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Abstract: We address the problem of reducing a task cost functional W(S), defined over Sobolev-class signals 

S, when W is invariant under a global symmetry group G ⊂ Diff(M) and only accessible as a black-box. Such 

settings arise in machine learning, imaging, and inverse problems, where performance metrics are non-

differentiable and internal to pretrained models. We propose a variational method that leverages symmetry 

to construct explicit, symmetry-breaking deformations of the input. By minimizing an auxiliary energy, we 

obtain a gauge field whose induced deformation h = 𝐴𝜙[S] lies generically transverse to the G-orbit. We show 

that—even for discontinuous W—a simple double-sign test on h descends to a strictly lower-cost region with 

positive probability, and almost surely under mild geometric conditions. This method requires no model 

gradients or labels and operates entirely at test time. It offers a principled mechanism for optimizing 

invariant cost functionals via Lie-algebraic flows, with applications to black-box systems and symmetry-

constrained tasks. 
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1. Introduction 

Many optimisation problems in applied mathematics, imaging, and machine learning involve cost 

functionals that are invariant under symmetries of the domain—for example, spatial transformations that 

preserve classification accuracy or reconstruction quality. Such invariances often arise from physical or 

geometric considerations and are typically encoded through architectural design or data augmentation. 

In this work, we study a distinct setting: test-time optimisation of a cost functional W(S), where: 

●  𝑆 ∈  𝑆𝑠(𝑀) lies in a Sobolev space over a smooth compact manifold 𝑀, 

●  𝑊:𝑆𝑠(𝑀)  →  𝑅 is invariant under a Lie group 𝐺 ⊂  𝐷𝑖𝑓𝑓(𝑀), 

●  W is accessible only as a black box—possibly non-differentiable or discontinuous, 

●  gradients of W and supervision signals are unavailable at inference time. 

The central question is: Can one construct an explicit deformation of S that provably reduces W(S), using 

only symmetry information and without gradient access? 

This problem arises in practical settings where the true evaluation metric—such as classification accuracy, 

word error rate, or edit distance—is discontinuous and not amenable to classical gradient-based methods. 

Standard approaches often rely on differentiable surrogates or semi-smooth approximations [1, 2], which 

may fail near decision boundaries or produce suboptimal solutions due to local trapping. 

To address this, we propose a variational framework inspired by field theory. We introduce an auxiliary 
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energy functional defined over scalar fields, whose minimisers induce symmetry-breaking deformations of 

the form: 

𝑆 ↦  𝑒𝑥𝑝(𝐴𝜙)[𝑆], 𝑤𝑖𝑡ℎ 𝐴𝜙 =∑

𝑖

𝜙𝑖(𝑥)𝐿𝑖 ≡ 𝜙𝑖(𝑥)𝐿𝑖 , 

where {𝐿𝑖} generate the Lie algebra of 𝐺. These deformations move 𝑆 transversely to its group orbit, allowing 

variation in 𝑊(𝑆) despite its invariance under 𝐺. 

Our goal is to analyse the geometric structure of such deformations and establish mechanisms for 

descending non-smooth or discontinuous objectives under group symmetries—without reliance on model 

internals or differentiable approximations. 

2. Results 

In this work we have developed and analyzed a novel symmetry‐breaking framework for minimizing 

external costs on spaces of functions. 

2.1. Energy Functional 

We introduced an external energy functional 𝐸𝑆[𝜙] , in analogy with Yang–Mills energies [3], whose 

minimiser generates gauge flows that align the signal 𝑆 with its symmetry orbit. 

2.2. Variational Analysis 

We established existence of minimisers of 𝐸𝑆  in the Sobolev space 𝐻𝑠(𝑀), 𝑠 >
𝑑𝑖𝑚(𝑀)

2
+ 1, via coercivity, 

weak lower‐semicontinuity, and the direct method. We ruled out constant gauge fields as global minimisers 

(Lemma 1) by a localized “bump’’ perturbation argument in the spirit of the Abrikosov–Nielsen–Olesen 

vortex energy in [4] and Ginzburg–Landau model on compact surfaces in [5]. 

2.3. Alignment of Minimisers 

We showed that, up to first order in the regularisation weights 𝛼, 𝛽 , the resulting displacement 𝑤(𝜙̃) 

remains anti‐parallel to the gradient of the orbit‐distance 𝑑𝐺(𝑆)  (Lemma 2), ensuring that gauge flows 

approximate the steepest‐descent direction. 

2.4. Symmetry-Breaking Descent 

We proved a randomized‐ray descent theorem demonstrating that—even for a discontinuous, piecewise‐

constant cost 𝑊—a symmetry‐breaking update ℎ ∈  𝑁𝑆  will, with positive probability (and under mild 

geometric conditions on the nearby downhill boundary), exit into a strictly lower‐cost region. In the globally 

convex, 𝐶1 case this probability equals 1. 

