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Abstract: An explicit Bargmann symmetry constraint is computed and its associated binary
nonlinearization of Lax pairs is carried out for a super integrable hierarchy. Under the obtained symmetry
constraint, the n-th flow of the super integrable hierarchy is decomposed into two super finite-dimensional
integrable Hamiltonian systems, defined over the super-symmetry manifold R4N|2N with the
corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are
explicitly given.
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1. Introduction

For almost twenty years, much attention has been paid to the construction of finite dimensional
integrable systems from soliton equations by using symmetry constraints. Either (2+1)-dimensional soliton
equations [1] or (1+1)-dimensional soliton equations [2] can be decomposed into compatible
finite-dimensional integrable systems. It is known that a crucial idea in carrying out symmetry constraints
is the nonlinearization of Lax pairs for soliton hierarchies, and symmetry constraints give relations of
potentials with eigenfunctions and adjoint eigenfunctions of Lax pairs. The nonlinearization of Lax pairs
can be classified into mono-nonlinearization [3] and binary nonlinearization [4]. The technique of
nonlinearization has been successfully applied to many well-known (1+1)-dimensional soliton equations,
such as the AKNS system [2], the KdV hierarchy [5].

With the development of soliton theory, super integrable systems associated with Lie super algebra have
been receiving growing attention [6]-[8]. In 1997, Hu proposed the super-trace identity and applied it to
establish the super-Hamiltonian structures of super integrable systems [6]. Then Professor Ma gave a
systematic proof of super-trace identity and presented the super-Hamiltonian structures of super AKNS
hierarchy and super Dirac hierarchy for application [7]. Tao presented the super-Hamiltonian structures of
super GJ] hierarchy and super Yang hierarchy [8]. But there are few results on nonlinearization of super
integrable systems in the literature. Only very recently, He and Yu applied binary nonlinearization method
to the super AKNS hierarchy, the super Dirac hierarchy and obtained their corresponding super
finite-dimensional systems [9]-[11]. In this paper, we would like to consider the binary nonlinearization of
a super integrable hierarchy which was constructed based upon the hierarchy constructed by Zhang [12]
under the Bargmann symmetry constraint.

This paper is organized as follows. In the next section, we will consider a super integrable hierarchy and
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its super-Hamiltonian structures; In Section IlI, we propose an explicit symmetry constraint between the
potentials and the eigenfunctions of the super integrable hierarchy; Then in Section IV, under the symmetry
constraint, this super integrable hierarchy is decomposed into two compatible finite-dimensional super
systems over the super-symmetry manifold R#V2N, And furthermore, we show that the obtained
finite-dimensional super systems are completely integrable in the Liouville sense.

2. A Super Integrable Hierarchy

The super integrable spectral problem associated with Lie super algebra B(0, 1) is given by
T A+q « Z b1
¢x=U¢.U=<l—CI -r ﬁ’).U= a .¢=<¢z>. 1)
B —a 0 B b3

where A isaspectral parameter, q and r are even variables, and « and f are odd variables[7].
Taking

C A+B p
V= (A -B —C 6),
) —-p 0
the co-adjoint equation associated with (1) Vy = [U,V] gives
{ A, =2rB —2qC — ap + B6,
B, = 2rA—2AC —ap — f34,
C, =2qA —2AB + Bp + af, (2)
Py =10 —A— BB —aC+rp+qd,
6y =Ap—aA+aB+ fC—qp—716.
If we set
A=Yi20 AT =N 20 BidT,C=Xi20 CiA™, p=Xiz0 PiA ™ 8=Ni20 647, (3)

then (2) is equivalent to

1 1 1
( Biv1=q4;i —5Cix +5Bpi +5ad;,
1 1 1
Civ1 =TA; =SBy —Sap; = 6; “@
Piv1 = ad; — aB; — BC; + qpi+8;, + 76,
8iv1 = BA; + BB + aCi + pi —7p;i — q6;,
Aiv1x = 2rBiy1 — 29Ciq — apipg + Bisa-

which results in the following recurrence relations

{(_Bi+1' Cit1, 6141, —Pix1)” = L(=By, C;, 81, —p;)", (5)

