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Abstract: The influence of the magnetic field on the heat convection is an important issue in various 

industrial productions. The mathematical formulation of such viscous magneto hydrodynamic fluid is given 

by the magnetic Bénard system. We here show the existence of attractors, which is finite dimensional and 

characterize the long time dynamics of the system. Furthermore, we estimate their dimensions in terms of 

the magnetic components as controlling parameters. 
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1.
 

Introduction 

The effect of the magnetic field on the heat convection in a viscous and resistive fluid is an important 

topic for researches in various industrial situations, which include steel processing, the production of 

semi-conductors, and so on. A mathematical formulation of the heat convection phenomena under the 

presence of the magnetic field is provided by the magnetic Bénard equations [1], which is a coupled system 

of the magneto hydrodynamic equations [2] and the thermo hydraulics equations [3]. We refer to [4]-[6] for 

more details. 

We here deal with the asymptotic behavior of solutions to the magnetic Bénard system. In particular, we 

are concerned with the attractors, which characterize the long-time dynamics of the original system and 

possess the finite dimensional structure. Indeed, the theory of infinite dimensional dissipative dynamical 

system developed so far and the analysis of the asymptotic behavior of solutions to the nonlinear evolution 

equations of these types generally show the finite dimensional features of the problems. We refer to [2], 

[7]-[11] for related results. 

Our intention is then to estimate the fractal dimension of the attractors in terms of the various physical 

constants; that is, the (magnetic) Prandtl number, Rayleigh number to name a few. We believe that such 

characteristics may reveal the degree and the extent of the influence of magnetic factors and may be used 

as controlling parameters. 

In this direction, the work of M. A. Boudourides and A. C. Nikoudes [12] should be recalled, where the 

estimate of attractors for the magnetic Bénard problem is also given as we do here. However, compared to 

their study, our basic model equation is slightly different since we take into account the Lorentz force, 

which is much suitable to industrial applications. 

Our main results are Theorems 2.1 and 2.2 in the next section, which state that there exists a finite 

dimensional universal attractor for the magnetic Bénard system and its dimension is estimated. We exhibit 

these theorems after recalling our basic model as well as providing the functional analysis framework of 
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the problem. We remark that the results themselves are similar to that of [12]. We conclude with 

discussions. 

2. Analysis of the Magnetic Bénard System 

2.1. Model System 

We consider a homogeneous, viscous and electrically conducting fluid in 𝑹𝟐, which is layered in the 

region {𝒙 = (𝑥1, 𝑥2) ∈ 𝑹𝟐 | 0 < 𝑥2 < 1} and limited by the surfaces  𝑥2 = 0 ,  𝑥2 = 1 . The fluid layer is 

heated from below insuch a way that the lower plane is maintained at temperature 𝑇0, while the upper 

plane is maintained at 𝑇1 , where 𝑇0  and 𝑇1 (𝑇0 > 𝑇1 ) are given constants. Thelayer is permeated 

perpendicularly by uniformly impressed magnetic field 𝑯𝟎. 

In the Boussinesq approximation, the velocity 𝒖 = (𝑢1, 𝑢2), the pressure 𝑝, andthe temperature𝜃of the 

fluid, as well as the magnetic field 𝒉 = (ℎ1, ℎ2) satisfythe following system of partial differential equations, 

which is called the magneticBénard system and will be referred to as MBS hereafter. 

 
𝜕𝒖

𝜕𝑡
+  𝒖 ∙ ∇ 𝒖 − 𝑃𝑚 𝒉 ∙ ∇ 𝒉 +

1

2
𝑃𝑚∇ 𝒉 2 = ∆𝒖 + 𝑅𝜃𝒆 + 𝑄  

𝜕𝒉

𝜕𝑥2
+ ∇ℎ2  ,  

 

𝑃𝑚  
𝜕𝒉

𝜕𝑡
+  𝒖 ∙ ∇ 𝒉 −  𝒉 ∙ ∇ 𝒖 = −rot rot 𝒉 + 𝑄

𝜕𝒖

𝜕𝑥2
 ,  

 

𝑃𝑟  
𝜕𝜃

𝜕𝑡
+  𝒖 ∙ ∇ 𝜃 = ∆𝜃 + 𝑅𝑢2 ,  

 

div 𝒖 = 0,    div 𝒉 = 0 ,  

 

where, 𝑅 =  𝑔𝛼𝛽𝑑4/𝜅𝜈  denotes the square root of the Rayleigh number, 𝑄 =  𝜇𝐻2𝑑2/4𝜋𝜌𝜈𝜂  the 

square root of the Chandrasekhar number, 𝑃𝑟 = 𝜈/𝜅 the Prandtl number, and 𝑃𝑚 = 𝜇/𝜂 the magnetic 

Prandtl number.  