2.5. Numerical Case Studies 

We validate our framework on diverse tasks, including image segmentation, speech recognition, and black‐

box classification. In each setting, applying the symmetry‐breaking deformation yields consistent, 

measurable gains in non-differentiable performance metrics, confirming the practical effectiveness of our 

theoretical descent guarantees. 

3. Related Work 

3.1. Symmetry in Modelling and Learning 

Symmetries are central to both applied mathematics and machine learning. In learning, equivariant 

architectures enforce invariance through design, including group convolution networks [6], gauge-
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equivariant Convolutional Neural Networks (CNNs) [7], and geometric deep learning frameworks [8]. Earlier 

techniques include tangent propagation [9] and learned transformations via Spatial Transformer 

Networks [10]. These methods rely on access to gradients and full model structure during training. 

3.2. Variational Symmetry Breaking in Machine Learning 

Within machine learning, symmetry-breaking has been explored at training time. Bamler and Mandt [11] 

propose Lie-algebraic optimisation for models with continuous symmetries. Tanaka et al. [12] link Noether 

symmetries to learning dynamics, while Elesedy [13] studies symmetry in relation to generalisation and loss 

landscapes. In contrast, our focus is on test-time symmetry breaking for black-box objectives. 

3.3. Gauge Fields and Symmetry Breaking in Applied Mathematics 

Gauge-theoretic methods are well established in mathematical physics and geometry. Yang [14] applies 

gauge-invariant variational principles to mechanical systems, while Sochen et al. [15] develop a gauge-

invariant framework for image diffusion on manifolds. Diffeomorphic and gauge-based models underpin 

shape analysis and image registration [16, 17], with connections to stochastic flows and optimal 

transport [18]. 

3.4. Test-Time Adaptation and Black-Box Optimisation 

Test-time adaptation methods address distribution shifts without retraining, using strategies like entropy 

minimisation and batch norm recalibration [19, 20], or randomized defences against adversarial  

inputs [21–23]. Most approaches assume differentiability and access to internal model gradients—

assumptions we relax in our black-box, non-smooth setting. 

4. Setup 

4.1. Geometric Properties 

We consider a smooth, compact, boundaryless manifold 𝑀, representing the spatial domain of signals, with 

a symmetry group 𝐺  acting on 𝑀 via diffeomorphisms [24, 25]. Signals are modeled as scalar and vector 

fields on 𝑀, and the associated cost functional 𝑊 is assumed to be invariant under the action of 𝐺. 

To ensure compatibility with variational analysis, signals are represented in Sobolev spaces of sufficiently 

high regularity [26, 27], providing the necessary continuity and differentiability for composing with 

diffeomorphisms and evaluating energy functionals.  

The group 𝐺 , a subgroup of the diffeomorphism group of 𝑀 , encodes natural symmetries such as 

reparametrizations and coordinate transformations. Its invariance property ensures that the cost functional 

𝑊 respects these underlying geometric symmetries. 

4.2. Functional Space 

Let 𝑀 be a smooth, compact, connected 𝑛-dimensional Riemannian manifold, and fix a Sobolev index 

𝑠 >
𝑛

2
+ 1, 

so that the embedding 𝐻𝑠(𝑀)  ↪  𝐶1(𝑀) holds [26]. 

4.2.1. Signal space 

A signal 𝑆 consists of: 

●  A scalar field 𝜙 ∈  𝐻𝑠(𝑀). 

●  Vector fields 𝐿𝑖[𝑆] ∈ 𝐻𝑠(𝑀, 𝑇𝑀), for 𝑖 = 1,… , 𝑑 [28]. 

The signal space is 
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𝑆𝑠(𝑀) ∶=  𝐻𝑠(𝑀) × (𝐻𝑠(𝑀, 𝑇𝑀))𝑑 . 

For 𝑠 >
𝑛

2
+ 1, 𝑆𝑠(𝑀) is a Banach algebra under pointwise multiplication, and composition with 𝐶1 maps is 

well defined and differentiable. 

4.2.2. Symmetry group 

Define the Sobolev-class diffeomorphism group: 

𝐷𝑖𝑓𝑓  𝑠+1(𝑀) = {𝜑:𝑀 → 𝑀 | 𝜑, 𝜑−1 ∈ 𝐻𝑠+1(𝑀,𝑀)}. 

Let 𝐺 ⊂  𝐷𝑖𝑓𝑓  𝑠+1(𝑀) be a closed Lie subgroup that acts on signals isometrically via pullback: 

𝜑∗𝑆 ∶=  (𝜙 ∘ 𝜑−1, (𝐷𝜑−1) ∘ 𝜑−1 ⋅ 𝐿𝑖[𝑆] ∘ 𝜑
−1)𝑖=1

𝑑 , 

which defines a 𝐶1 action on 𝑆𝑠(𝑀) [24, 25]. 