A; = 07Y(2rB; — 2qC; — ap; + B65;),i = 0.

where

30 Volume 5, Number 1, January 2015



/ 2q0~tr §8+2q6‘1q —%a—qa_lﬁ %,B—qa‘la
1

—B—2B07r a-—p371q pO~1B—q r—3d+ B0 ta
—a+2ad'r B+2a07lq —-0—-r—adf —adla+gq

= k;a—Zra‘lr —2rd~1q —%,8+r6‘1ﬁ %a+r6_1a ) (6)
Upon choosing the initial conditions

By=Co = po=60=0, A,=1,

all otherA4;, B;,C;, p;,0;(i = 1) can be worked out by the recurrence relations (5). The first few results are as
follows:

A;=0,B=qC=rp=ab=p4,= %qz _%7'2 —af,B, = _%Tx; G, = _%%cxpz = By, 62 = ay,
Ay = 2qQer—2qme — Qty + B By = e + taty + 2P +50° —2qr% — qap,
C3 = %rxx + %axﬁ - %aﬁx + %qzr — %r3 —raf,p3 = Ay + %rxa + %qxﬁ + B + 1B +ra, + %qza — %rza,
83 = By — 30x@ — qatx — 31 — TPy + 3428 — 312
Let us associate the spectral problem (1) with the following auxiliary problem
Bu, = VP = A"V),0, (7)
with

G A +B; p; ‘
V(n) = ?=0 Ai - Bi _Ci 6,: ln_l,
8; -pi 0

where the minus symbol “+”denotes taking the non-positive part in the power of 4.
The compatible conditions of the spectral problem (1) and the auxiliary problem (7) are

Up, = GV +[U, V] =0, ®)
which infer the super integrable soliton hierarchy
U, = K, = (_ZCn+1'_ZBn+1: 5n+1: P)T:nZ 0. (9]

Here u; =K, in (9) is called the n-th flow of this hierarchy, when a = =0, the super integrable

hierarchy (9) can be reduced to the hierarchy which was constructed byZhang in [12].
Using the super trace identity
5 au [,y au
S fser(vE)dx = (7 Za)ser (), (10)

where Str means the super trace [6], we have
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_Bi+1

Civi |_ 38 = [ Az g

st —8uHi,Hl-—f —dx, i 2 0. (11)
—Pi+1

Therefore, the super soliton hierarchy (9) can be written as the following super Hamiltonian form:

U, =J 5, (12)
where
0O -2 0 O
B 2 0 0 O
=10 0 1 o0
0O 0 0 -1

is a super symplectic operator, and H,, is given by (11).
The first non-trivial nonlinear equations of this hierarchy (9) is given by its second flow

Qe, = —3Txx — AP + afy — q*r + 13 + 2rap,

T, = _%qxx —aa, — BBy — q3 + qu + 2qap,
A, = Bux = 30xX — qx — 31 — TPy + 297 — 3P,
Be, = Qxx + i@ +ray + 24,8 + qBy + 3q%a — r?a.

(13)

which possesses a Lax pair of U in (1) andV ) defined by

A — 24, N+2q*>—r*—aBf+ql—in, al+ B,
VO = 22 +1¢2 -2 —af — gL + I, -1+ 24, BA+ ay |-
BA+ a, —al — B, 0

3. The Bargmann Symmetry Constraint

In order to compute a Bargmann symmetry constraint, we consider the following adjoint spectral
problem of the spectral problem (1):

-r —-A+q B 21
Y, = —USty = (—/1 —q r —a> Y¥ = (ll)z), (14)
—a —B 0 Y3

where St means the super transposition. The following result is a general formula for the variational
derivative with respect to the potential u (see[2] for the classical case).