Here, 𝑔 denotes the gravitational acceleration, α the coefficient of volume expansion, 𝜅 the thermal 

diffusivity coefficient, 𝜈 the kinematic viscosity, 𝜇 the magnetic permeability, 𝜌 the density of the fluid, 

𝜂 the resistivity, 𝑑 the depth of the layer, and 𝛽 = 𝑑−1(𝑇0 − 𝑇1) is the temperature gradient. The unit 

vector 𝒆  is in the  𝑥2 direction. We note that the MBS is a perturbation system of the equilibrium state. 

For the derivation of MBS, we refer to Appendix of [4]. The additional gradient terms in the equation for 

the velocity field 𝒖  comes from the Lorentz force effect, which is important in industrial applications. 

The MBS is considered with the next boundary conditions: At 𝑥2 = 0 and 1, 

𝒖 𝒙, 𝑡 = 𝟎, ℎ2 𝒙, 𝑡 =
𝜕ℎ1

𝜕𝑥2

 𝒙, 𝑡 = 0, 𝜃 𝒙, 𝑡 = 0. 

 

It is also imposed the periodic boundary conditions: 

𝑝, 𝒖, 𝒉, 𝜃 and their derivatives are all periodic with period 𝐿 in the 𝑥1-direction. 

The initial conditions are 

 

𝒖(𝒙, 0) = 𝒖𝟎(𝒙), 𝒉(𝒙, 0) = 𝒉0(𝒙), 𝜃(𝒙, 0) = 𝜃0(𝒙) 

 

on 𝒙 ∈ 𝛺: = (0, 𝐿) × (0, 1), where 𝒖𝟎, 𝒉0,𝜃0 are given functions. 
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The reason why we treat the two dimensional case is that without further assumptions the global strong 

solution is not expected in the three dimensional case. 

2.2. Existence of Solutions 

We first settle on the functional setting. Let 𝛺: = (0, 𝐿) × (0, 1) as before and put 𝛤1: =  𝑥1 = 0, 𝐿 . 

Define 

𝐿𝜍
2 ≔  𝒖 ∈  𝐿2 𝛺  

2
| div 𝒖 = 0 in𝛺, 𝑢1𝑑𝑥 = 0

𝛺

, 𝒖  is periodic in 𝑥1  ,  

 

𝐻𝜍
1 ≔  𝒖 ∈  𝐻1 𝛺  

2
∩ 𝐿𝜍

2 | 𝒖 ∙ 𝒏 = 0 on 𝜕𝛺 ∖ 𝛤1  ,  

 

𝐻0,𝜍
1 ≔  𝒖 ∈  𝐻1 𝛺  

2
∩ 𝐿𝜍

2 | 𝒖 = 0 on 𝜕𝛺 ∖ 𝛤1  ,  

 

where 𝒏 denotes the unit normal to 𝜕𝛺.  

We then define 

 

𝐻 ≔ 𝐿𝜍
2 × 𝐿𝜍

2 × 𝐿2 𝛺  , 𝑉 ≔ 𝐻0,𝜍
1 × 𝐻𝜍

1 × 𝐻0
1 𝛺  ,  

 

and, for 𝑯2 𝛺 =  𝒖 ∈  𝐻2 𝛺  
2
 , 

 

𝐷 ≔   𝑯2 𝛺  
2

× 𝐻2 𝛺  ∩ 𝑉.  

