method 
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Using the New Method 
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5. Conclusion 
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The new method is simpler and easier to use since the tiresome repetitions of applying the reduction 

formula, or expansions of identities using the conventional methods are eliminated. Integrals can be 

evaluated directly since the procedure simply involves coefficients and exponents. It is very helpful since 

integrals of powers of sine are always encountered in higher mathematics courses like Differential 

Equations and Advanced Engineering Mathematics, and even in physics and mechanics. It can also be used 

in many engineering applications specifically in electricity and magnetism, waves, heat and mass transfer, 

and reaction kinetics. It is also suggested that the method be extended to integrals of powers of other 

trigonometric functions. 
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