5. External Energy Minimisation 

5.1. Energy Functional 

We seek a deformation 𝑒𝑥𝑝(𝐴𝜙) of a signal 𝑆 via the infinitesimal generator 

𝐴𝜙(𝑥) = 𝜙𝑖(𝑥) 𝐿𝑖 , 

where {𝐿𝑖} are fixed admissible vector fields. Define 

𝐸𝑆[𝜙] =∥ 𝑆 − 𝑒𝑥𝑝(𝐴𝜙) ⋅ 𝑆 ∥
2+ 𝛼 ∥ 𝛻𝜙 ∥2+ 𝛽 ∥   |𝜙|2 − 𝑣2 ∥2,    (1) 

With 𝛼, 𝛽 > 0. The data term measures misalignment under the flow 𝑒𝑥𝑝(𝐴𝜙), the ∥ 𝛻𝜙 ∥2 term enforces 

smoothness, and the double‐well potential ∥ |𝜙|2 − 𝑣2 ∥2 prevents degeneracy. 

Under the Sobolev setting 𝜙 ∈  𝐻𝑠(𝑀, 𝑅𝑑), 𝑠 >
𝑛

2
+ 1, the map 𝜙 ↦  𝑒𝑥𝑝(𝐴𝜙) is a smooth chart near the 

identity in 𝐷𝑖𝑓𝑓𝑠+1(𝑀) [29, 30], making 𝐸𝑆  well defined, locally Lipschitz, lower semicontinuous, and 𝐺–

invariant, thereby amenable to variational analysis. 

5.1.1. Existence of Minimisers 

Assume 𝑠 >
𝑑𝑖𝑚(𝑀)

2
+ 1, so 𝐻𝑠(𝑀, 𝑅𝑑)  ↪  𝐶1(𝑀). We use the direct method. 

5.1.1.1. Coercivity 
Since ∥ 𝛻𝜙 ∥2 and ∥ |𝜙|2 − 𝑣2 ∥2 dominate the 𝐻𝑠-norm, 

𝐸𝑆[𝜙]  →  ∞ 𝑎𝑠  ∥ 𝜙 ∥𝐻𝑠→ ∞. 

5.1.1.2. Weak lower semicontinuity 
Sobolev norms are weakly l.s.c. and 𝜙 ↦  𝑒𝑥𝑝(𝐴𝜙) ⋅ 𝑆 is continuous in 𝐻𝑠. Hence 𝐸𝑆 is weakly l.s.c. on 𝐻𝑠. 

5.1.1.3. Direct method 
Any minimizing sequence {𝜙𝑛} ⊂ 𝐻𝑠  is bounded by coercivity. By Rellich–Kondrachov, a subsequence 

converges 𝜙𝑛  ⇀  𝜙̂ in 𝐻𝑠 and strongly in 𝐿2. Weak l.s.c. gives 

𝐸𝑆[𝜙̂]  ≤  𝑙𝑖𝑚 𝑖𝑛𝑓𝑛→∞𝐸𝑆[𝜙𝑛] = 𝑖𝑛𝑓𝜙𝐸𝑆[𝜙], 

So 𝜙̂ is a minimiser. 

5.1.2. No constant minimisers 

Lemma 1. (No constant minimisers). If 𝑆 ∉  𝐹𝑖𝑥(𝐺) = { 𝑔 ⋅ 𝑆: 𝑔 ∈  𝐺 }, then no constant field 𝜙(𝑥) ≡ 𝑐 can 

minimise 𝐸𝑆. Hence any global minimiser is nonconstant. 

Sketch. Starting from a constant 𝜙 ≡ 𝑐, one builds a compactly supported perturbation 𝜙𝛿,𝑟 that: 

1. lowers the data term ∥ 𝑆 − 𝑒𝑥𝑝(𝐴𝜙𝛿,𝑟
)𝑆 ∥2 at first order, 
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2. tweaks the double‐well potential ∥ |𝜙|2 − 𝑣2 ∥2 linearly, 
3. incurs only a higher‐order increase in ∥ 𝛻𝜙 ∥2. 

The net effect is a strict energy decrease, contradicting minimality of the constant field. Full details are in 

Appendix. 

5.2. Descent Direction 

The minimiser of 

𝐸𝑆[𝜙] = 𝐸𝑑𝑎𝑡𝑎[𝜙] + 𝛼 ∥ 𝛻𝜙 ∥2+ 𝛽 ∥ |𝜙|2 − 𝑣2 ∥2, 

yields a displacement 

𝑤(𝜙̃) = 𝑆 − 𝑒𝑥𝑝(𝐴𝜙̃) ⋅ 𝑆. 

Define the orbit‐distance between the original signal and the warped signal: 

 

𝑑𝐺(𝑆) = 𝑖𝑛𝑓𝑔∈𝐺 ∥ 𝑆 − 𝑔 ⋅ 𝑒𝑥𝑝(𝐴𝜙̃) ⋅ 𝑆 ∥
2. 