 

The spaces 𝐻 and 𝑉are equipped with the scalar product and the norm respectively as follows. For  

 

𝛷 =  𝒖, 𝒉, 𝜃 , 𝛹 =  𝒗,𝒌, 𝜎 ∈ 𝐻, 

 

 𝛷,𝛹 =  𝒖,𝒗 +  𝒉, 𝒌 +  𝜃, 𝜎 ,       𝛷 𝟐 =  𝛷,𝛷  ,  

 

 𝛷,𝛹 1 =  𝒖, 𝒗 + 𝑃𝑚 𝒉, 𝒌 + 𝑃𝑟 𝜃, 𝜎 ,      𝛷 𝟏
𝟐 =  𝛷,𝛷 1 ,  

 

where  ∙,∙  denotes the usual 𝐿2 product. For 𝛷, 𝛹 ∈ 𝑉 , 

 

  𝛷,𝛹  =  𝛁𝒖, 𝛁𝒗 +  rot 𝒉, rot𝒌 +  ∇𝜃, ∇𝜎 ,      𝛷 𝟐 =  (𝛷,𝛷 ) ,  

 

 (𝛷,𝛹) 1 =  𝛁𝒖,𝛁𝒗 + 𝑃𝑚  rot 𝒉, rot𝒌 + 𝑃𝑟 ∇𝜃, ∇𝜎 ,      𝛷 𝟏
2 =  (𝛷,𝛷) 1 .  

 

Now we put  

 

𝑏1 𝒖, 𝒗,𝒘 ≔   𝒖 ∙ 𝛁 𝒗,𝒘  ,    𝑏2 𝒖, 𝜃, 𝜎 ≔   𝒖 ∙ 𝛁 𝜃, 𝜎  ,   

 

and define a continuous trili near form 𝐵 on 𝑉 × 𝑉 × 𝑉 by 

 

𝐵 𝛷1, 𝛷2, 𝛷3 = 𝑏1 𝒖𝟏, 𝒖𝟐, 𝒖𝟑 − 𝑃𝑚𝑏1 𝒉𝟏, 𝒉𝟐, 𝒖𝟑 + 𝑃𝑚𝑏1 𝒖𝟏, 𝒉𝟐, 𝒉𝟑 − 𝑃𝑟𝑏1 𝒉𝟏, 𝒖𝟐, 𝒉𝟑 + 𝑃𝑟𝑏2 𝒖𝟏, 𝜃2, 𝜃3  . 
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The weak formulation of the MBS is then expressed as follows. 

Weak formulation of the MBS. Let 𝛷0 = (𝒖𝟎, 𝒉0, 𝜃0) ∈ 𝐻 be given. Find 𝛷 = (𝒖, 𝒉, 𝜃) ∈ 𝐿2 0, 𝑇; 𝑉  

which satisfies 𝛷(0) = 𝛷0 and 

 

𝑑

𝑑𝑡
 𝛷,𝛹 1 +   𝛷,𝛹  + 𝐵 𝛷,𝛷,𝛹 − 𝑅 𝑀1𝛷,𝛹 − 𝑄 𝑀2𝛷,𝛹 = 0  

 

for all 𝛹 =  𝒗, 𝒌, 𝜎 ∈ 𝑉, where 

 

 𝑀1𝛷,𝛹 ≔  𝜃𝒆, 𝒗 +  𝒖 ∙ 𝒆, 𝜎  ,    𝑀2𝛷,𝛹 ≔  
𝜕𝒉

𝜕𝑥2
, 𝒗 +  

𝜕𝒖

𝜕𝑥2
, 𝒌  .   

 

We call 𝛷 ∈ 𝑉 a weak solution of the MBS. 

If 𝛷0 ∈ 𝑉 and 𝛷 ∈ 𝐿2 0, 𝑇; 𝐷 ∩ 𝐿∞ 0, 𝑇; 𝑉 , then we call 𝛷 a strong solution. 

The existence of solutions to this weak formulation is now obtained straight forwardly. We just present 

the results. 

Existence theorem. For any initial data 𝛷0 ∈ 𝐻  and 𝑇 >  0 , there exists a weaksolution 

𝛷 ∈ 𝐿2 0, 𝑇; 𝐻 ∩ 𝐿2 0, 𝑇; 𝑉  to the MBS. If 𝛷0 ∈ 𝑉  and 𝑇 >  0,  then thereexists a strong solution 

𝛷 ∈ 𝐿2 0, 𝑇; 𝐷 ∩ 𝐿∞ 0, 𝑇; 𝑉 . 

The proof involves a series of standard a priori estimates. We refer to [4], [7], [13] for the prototype of the 

argument. 