Lemma 1 [9]-[11]: Let U(u,4) be an even matrix of order m + n depending on u,u,, Uy, -, and a
parameter A. Suppose that ¢ = (¢, p,)T and Y = (., YP,)T satisfy the spectral problem and the adjoint
spectral problem

¢r = U, Vo, P, = —UY,(15)
where ¢, = (¢4, ", P,n) and Y, = (Pq, -+, P,,) are even eigenfunctions, and ¢, = (Pms1,***» Pmen) and
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Yo = Wms1, » Pmen) are odd eigenfunctions. Then the variational derivative of the parameter A with
respect to the potential u is given by

51 We(-0P®y,)(52)p

s T (@D)gar (16)
where we denote
0= (Ll o )
By Lemma 1, it is not difficult to find that
Y192 — P29,
o=t aon v | 19

V23 — P30y

where E = [ — (¥1¢, + ¥, ¢,)dx. If we consider zero boundary conditions limy ¢ = limpy Y =0,

then we can obtain a characteristic property: a recurrence relation for the variational derivative ofA:
L= = 21— (19)

where £ and % are given by (5) and (18), respectively.
Let us now discuss the two spatial and temporal systems:

( 1 O r L+q a\ [Py
G2 | =U)| 2 |=|X—a - B[ ¢
a1/ b3 B —a 0/ \¢s 20)
2%} 2%, =T —-A+q B Yy
Vo | =-US(w)| ¥z | =| -4 —q r —a || ¥z
P . Y3 -« ') 0 Y3
and
( ¢1] ¢1] . Ci Ai + Bi Pi ¢1]
b2 | =VO(w )| b2 | =i A (Ai -B; -G ‘Si) b2j |,
¢si/, ¢3j 5; —pi 0/ \¢s; 21
2%, o L2Y; _ =G —(A;—=By) & Y1) -
l,l)zj = —(V(n)) (u, /1]) ¢2j = ?:0 /117'1_1 _(Ai + Bi) Ci —pPi ¢2j
Y3 tn Y3; —Pi —6; 0 U2y,

where 1 <j <N and A,--,4y are N distinct spectral parameters. Now for the system (21) and (22), we
have the following symmetry constraints:

) 62}
~He =Y\, y=L k>0 (22)

The symmetry constraints in the case of k = 0 is called a Bargmann constraint [11]. If taking k =

0,Ej=y;= - (Y1j¢2j+2j$1;)dx, then it leads to an expression for the potential u, i.e.
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(4= —(¥1, @,) + (¥, D1),

r = (¥, D;) — (¥, D,),
ia = —(¥,, 3) + (¥3,P1), =

B = (W1, @3) + (W3, P,).

where we use the following notation @; = (¢;q,*+, Pin)T, ¥; = Wir, -, Win)T, (i=1, 2, 3.) and (:,-) denotes
the standard inner product of the Euclidean space RY.

4. Binary Nonlinearization

In this section, we want to perform binary nonlinearization for the Lax pairs and adjoint Lax pairs of the
above super integrable hierarchy. To this end, let us substituting (23) into the Lax pairs and adjoint Lax
pairs (20) and (21), and then we obtain the following nonlinearized Lax pairs and adjoint Lax pairs

¢1j ¢1j r )‘j +q c:r ¢1j
¢y | =U@A)| bz | =\ -0 —F B||d) (24a)
bs;/ , b3;j B —a 0/ \¥3j
U2, Py —F -4;+q B\ [¥1
Yy | = —Us‘(ﬁ, Aj) Yo | =47 7 —a || ¥z (24b)
1/’3;' X 1/’3;' —a —f)’ 0 1/’3;'
And
( O ®1j ‘ C; A+ B; B\ [P
b2; = V(”)(ﬁ, /1]_) b2 | =30, /117.1“ A, —B; -G 5 || ¢z |,
3/, s, 6 b 0. ¢33' (25)
2% o 2%} _ —(; —(Ai—B) 6\ [y
Vo | = =(V) (@A) Y2i | = ZioA | —(Ai + By Ci —pi || P2
Y3 t, Y3 —D; —6; 0 Y3

where 1 <j <N and P means an expression of P(u) under the explicit constraint (23). Note that the
spatial part of the nonlinearized system (24) is a system of ordinary differential equations with an
independent variables x, but for a given n(n = 2), the t,-part of the nonlinearized system (25) is a system
of ordinary differential equations. Obviously, the system (24) can be written as