Then, under weak regularity conditions, the minimiser 𝜙̃  yields the displacement 𝑤(𝜙̃)  that is nearly 

aligned with 𝛻𝑑𝐺(𝑆). 

Lemma 2. (Gauge displacement alignment). Let 𝑆 ∈  𝐻𝑠(𝑀, 𝑅𝑘), 𝑠 >
𝑑𝑖𝑚(𝑀)

2
+ 1. Denote   𝑆𝜙 = 𝑒𝑥𝑝(𝑡𝐴𝜙)𝑆,

𝑤(𝜙) = 𝑆 −   𝑆𝜙 ,   𝑉𝑆  =  𝑠𝑝𝑎𝑛{𝐿𝑖[𝑆]}.  Let   𝑃𝑉 ,   𝑃𝑉⟂ be 𝐿2 -orthogonal projectors, 𝜙̃  a minimizer of the 

energy functional (1) under Neumann boundary conditions. 

Then the gradient of the orbit distance 𝛻𝑑𝐺(𝑆)  =  2 ⋅  𝑃𝑉⟂ (𝑤(𝜙̃))  + 𝑂(𝑡 ∥ 𝑤(𝜙̃) ∥) . 

Sketch. First variation of energy (1) along constant directions 𝛿𝜙𝑖  = 𝑐𝑖  under boundary conditions gives 

0 =  𝛿𝐸𝑆[𝜙] =  2𝑡 ⟨𝑤,𝐿𝑖[  𝑆𝜙 ]⟩ + 4𝛽 ∫
𝑀

(|𝜙|2 − 𝑣2)𝜙𝑖 + 𝑂(𝑡2). 

Then ⟨𝑡𝐴𝜙̃ 𝑆 , 𝐿𝑖[𝑆]⟩  =  𝑂(𝛽𝛿) + 𝑂(𝑡), where 𝛿  controls the double‐well potential term. Decompose 𝑤 =

𝑤𝑇  + 𝑤𝑁  with 𝑤𝑇 = 𝑃𝑉 (𝑤),  𝑤𝑁 =  𝑃𝑉⟂ (𝑤).  Then the tangential component norm ∥ 𝑤𝑇 ∥ = 𝑂(𝛽𝛿𝑡 +

𝑡2)  ≪ ∥ 𝑤𝑁 ∥ = 𝑂(𝑡).  Full details are in Appendix.  

As a corollary, if 𝑊 = 𝑓(𝑑𝐺)  with 𝑓′ < 0 , then the gauge‐induced update ℎ = 𝐴𝜙̃[𝑆]  aligns with the 

steepest descent of 𝑊. 

6. Cost Functional Optimisation 

We now focus on discontinuous cost functionals 𝑊(𝑆), which we assume to be piecewise constant without 

loss of generality. In smooth regions, standard gradient descent applies; however, near discontinuities—such 

as decision boundaries—the gradient is undefined, and standard techniques fail to detect viable descent 

directions. 

Our goal is to analyse the behaviour of 𝑊 near such boundaries under symmetry-breaking perturbations. 

Specifically, we study how structured, infinitesimal changes in the signal 𝑆 within the symmetry-breaking 

subspace can identify descent directions with respect to the true, discontinuous cost. This framework helps 

explain why smooth surrogates can fail and provides a principled alternative when gradient information is 

unavailable. 

Definitions. Let 𝐶 ⊂  𝐻  be a convex region whose boundary 𝜕𝐶  is a 𝐶1co-dimension-1, locally flat sub-

manifold. Suppose 𝑊|𝐶̄ < 𝑊(𝑆)  for any 𝑆 ∉ 𝐶 . Define tangent space to the group orbit at the point S: 

𝐴𝑆 = 𝑇𝑆(𝐺 ⋅ 𝑆) , normal space 𝑁𝑆 = (𝐴𝑆)
⟂ and metric projection of 𝑆 on 𝐶: 𝑆∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈𝐶̄  ∥ 𝑥 − 𝑆 ∥, with 

normal vector 𝑙: = 𝑆 − 𝑆∗. At 𝑆∗ write the boundary tangent 𝐿:= 𝑇𝑆∗ 𝜕𝐶 = 𝑙⟂.  

Define the blind subspace: 𝐵𝑆:= 𝐿 ∩ 𝑁𝑆∗ = { 𝑤 ∈  𝑁𝑆∗ ∶  ⟨𝑤, 𝑙⟩ = 0}. 
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Theorem 1. (Descent towards a Convex Cell). Let 𝑊:𝐻 →  𝑅 be piecewise‐constant and invariant under a 

smooth isometric action of 𝐺 by pullback. Fix 𝑆 ∉ 𝐶 that is close enough to the cell 𝐶. 