We write in the sequel 

 

𝛷 𝑡 = 𝑆 𝑡 𝛷0 ,  

 

where  𝑆(𝑡) 𝑡≥0 verifies the semigroup property and will be referred to as the semigroupof the MBS. 

2.3. Attractors and the Estimate of Dimension 

We now turn our attention to the problems of attractors. First we recall the definition of absorbing sets: A 

subset 𝐴 ⊂ 𝐻(resp. 𝑉) is said to be absorbing in 𝐻(resp.𝑉) for the semigroup  𝑆(𝑡) 𝑡≥0 ofthe MBS, if for 

every bounded subset 𝐷 ⊂ 𝐻(resp. 𝑉), there corresponds 𝑡0 = 𝑡0(𝐴) such that 

 

𝑆 𝑡 𝐷 ⊂ 𝐴  for all 𝑡 ≥ 𝑡0(𝐴). 

 

As to the MBS we deal with, it can be deduced that for any 𝛷0 ∈ 𝐻, there exists 𝑡0 = 𝑡0(𝛷0) and a 

constant 𝐶 such that 

 

|𝛷(𝑡)|1
2 ≤ 𝐶 1 + 𝑃𝑟 + 𝑃𝑚  𝑅2𝛽2 𝛺 + 1 

 

for all 𝑡 ≥ 𝑡0 where  𝛺  denotes the area of 𝛺. Hereafter we use the same letter 𝐶  for various constants. 

Moreover, for any 𝛷0 ∈ 𝑉 with  𝛷0 ≤ 𝑀, there exists 𝑡0 = 𝑡0(𝑀) and constant 𝐶 such that 

1

2

𝑑

𝑑𝑡
 𝛷(𝑡) 2 ≤ 1 + 𝐶 1 + 𝑃𝑟 + 𝑃𝑚 𝑃𝑟

−1𝑅2𝛽2 𝛺 

+ 𝐶 max 1, 𝑃𝑚
−1 +  1 + 𝑃𝑟

2 + 𝑃𝑚
2  1 + 𝑅2𝛽2 𝛺   𝛷 𝑡  2  𝛷 𝑡  2,  

 

together with 
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  𝛷(𝑠) 2𝑑𝑠 ≤
𝑡+1

𝑡

 𝐶 𝑅2𝛽2 𝛺 + 1 .   

 

Taking into account of the uniform Gronwall inequality (see Lemma 3.1 of [9]), we infer that the set 

𝑈 ⊂ 𝑉 which is defined by 

 

𝑈 ≔  𝛷 ∈ 𝑉 |  𝛷 ≤ C max 1, 𝑃𝑚
−1 +  1 + 𝑃𝑟

2 + 𝑃𝑚
2  1 + 𝑅2𝛽2 𝛺   ∙ exp 𝐶(1 + 𝑅2𝛽2 𝛺 )   

 

is an absorbing set in 𝑉 for the semigroup  𝑆(𝑡) 𝑡≥0. 

To proceed further, we need to prepare some terminology. 

Definition. A subset 𝑋 ⊂ 𝑉 is said to be invariant, if there holds for every 𝑡 ≥ 0, 

 

𝑆 𝑡 𝑋 = 𝑋 .  

 

An invariant set 𝑋 is said to be attracting in 𝐻(resp. 𝑉), if there exists a neighborhood 𝑂 of 𝑋in 𝐻 

(resp. 𝑉) such that for every 𝛷 ∈ 𝑂, 

 

dist 𝑆 𝑡 𝛷, 𝑋 → 0  as  𝑡 → ∞ ,  

 

where the distance is taken in H(resp. V). 

Now we consider the 𝜔-limit set 𝑋 of a 𝑉-bounded absorbing set 𝑈 for the semi group  𝑆(𝑡) 𝑡≥0. 

Precisely stated, 

 

𝑋: = 𝜔 𝑈 =  Cl𝐻   𝑆 𝑡 𝑈

𝑡≥𝑠

 

𝑠≥0

,  

 

where 𝐶𝑙𝐻 means the closure in 𝐻. 

By the property of the 𝜔-limit set, 𝑋 is a functional invariant set in 𝑉 whichattracts all the trajectories, 

and 𝑋 contains all the functional invariant set in 𝑉 for the semigroup  𝑆(𝑡) 𝑡≥0. That is, 𝑋is a universal 

attractor. 

