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Abstract: We investigate symmetry breaking in a time-dependent billiard that undergoes a continuous phase 

transition when dissipation is introduced. We provide the identification of symmetry breaking explicitly 

linked to the boundary velocity limits in time-dependent billiards, resolving the open question of fully 

characterizing this phase transition. The system presents unlimited velocity, and thus energy growth for the 

conservative dynamics. When inelastic collisions are introduced between the particle and the boundary, the 

velocity reaches a plateau after the crossover iteration. The system presents the expected behavior for this 

type of transition, including scale invariance, critical exponents related by scaling laws, and an order 

parameter approaching zero in the crossover iteration. We analyze the velocity spectrum and its averages for 

dissipative and conservative dynamics. The transition point in velocity behavior caused by the physical limit 

of the boundary velocity and by the introduced dissipation coincides with the crossover interaction obtained 

from the root-mean squared velocity, or 𝑉𝑟𝑚𝑠, curves. Additionally, we examine the velocity distributions, 

which lose their symmetry once the particle’s velocity approaches the lower limit imposed by the boundary’s 

motion and the system’s control parameters. This distribution is also characterized analytically by an 

expression P(V, n), which attains a stationary state, with a well-defined upper bound, only in the dissipative 

case.  
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1. Introduction 

Phase transitions have been extensively studied for more than a century, with applications spanning 

various physical systems. From the development of thermodynamics in the 19th century to the statistical 

mechanics of the 20th century, the concept of phase transitions has evolved to encompass increasingly 

complex phenomena [1]. A significant milestone was the identification of phase transitions that involve the 

breaking of continuous symmetries, most notably the Bose-Einstein condensation observed in ideal Bose 

gases as the temperature is lowered at a fixed positive density, and subsequently focus on systems with 

discrete symmetries, such as the Ising model [2]. Currently this concept has found several relevant 

applications in quantum many-body physics [3, 4], ultra-cold atomic systems [5], high-energy physics [6], 

information theory [7, 8] and, as in this case, dynamical systems [9–11].  

Different phases of a system can usually be assigned to different symmetries: the sudden rearrangement of 

a crystal lattice changes the state of the body discontinuously between different phases [12]. These changes 

in symmetry may also happen continuously, in second-order, also called continuous phase transitions, named 

after the corresponding order of the free energy derivative that breaks continuity during the transition [13]. 
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We can refer quantitatively to this change in symmetry, defining the quantity called “order parameter”, which 

continuously approaches zero as the system reaches the transition point [12].  

These continuous phase transitions are also characterized by their scale invariance, with critical exponents 

related by scaling laws, and which do not depend on the microscopic details of the system, but only on its 

dimensionality and symmetry, a phenomenon known as universality [14]. Such examples of these transitions 

are the Ising model, where the magnetization vanishes as the temperature is raised until it’s critical value [11], 

and the transition from integrability to non-integrability for the standard dissipative mapping [15], where it 

changes from regular to chaotic behavior in the phase space. 

As mentioned, a key step to characterize such phase transitions is to identify the symmetry broken at the 

critical point, which marks a qualitative change in the system’s macroscopic behavior [11]. While symmetry 

breaking has been studied in two-dimensional systems, such as the dissipative standard map, where it arises 

from the destruction of invariant curves near the transition from integrability to chaos [16], limited attention 

has been paid to its role in mixed-phase-space billiards [17, 18]. In such billiards, the phase transition from 

conservative to dissipative dynamics remains to be understood, particularly how symmetry breaking 

emerges from the introduction of time dependency on the boundary and inelastic collisions. In this work, we 

characterize such symmetry breaking explicitly, detailing the mechanisms responsible for leading the system 

from the conservative to the dissipative case. 

A billiard is a dynamical system composed of a particle or a set of non-interacting particles suffering 

specular collisions with a rigid boundary that confines them [19]. The shape of the boundary plays a 

fundamental role in determining the system’s behavior. Depending on its geometry, the dynamics can range 

from fully integrable, as in the case of the circular billiard [20, 21], to fully chaotic, as exemplified by the Sinai 

billiard and the Bunimovich stadium [22, 23], or exhibit a mixed phase space structure, as seen in the oval 

billiard [24]. Billiards can be framed by Hamiltonians such as 𝐻(𝑥, 𝑝, 𝑡) =
𝑝2

2𝑚
+ 𝑉(𝑥, 𝑡) , where 𝑉(𝑥, 𝑡) =

𝑉0(𝑥) + 𝑉1(𝑥, 𝑡) . The component 𝑉1(𝑥, 𝑡)  is associated with the time-dependency introduced in the 

boundary, leading to non-integrability [25]. 

Although seemingly very simple, these systems offer a wide array of potential applications across diverse 

fields, including optics and photonics [17, 26], plasma physics [18], electronic transport [27], complex 

networks [28], and condensed matter physics [29]. Therefore, characterizing its symmetry breaking is 

extremely important for better understanding the mechanisms behind these systems’ phase transitions. 