Then: 

1. If 𝐵𝑆 = {0}, one of the rays 𝑆 ± 𝑡 ℎ meets 𝜕𝐶 at some 𝑡 > 0 and 𝑊 strictly decreases. 

2. If 𝑑𝑖𝑚 𝐵𝑆 > 0, sample additional perturbation δ from ∼𝑁(0, 𝐶𝑜𝑣) on 𝑁𝑆∗  with full support: ℎ′ = ℎ +

𝜀𝛿, 𝜀 > 0 , Then one of the rays 𝑆 ± 𝑡 ℎ′  meets 𝜕𝐶  at some 𝑡 > 0  and 𝑊  strictly decreases with 

probability > 0; it happens almost surely over repeated independent draws of δ. 

Proof Sketch.  

According to Lemma 2, the gauge displacement ℎ  is aligned with the gradient of the orbit distance 

𝛻𝑑𝐺(𝑆)and lies in the normal space 𝑁𝑆 up to linear regularization. Since 𝑆 is close to 𝐶, also ℎ ∈  𝑁𝑆∗  up to a 

small error. 

Generally, ℎ will have a non-zero component towards the cell 𝐶, unless it falls into the blind subspace 𝐵𝑆, 

which is composed by directions in the normal space to the group orbit that are tangential to the cell 

boundary 𝜕𝐶. 

a) If 𝐵𝑆 = {0}, for any gauge displacement ℎ we have ℎ = −𝜅𝑙 + 𝑜(∥ ℎ ∥). This situation happens if the 

symmetry group 𝐺 fully describes the decision boundary 𝜕𝐶. Gauge displacement in that case is anti-collinear 

to the boundary normal, so that one of the rays 𝑆 ± 𝑡 ℎ meets 𝜕𝐶 at some 𝑡 > 0 and 𝑊 strictly decreases. 

b) If 𝐵𝑆  is not trivial, gauge displacement ℎ  may be orthogonal to 𝑙 . In that case, consider a Gaussian 

distribution ∼𝑁(0, 𝐶𝑜𝑣) on 𝑁𝑆∗  with full support, draw a random perturbation 𝛿  and update the gauge 

displacement: ℎ′ = ℎ + 𝜀𝛿, 𝜀 > 0.  

In degenerate case 𝐵𝑆 =  𝑁𝑆∗  the following arguments hold after adding a small bias: ℎ′ = ℎ + 𝑏, 𝑏 ∉  𝑁𝑆∗ . 

If instead 𝐵𝑆 ≠  𝑁𝑆∗ , then 𝐵𝑆 is a proper closed subspace of 𝑁𝑆∗  and hence has Gaussian measure zero, so 

that P[⟨ℎ′, 𝑙⟩ = 0] = 0. By assumption, the boundary 𝜕𝐶  is locally flat; the probability to hit the boundary 

depends on the visibility cone of the locally flat patch and is positive. With repeated draws of perturbation 𝛿 

one of the rays 𝑆 ± 𝑡 ℎ′ meets 𝜕𝐶 and 𝑊 decreases almost surely. 

See Appendix for the complete proof. 

Via minimisation of external energy Eq. (1) we obtain symmetry‐breaking updates 

ℎ = 𝐴𝜙̃[𝑆]  ∈  𝑁𝑆 = (𝑇𝑆𝑂)
⟂ 

That automatically align with the normals to the discontinuities of a piecewise‐constant loss 𝑊 . Thus, 

when 𝑆 lies near a boundary across which 𝑊 drops, these updates become natural descent directions. The 

probability that a random ℎ ∈ 𝑁𝑆 escapes a plateau is governed by two factors: 

1. Blind subspace: a nontrivial subspace 𝐵𝑆 ⊂ 𝑁𝑆  can leave 𝑊  unchanged, and gauge displacement ℎ 

will generically have a component tangential to the desired descent direction (normal to the cell 

boundary) 

2. Visibility of the flat patch: if the gauge displacement ℎ is not perfectly aligned with the normal to the 

cell boundary, corresponding ray 𝑆 ± 𝑡 ℎ  can miss the boundary, unless the starting point 𝑆  is 

sufficiently close to the cell 𝐶. 

7. Numerical Experiments 

The core idea of our method is to solve a variational problem for an auxiliary energy functional, coupled 

with the actual data, and apply the resulting input transformation to reduce the task’s cost metric. 

We demonstrate this principle in settings where the target metric is discontinuous and thus cannot be 

directly optimised via gradient descent. Typically, such tasks rely on a differentiable proxy metric during 

training. 
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For example, in image classification and segmentation, the true task metrics—such as accuracy or 

Intersection over Union (IoU)—are discontinuous and piecewise constant. Therefore, training relies on 

proxies like the cross-entropy loss, which measures model confidence but not correctness. As a result, 

gradient-based methods may become stuck in “confident but wrong” local minima. 

We evaluate our symmetry-breaking framework on tasks where the cost function is a composition of a 

black-box neural network and a piecewise constant metric: 

𝑊 = 𝑁𝑒𝑡 ∘ 𝑀𝑒𝑡𝑟𝑖𝑐. 