Dy = (W1, 1) — (W2, 2N P; + (A — (W1, D,) + (W, 1))@, — ((Wo, P3) — (W5, 91 ) D3,
Dyp = (A + (W1, D3) — (W2, 210)D1 — (W1, @1) — (¥, D)) D, + (¥, P3) + (W5, D) P3,
D3 = ((P1, P3) + (W3, P0) D1 + (¥, @3) — (¥5, P1)) Dy,

Pix = —((W, @1) — (¥, DD ¥1 + (A4 — (W1, @) + (W2, D1, + (W1, D3) + (W5, DD W5,
Yo = (A + (W1, @y) — (W5, DI)W; + ((Pr, @1) — (o, DY, + ((Wa, @3) — (W5, P1) Y5,
Ysx = ((Wa, P3) — (3, 21 NW1 — (W1, P3) + (W5, D)W,

(26)

where A = diag(44, -+, 4,,). Then system (24) or (26) can be represented as the following Hamiltonian

form:
9H, 9H,

M W= -, =2 (27)

) = — =—— @ =2
1,x » F2x » F3x D, D3

ow,

where
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Hy = (A0, 5) (05, 03) 4 2 (W, 01) — (¥, 02))7 =5 (¥, @) — (W, D)2 = (W, @) — (¥, ) X
(¥, @3) + (W3, D3)).

When n =1, the system (25) is exactly the system (24) with t; = x. When n = 2, the system (25) is

Dy, = (FA—20,) Py + (A2 +24% — 172 — @f + GA — 1 )P, + (G4 + By ) D3,
By, = (A2 + 137 — 12 — @B — GA + 1) Dy + (—FA+ 24,0, + (BA+ @) ®s,
@y, = (BA+ @ )P, — (@A + B,)D,,

Wi, = (—FA+1G,) ¥ — (A2 +2G% — 32 — @B — GA + i)W, + (BA + @, )Ws,
Wor, = —(A% +13% — 72 — af + A — )W, + (FA—1q,)¥, — (@A + B,)¥s,
War, = —(@A+ B )W, — (BA+ @y )W,

(28)

where §,7, @, 8 denote the functions gq,r,a, Bdefined by the explicit constraint (23), and §y, 7., @, 5, are
given by

Gx = 2(AW,, @y) — 2(AW;, D1) + 2((W1, P1) — (W2, D) (W1, @2) + (W, P1)),
e = 2{A¥1, @,) — 2(AW;, 1) — 2((W1, D) + (W2, D) (W1, ;) — (W3, 1)),
@y = (AV1, @3) + (A¥3, ;) — (W1, ;) + (¥, 1) (W1, P3) + (W3, Dy)),

By = —(A¥,, @3) + (A¥3,D1) + ((P1, P2) + (Va, D) (o, P3) — (W3, P1)).

(29)

which are computed through using the spatial constrained flow (26). Then system (28) can be
represented as the following super Hamiltonian form:

(30)

Dy, = L2 = ) Py =

where
1
Hy = (A2W,, @) + (A°W,, &;) — E((llulﬁd’l) — (W2, D)2 (W1, ;) + (W2, 1))
+({(AW1, 1) — (AW, D)) (W1, @1) — (W2, P,)) + %(‘1’1. ®,)3
1 1 1
- E (LPZJ (1)1)2(1111’ (pZ) - E (lylt d)2>2<lp21 d)1> + E (l’UZJ (D1)3 + Z(ALPZJ ¢1)<q’1' (pZ)

+({(W2, P3) — (W3, P1) (P, P3) + (W3, P2)) (W1, P2) + (¥, P1))

_(Alpli ¢2)<qjll d)2> - <qu2' d)l)<qj21 d)l) - ((ALIJZJ ¢3) - (Al]l3, d)l))((qjll d)3> + <l113’ qZ)Z))
—((¥, @3) — (W5, 2 ) (AW, @3) + (A¥;, D,)).