Since the absorbing set 𝑈 has been proved to exist, the existence of a universal attractor for the MBS 

now follows. 

In summary, we have established the next theorem. 

Theorem 2.1. There exists a closed bounded set 𝑋 ⊂ 𝑉 which is a universal attractor for the semigroup 

 𝑆(𝑡) 𝑡≥0 of the MBS. The set 𝑋 contains all the boundedfunctional invariant sets in 𝑉 for  𝑆(𝑡) 𝑡≥0. 

Moreover, there holds the estimate 

 

 𝛷 ≤ C max 1, 𝑃𝑚
−1 +  1 + 𝑃𝑟

2 + 𝑃𝑚
2  1 + 𝑅2𝛽2 𝛺   ∙ exp 𝐶(1 + 𝑅2𝛽2 𝛺 ) ,  

 

for every 𝛷 ∈ 𝑉, where 𝐶 denotes a computable constants. 

Proof. We just give an idea of the proof: Given an absorbing set, the existence of a universal attractor is 

deduced from a typical argument. Observe Theorem 1.1 of [13]. The estimate for 𝛷 follows from that for 

an absorbing set. 

Concerning the universal attractor 𝑋 proved in Theorem 2.1, we now wish to show that 𝑋 has a finite 
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dimensional structure, and we estimate the bound of itsfractal dimension. To do this, it suffices to follow the 

procedure of [9]; we derive the linearized system of MBS and the evolution of m-dimensional volume 

elements panned by the solutions for this derived system. Our achievement is read as follows. 

Theorem 2.2. The Hausdorff and the fractal dimension of the universal attractor 𝑋 proved in Theorem 1, 

that is, 𝑚 = dim𝐻𝑋 and 𝑚′ = dim𝐹𝑋, respectively, canbe estimated by 

 

𝑚,𝑚′~𝐶𝑅 𝛺  𝑃𝑟
−1 + 𝛽2  1 + 𝑃𝑟 + 𝑃𝑚  ,  

 

where 𝐶 denotes a computable constant. 

Proof. We also give a sketch since the proof proceeds along the strategy described in [9]; we consider the 

evolution of the m-dimensional volume element for the linearized system of 𝛷(𝑡). We then find the 

behavior of the uniform Lyapunov exponents, Wethen employ the next observation (see§4.5 of [13]): 

If the uniform Lyapunov exponents 𝜇𝑗  associated with the maximal attractor 𝑋 satisfy 

 

𝜇1 + 𝜇2 + ⋯+ 𝜇𝑗 ≤ −𝜅1𝑗
2 + 𝜅2, 

 

for every 𝑗 = 1, 2,⋯ with some positive constants 𝜅1 and 𝜅2, then the integer  𝑙 which is determined by 

 

𝑙 − 1 < 2  
𝜅2

𝜅1
 

1

2
≤ 𝑙 

 

gives an upper bound for dim𝐻𝑋 and 2−1dim𝐹𝑋. In our situation, we can take 

 

𝜅1 =
𝐶

 𝛺 
 ,      𝜅2 = 𝐶𝑅2 𝛺  𝑃𝑟

−1 + 𝛽2  1 + 𝑃𝑟
2 + 𝑃𝑚

2  ,  

 

from where the result follows. The details are omitted. 

A similar estimate can be proved in the three dimensional case provided the global strong solution is 

assumed. We also note that the method presented so far may be potentially applied to the determination of 

the attractor for certain epidemic models. See for instance [13], [14].  

3. Discussions 

We have investigated the problem related to the attractors for the magnetic Bénard system (MBS). The 

MBS is a complexly coupled system of partial differential equations describing viscous magneto 

hydrodynamic fluid flows. Despite its importance in industries such as controlling aspects of the magnetic 

components, the mathematic a analysis of the MBS has not been substantially performed. Compared to the 

attempt of [12], where the estimate of the attractor is given, we include the effect of the Lorentz force and 

thus we expect that our study put something forwardly to such situation. 

The attractor, on the other hand, characterizes the long time dynamics of the system. It is proved that the 

dimension of attractors is typically finite for many dissipative infinite dimensional nonlinear dynamical 

systems. Here we show the existence of attractors for the MBS and estimate the fractal dimension of the 

attractors in terms of magnetic factors. Although the result is similar to [12], we hope that our outcomes 

are useful even in real industries. 
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