On the Pascal VOC2012 segmentation benchmark, we use a frozen DeepLab-v3–ResNet backbone and 

optimize mean IoU. Our method yields a statistically significant improvement of +3% in IoU, while the cross-

entropy loss remains nearly unchanged—suggesting that symmetry-breaking perturbations cross decision 

boundaries invisible to standard gradients. 

A similar effect is observed in image classification on the CUB-200-2011 dataset. Using a frozen ResNet 

and top-1 accuracy as the evaluation metric, we achieve a +1 pp gain in accuracy, again with negligible change 

in cross-entropy. 

In scenarios with high model uncertainty, the benefit is even greater. Following Osipov [31], we apply local 

Lie-group deformations (e.g., time warps, frequency shifts, amplitude modulations) to the log–Mel 

spectrograms of dysarthric speech. A ResNet is trained to predict the deformation field 𝜙, regularised via 

reconstruction and symmetry energy [32]. At test time, the predicted flow corrects pathological speech, 

reducing Word Error Rate (WER) by up to 17 points on TORGO [33] and UA-Speech [34]—without using 

gradients or labels. 

Across speech, vision, and classification tasks, our framework consistently reduces non-differentiable cost 

metrics via symmetry-aware gauge flows, with no gradient access or task supervision. 

8. Conclusion 

We have developed a variational framework for test‐time symmetry breaking in structured signal spaces. 

Given any cost functional 𝑊 invariant under a global symmetry group 𝐺, we introduce a local gauge‐field 

energy whose minimiser 𝜙̂ defines a symmetry‐breaking update, which provably decreases 𝑊 under mild 

geometric and variational assumptions—even when 𝑊  is discontinuous or piecewise constant. Our 

randomized‐ray descent theorem further guarantees positive‐probability (and, in certain cases, almost‐sure) 

reduction of such non-differentiable costs. 

This methodology applies broadly across variational signal models—from classical Sobolev‐space 

formulations to modern neural network representations and metric‐based losses in machine learning. We 

demonstrate its effectiveness on speech and vision tasks with non-differentiable, discontinuous metrics. 

Appendix A: Proof of Lemma 1 

Proof. Suppose for contradiction that a constant gauge field 𝜙(𝑥) ≡ 𝑐 ∈  𝑅𝑑  minimizes 𝐸𝑆 . Since 𝑆 ∉

 𝐹𝑖𝑥(𝐺), the residual 

𝑅(𝑐, 𝑥) = 𝜙(𝑥) − 𝑐𝑖𝐿𝑖[𝑆](𝑥) = 𝑐𝑖(𝐿𝑖[𝑆](𝑥)) 

is not identically zero, so there is some 𝑥0  ∈  𝑀 with 𝑅(𝑐, 𝑥0) ≠ 0. 

1. Bump perturbation. Let 𝜂 ∈ 𝐶𝑐
∞(𝐵𝑟(𝑥0)) satisfy 0 ≤ 𝜂 ≤ 1, and set 

𝛿𝜙(𝑥) = 𝜀 
𝑅(𝑐, 𝑥0)

∥ 𝑅(𝑐, 𝑥0) ∥
 𝜂(𝑥), 

which lies in 𝐻𝑠(𝑀) for 𝑠 >
𝑑𝑖𝑚(𝑀)

2
+ 1. Write 
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𝑏𝑖 = ∫
𝐵𝑟(𝑥0)

𝜂(𝑥) ⟨𝑅(𝑐, 𝑥), 𝐿𝑖[𝑆](𝑥)⟩ 𝑑𝑥, 𝑏 = (𝑏1, … , 𝑏𝑑). 

2. First variation. Expanding 𝐸𝑆[𝜙 + 𝛿𝜙] to first order in 𝜀 gives 

𝛿𝐸 = 𝜀[−2⟨𝑐, 𝑏⟩ + 4𝛽(|𝑐|2 − 𝑣2)   ∥ 𝑐 ∥ ] + 𝑂(𝜀2). 

Since 𝜙 ≡ 𝑐 is assumed minimal, the bracket must vanish for every choice of bump 𝜂. 

3. Contradiction via tangential perturbation. Writing 𝑏 = 𝑏∥ + 𝑏⟂  with 𝑏∥ ∥ 𝑐  and 𝑏⟂⟂𝑐 , the bracket 

condition forces ⟨𝑐, 𝑏⟂⟩ = 0. But 𝑏∥ is already parallel to 𝑐, so one can choose the bump direction proportional 

to 𝑏⟂ itself. Then 

𝛿𝐸 = −2𝜀  ∥ 𝑏⟂ ∥2< 0, 

for small 𝜀 > 0, contradicting minimality. 

Hence no constant field 𝜙 ≡ 𝑐 can be a global minimiser.  