In addition, the characteristic property (19) and the recurrence relations (5) ensure that

Ay = (AW, &1) + (AW, 0,), 0 2 0,
Biyy = (AW, @) — (A'P,, @,),i > 0,
Cir1 = (AW, @1) — (AW, @,),1 2 0, B1
Pist = —(A'W5, @3) + (A'W3,@1),i 2 0,
Siv1 = (AW, @3) + (A5, @,),i > 0.
Then the co-adjoint representation equation V, = [U,V] remains true. Furthermore, we know that
V2 = [U,V;?] is also true. Let
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F = =Sub?. (32)

Then it is easy to find that F, = 0. That is to say, F is a generating function of integrals of motion for the
system (24) or (26). Dueto F = )50 F,4A™", we obtain the following formulas of integrals of motion:

~ P o 1 e~ ~ = ~ ~ o=
Fo = 348, Fy = AgAy By = AgAn + S XI5 (AiAn—i — BiByoi + CiCoi + 258n-i),n 2 2. (33)

Substituting (31) into the above formulas of integrals of motion, we obtain the following expression of
E,(m = 0):
1
Fo=:, Fp = (W7, D) + (¥, D,),
n—-1
Fy = (A1, @) + (A1, @,) + Z[Z (AL, @, A1, @)
i=1

1 ) ) . .
+ 5 (AW, @y) — (AW, D)) (AW, By) — (A1, @)
—((AT1Y,, ) — (A1, @ ) (A1, Bs) + (AL, @,)),n > 2. (34)

On the other hand, let us consider the temporal part of nonlinearized system (25). Making use of (31) and
(34), the system (26) can be represented as the following super Hamiltonian form:

OFn4q OFn41 OFn41 OFn41 OFn41 OFn41
Ltn = By, Patn T Gy, P3tn T Gy, T ltn a0, ' 2t a0, ' 3t T Ga, (35)

This can be checked pretty easily. For example, we can show one equality in the above system as
follows:

n n n
Wor, = — Z(A" +B) Ay + Z C; AV, — Z p; A"y,
i=0 i=0 i=0
=—A"Y, -2 Z?ﬂ(/li_l'luz, Q) AV, + Z?:o((/li_llpp ;) — (AT, @) Ay,
+ YN (AT, 0) — (A, o)Ay, = — P (36)

90,

In order to show the Liouville integrability for the constrained flows (24) and (25), we need to prove the
commutative propertity of motion {F,},s, , under the corresponding Poisson bracket

=y3 N (OF 06 . 4yo(éi)p@y) 9F 96
{F,6} = 5, X Gy gy, — CDPOPR0 S0, 37

At this time, we still have an equality th =[V™, 7], and After a similar discussion, we know that

E,(m = 0) are integrals of motion for the system (25) or (35), which implies
a
{Fne Frea} :E Fny= 0, m, n= 0. (38)

The above equality (38) shows that F,,(m = 0) are in involution in pair under the Poisson bracket (37).
In addition, similar to [13], we know that

fre = Yibik + Yo bar + Y3 Par, 1 <k < N. (39)
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are integrals of motion for (24) and (25). It is not difficult to verify that 3N functions {F,}2N,
and {f; }3—, are involution in pair. By using the method in [14], we can verify he functional independence of
the3N functions {F,}2L; and {fi}¥—,. Therefore, the 3N functions {F,}2; and {f;}¥., are functional
independent over some region of the super symmetry manifold R*N/2N. Now, all of the above analysis gives
the following theorem.

Theorem 1: Both the spatial and temporal flows (24) and (25) are Liouville integrable Hamiltonian
systems defined on the super symmetry manifold R*NIZN, which possess 3N functionally independent and
involutive integrals of motion {F,,}?"; and {f;}¥—,defined by (34) and (39).
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