In this work, we investigate the symmetry breaking in an oval-shaped billiard as it goes from unbounded 

to bounded diffusion as dissipation is introduced. The boundary is given by 𝑅𝑏(𝜃, 𝑡) =

1 +ϵ[1+ηcos(𝑡)]cos(𝑝𝜃), where ϵ controls the integrability of the system and η gives the amplitude of the 

temporal dependence. A discrete four-dimensional mapping T describes the systems dynamics. The system 

is integrable system for ϵ=0 and presents mixed dynamics for 𝜖 ≠  0  [19]. The Loskutov-Ryabov-Akinshin 

(LRA) conjecture determines that the existence of chaos in the phase space is a sufficient, not necessary, 

condition for the occurrence of an unlimited energy growth when a time perturbation of the boundary is 

introduced [30, 31]. This energy growth is also known as Fermi Acceleration (FA). This phenomenon can be 

suppressed by introducing dissipation, in this case in the form of inelasticity in the collisions characterized 

by a restitution coefficient γ. 

In the conservative case, the particle velocities exhibit FA due to diffusive behavior, while the dissipative 

case leads the system to a stationary state. We show that the onset of this transition is governed by the 

boundary velocity’s physical limit and the dissipation’s strength, as revealed by the 𝑉𝑟𝑚𝑠 and 𝑉curves. The 

velocity distribution becomes asymmetric near its lower bound, determined by the system’s control 

parameters, and reaches a stationary profile only in the dissipative regime. This behavior is also recovered 

by the analytical distribution 𝑃(𝑉, 𝑛) near this transition. 
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This paper is organized as follows: Section 2 describes the model for the time-dependent oval billiard and 

discusses its velocities behavior, along with scaling properties. Sections 3 and 4 present the behavior of such 

velocities for the conservative and dissipative case, respectively, as well as the velocities distributions for each 

instances, comparing with the established results for this system. Section 5 presents the final discussions and 

conclusions regarding the symmetry breaking. 

2. The Model and the Mapping 

As mentioned, the main focus of this work is the oval billiard. The boundary is given, in polar coordinates, 

by 𝑅𝑏(𝜃, 𝑡) = 1 + ϵ[1+ηcos(𝑡) ]cos(𝑝𝜃) , where θ is the polar angle, ϵ is a parameter controlling the circle 

deformation, η gives the amplitude of the time perturbation, and p deforms the boundary. We limit our 

analysis to integer values of p, as non-integer values would lead to the existence of holes in the boundary, 

allowing the escape of particles and going beyond the scope of this work. ϵ = 0 retrieves the circular billiard, 

which we know to be fully integrable, while ϵ ≠  0 leads to a mixed phase space, containing both chaos, 

periodic islands, and invariant spanning curves [24]. The further increase of ϵ leads to the vanishing of these 

regular structures, being fully chaotic for values above 𝜖𝑐  = 
1

1+𝑝2 [32]. The time-dependent boundary η ≠ 

0, as defined by the LRA conjecture [31], leads to unbounded diffusion caused by chaotic dynamics for the 

static regime. 

We can write a four-dimensional nonlinear mapping 𝑇(𝜃𝑛, 𝛼𝑛, 𝑉𝑛, 𝑡𝑛) welding the dynamics of the impact 

n with n + 1. θ, as mentioned, represents the polar angle relative to the origin of the coordinate system, while 

α corresponds to the angle between the trajectory and the vector tangent to the boundary. V and t represent, 

respectively, the velocity of the particle and the instant of impact. The coordinates for the particle are given 

by 𝑋(𝜃𝑛) = 𝑅(𝜃𝑛, 𝑡𝑛)cos(𝜃𝑛) and 𝑌(𝜃𝑛) = 𝑅(𝜃𝑛, 𝑡𝑛) sin(𝜃𝑛). The velocity is then written as: 

 

𝑉𝑛⃗⃗  ⃗ = |𝑉𝑛⃗⃗  ⃗|[cos(𝜙𝑛 + 𝛼𝑛) 𝑖̂ + sin(𝜙𝑛 + 𝛼𝑛) 𝑗̂],     (1) 

 

where 𝜙𝑛=arctan [𝑌
′(𝜃𝑛, 𝑡𝑛)/𝑋

′(𝜃𝑛, 𝑡𝑛)]  is an auxiliary angle, with primes denoting partial derivatives over 

𝜃𝑛 . The specular reflection law must also be obeyed, for the non-inertial referential frame of the moving 

boundary, this is written as: 

 

𝑉⃗ 𝑛+1
′ ∙ 𝑇⃗ 𝑛+1 = 𝑉⃗ 𝑛

′ ∙ 𝑇⃗ 𝑛+1   (2) 

 