Appendix B: Proof of Lemma 2 

Proof. Let  𝜙̃ = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝐸𝑆 be the minimizer of the energy functional. In what follows we assume that the 

double well potential term keeps the minimiser close to the vacuum value: 𝛿:= ∥ |𝜙̃|2 − 𝑣2 ∥2 ≪  1  and that 

the orbit tangent is not degenerate: the Gram matrix 𝐺𝑖 𝑗: = ⟨𝐿𝑖[𝑆],  𝐿𝑗[𝑆]⟩ is well-conditioned on its range. 

1. Energy variation 

The first variation of the energy functional with respect to 𝜙𝑖 under Neumann boundary conditions is 

𝛿𝑖𝐸𝑆[𝜙] =  2𝑡 ⟨𝑤,𝐿𝑖[𝑆𝜙]⟩ + 4𝛽 ∫ (|𝜙|2 − 𝑣2)𝜙𝑖 + 𝑂(𝑡2)
𝑀

. 

Write the displacement as 𝑤 = 𝑆 − 𝑆𝜙 = −𝑡 𝑎 + 𝑂(𝑡2), where 𝑎:= 𝜙̃𝑖  𝐿𝑖[𝑆].   

Since 𝐿𝑖[𝑆𝜙]  = 𝐿𝑖[𝑆]  + 𝑂(𝑡 ), one has ⟨𝑎 ,  𝐿𝑖[𝑆]⟩  = 𝑂(𝛽𝛿) + 𝑂(𝑡 ) for  𝑖 =  1, . . . , 𝑑. Thus the tangential 

component 𝑎𝑇 : = 𝑃𝑉(𝑎) satisfies ∥ 𝑎𝑇 ∥
2 = 𝐷𝑇 𝐺+𝐷 =  𝑂((𝛽𝛿 + 𝑡))2, where 𝐷𝑖 ∶=  ⟨𝑎,  𝐿𝑖[𝑆]⟩. 

2. The gradient of the orbit distance  

Define the orbit distance between the original signal and the warped signal as follows: 

𝑑𝐺(𝑆) = 𝑖𝑛𝑓𝑔∈𝐺 ∥ 𝑆 − 𝑔 ⋅ 𝑒𝑥𝑝(𝑡𝐴𝜙̃) ⋅ 𝑆 ∥
2. 

We will assume that the minimising group element 𝑔̃ exists, is unique in a neighborhood of the identity, 

and 𝑔̃  = 𝑂(𝑡). Denote the residual 𝑅 ∶= 𝑆 − 𝑔̃ ⋅ 𝑒𝑥𝑝(𝑡𝐴𝜙̃) ⋅ 𝑆. Since the 𝐺 action is isometric,  

𝛻𝑑𝐺(𝑆) = 2(𝐼 − 𝑔̃ 𝑒𝑥𝑝(𝑡𝐴𝜙̃))) 𝑅. 

Using the fact that 𝑔̃  = 𝑂(𝑡) and 𝑒𝑥𝑝(𝑡𝐴𝜙̃) = 𝐼 + 𝑂(𝑡), we obtain 𝛻𝑑𝐺(𝑆) = 2𝑅 +  𝑂(𝑡 ∥ 𝑅 ∥). 

Since  𝑅 = 𝑃𝑉⟂ (𝑤)  + 𝑂(𝑡 ∥ 𝑤 ∥), we get  𝛻𝑑𝐺(𝑆) = 2 𝑃𝑉⟂ (𝑤) + 𝑂(𝑡 ∥ 𝑤 ∥). 

3. Inner‐Product estimate 

Decompose 𝑤 = 𝑤𝑇  + 𝑤𝑁  with   𝑤𝑇 = 𝑃𝑉 (𝑤),  𝑤𝑁 =  𝑃𝑉⟂ (𝑤).   

Then ∥ 𝑤𝑇 ∥ =  𝑡 ∥ 𝑎𝑇 ∥  +𝑂(𝑡
2)   =  𝑂(𝛽𝛿𝑡 + 𝑡2), whereas ∥ 𝑤 ∥ = 𝑡 ∥ 𝑎 ∥  +𝑂(𝑡2). 

Hence, 
∥𝑤𝑇∥

∥𝑤∥
≤ 𝐶1𝛿 + 𝐶2𝑡 (displacement 𝑤 is nearly aligned with 𝛻𝑑𝐺), which proves Lemma 2.  
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Appendix C: Proof of Theorem 1 

Proof. Gauge displacement. According to Lemma 2, the gauge displacement ℎ can be written as ℎ = −𝜅𝜉 +

𝑟,  with 𝜉 ∈  𝑁𝑆  and 𝑟  = O(𝛿+t). Since the group G action is smooth and isometric, the map 𝑋 ↦ 𝐴𝑋  is 

continuous, and so is 𝑋 ↦ 𝑁𝑋 (gap topology), hence the distance between 𝑁𝑆 and 𝑁𝑆∗  (gap topology)will be 

arbitrarily small as 𝑆 approaches 𝑆∗. 

Local flatness. Assume there exists a ball 𝐵 with 𝑟𝑏 > 0 such that 𝜕𝐶 ∩ 𝐵(𝑆 ∗, 𝑟𝑏) = (𝑆 ∗ +𝑙 ⊥) ∩ 𝐵(𝑆 ∗, 𝑟𝑏) 

(local flat patch). Let 𝑢 be unit with decomposition 𝑢 = 𝑢𝑁 𝑛 + 𝑢𝑇 . The ray 𝑆 + 𝑡𝑢 meets the flat patch of 𝜕𝐶 

whenever 𝑢𝑁 < 0 and ∥ 𝑢𝑇 ∥≤  𝑟𝑏 ∥ 𝑢𝑁 ∥ / ∥ 𝑙 ∥. 

(a) Deterministic case. Recall the definition of the blind subspace: 𝐵𝑆:= 𝐿 ∩ 𝑁𝑆∗ = { 𝑤 ∈  𝑁𝑆∗ ∶  ⟨𝑤, 𝑙⟩ =

0}.  

Suppose 𝐵𝑆  = {0} and let 𝑢 = ℎ/∥ ℎ ∥.  In that case, ⟨ℎ, 𝑙⟩  < 0 and ∥ 𝑢𝑇 ∥≤  𝑟𝑏 ∥ 𝑢𝑁 ∥ / ∥ 𝑙 ∥  holds 

automatically once 𝑆 is close enough to 𝑆*, and by double‐sign test, one ray enters the cell 𝐶. 

(b) Probabilistic case. Assume 𝑑𝑖𝑚 𝐵𝑆 >  0, 𝐵𝑆 ⊊  𝑁𝑆∗. Let 𝛿 ∼ 𝑁(0, 𝐶𝑜𝑣) be a centred Gaussian on 𝑁𝑆∗ 

with trace‐class, strictly positive covariance and full support. For 𝜀 > 0 set ℎ′: = ℎ + 𝜀𝛿, 𝑢:= ℎ′/∥ ℎ′ ∥. 

The map 𝑣 ↦ ⟨𝑣, 𝑙⟩ is a nonzero continuous linear functional on 𝑁𝑆∗  because 𝐵𝑆 ⊊  𝑁𝑆∗  (and hence 𝑙 ∉

𝐴𝑆∗). 

Since 𝛿 has a nondegenerate Gaussian law on 𝑁𝑆∗, the scalar ⟨𝛿, 𝑙⟩ is a (one–dimensional) nondegenerate 

Gaussian; therefore P[⟨δ,ℓ⟩ = 0] = 0. As ℎ  is deterministic, ⟨ℎ′, 𝑙⟩ = ⟨ℎ, 𝑙⟩ + 𝜀⟨𝛿, 𝑙⟩  also has a continuous 

density; hence 

P[⟨ℎ′,ℓ⟩ = 0] = 0. 

Thus, with probability 1, exactly one of the two signs ±ℎ′ has a negative normal component. 

Choose an orthonormal basis of 𝑁𝑆∗,  

𝑒0: = 𝑛,   𝑒1, 𝑒2, …  ∈  𝐿 ∩ 𝑁𝑆∗. 

Write 

𝑋:= ⟨ℎ′, 𝑒0⟩,   𝑌𝑗: = ⟨ℎ′, 𝑒𝑗⟩ (𝑗 ≥ 1),   𝑍𝐾
2: = ∑

𝑗 > 𝐾

𝑌𝑗
2 

Diagonalise covariance in this basis; then the coordinates (𝑋, 𝑌1, … , 𝑌𝐾) are jointly nondegenerate Gaussian 

in 𝑅𝐾 , independent of the tail 𝑌𝑗 , 𝑗 > 𝐾. The random variable 𝑍𝐾 has a continuous density on [0,∞).  

Fix 𝛼 > 0, 𝜂 > 0, K∈N so that  

𝑃[ 𝑋 ≤ −𝛼, ∣ 𝑌𝑗 ∣≤ 𝜂 , 𝑍𝐾 ≤ 𝜂 ] > 0       (1 ≤ 𝑗 ≤ 𝐾) 

Then, with a proper choice of constants, a single trial succeeds with probability at least p>0. Independent 

repetitions succeed almost surely because the failure probability after 𝑁 trials is (1 − 𝑝)𝑁  →  0. 

Remark. In degenerate case 𝑙 ∈ 𝐴𝑆∗  one has 𝐵𝑆 = 𝑁𝑆∗ , so that ⟨𝑣, 𝑙⟩ = 0 for all 𝑣 ∈  𝑁𝑆∗ . No perturbation 

confined to 𝑁𝑆∗ can cross the boundary. A remedy is to add a tiny bias 𝑏 ∉  𝑁𝑆∗ (or to enlarge 𝐺) and repeat 

the argument with ℎ + 𝑏. 
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