𝑉⃗ 𝑛+1
′ ∙ 𝑁⃗⃗ 𝑛+1 = 𝑉⃗ 𝑛

′ ∙ 𝑁⃗⃗ 𝑛+1   (3) 
 

where 𝑇⃗  and 𝑁⃗⃗  indicate the unit vectors for the tangential and normal components, respectively, written 

as  𝑇⃗ 𝑛+1  = 𝑐𝑜𝑠(𝜙𝑛+1)𝑖̂ + 𝑠𝑖𝑛(𝜙𝑛+1)𝑗 ̂ and 𝑁⃗⃗ 𝑛+1  =−𝑠𝑖𝑛(𝜙𝑛+1)𝑖̂ + 𝑐𝑜𝑠(𝜙𝑛+1)𝑗 ̂. With these equations, the 

velocity at the (n + 1)th collision is finally written as: 

 

|𝑉⃗ 𝑛+1| = √(𝑉⃗ 𝑛+1 ∙ 𝑇⃗ 𝑛+1)
2
+ (𝑉⃗ 𝑛+1 ∙ 𝑁⃗⃗ 𝑛+1)

2
.      (4) 

 

The trajectory of the particle is given by: 

 

𝑋(𝑡) = 𝑋(𝜃𝑛, 𝑡𝑛) + |𝑉⃗ 𝑛| cos(𝛼𝑛 + 𝜙𝑛) (𝑡 − 𝑡𝑛),        (5) 

 

𝑌(𝑡) = 𝑌(𝜃𝑛, 𝑡𝑛) + |𝑉⃗ 𝑛| sin(𝛼𝑛 + 𝜙𝑛) (𝑡 − 𝑡𝑛).        (6) 
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Fig. 1 shows, for the static case, different boundary shapes for different parameters ϵ and p, as well as for 

the trajectory of a single particle in item (c) and the normal and tangential components in item (d). 

 

 
Fig. 1. (Color online) Different boundary shapes, trajectories, velocities, normal and tangential components 

for different parameters ϵ and p. Figs. 1a)−d) show boundary shapes for different combinations of parameters 

ϵ and p. c) and d) also show the trajectory for a single particle, in red. The normal and tangential components, 

as well as the velocities 𝑉𝑛 and 𝑉𝑛+1 are also presented in d). 

 

The position of the particle can then be obtained by 𝑅(𝑡) = √𝑋2(𝑡) + 𝑌2(𝑡). The point of collision is found 

when R = Rb. After the collision, the updated angle 𝛼𝑛+1 is given by 𝛼𝑛+1 = arctan[𝑉⃗ 𝑛+1 ∙ 𝑁⃗⃗ 𝑛+1/𝑉⃗ 𝑛+1 ∙ 𝑇⃗ 𝑛+1]. 

As for the velocity of the moving boundary, it can be written as [33]: 

 

|𝑉⃗ 𝑏(𝑡𝑛+1)| =
𝑑𝑅(𝑡)

𝑑𝑡
|𝑡𝑛+1

[𝑐𝑜𝑠(𝜃𝑛+1)𝑖̂ + 𝑠𝑒𝑛(𝜃𝑛+1)𝑗̂] ∝ 𝜖𝜂       (7) 

 

To analyze the particle velocities Vn, it is convenient to recur to two new quantities: 𝑉 and 𝑉𝑟𝑚𝑠. For M 

different initial conditions and n collisions of the particle with the boundary, they are written as: 

 

𝑉𝑟𝑚𝑠 = √𝑉2(𝑛) = √
1

𝑀
∑

1

𝑛
∑ 𝑉𝑖,𝑗

2𝑛
𝑗=1

𝑀
𝑖=1     (8) 

 

Here Vi,j represents the velocities for each trajectory i and for all j different orbits. 

For the conservative case, as shown in Fig. 2a), the behavior of 𝑉𝑟𝑚𝑠 can be summarized as follows: (i) 

𝑉𝑟𝑚𝑠 ∝ 𝑛𝛽 with 𝛽 ≈ 0.5 for small values of V0; (ii) A plateau 𝑉 plat ∝ 𝑉0
ζ
 is observed for n ≪ nx, where ζ ≈ 

1; (iii) the crossover iteration between (i) and (ii) is given by nx∝ 𝑉0
𝑧, with z ≈ 2. The scale invariance observed 
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in the system allows us to, using a homogeneous and generalized function <𝑉> (n, V0) = l <𝑉> (𝑙𝑎n, 𝑙𝑏V0), 

write a scaling law relating the three exponents z = ζ/β. These exponents, as is the case for similar systems, 

are universal and not geometry dependent [34]. The overlap of the curves into a single universal one can be 

done using the scaling transformations 𝑉𝑟𝑚𝑠  → 𝑉𝑟𝑚𝑠 /𝑉0
ζ
  and n → n/𝑉0

𝑧 . The universal plot is given in 

Fig.  2b). As mentioned, the conservative case leads to unlimited velocity and, thus, energy growth, known as 

FA. Our chosen method to suppress this behavior is to consider the collisions of the particles with the 

boundary to be inelastic. The dissipation is introduced by a restitution coefficient γ < 1 in the normal 

component of the velocity. For γ = 1, the collisions are elastic, returning to the conservative case. The updated 

reflection law is: 

 

𝑉⃗ 𝑛+1 ∙ 𝑁⃗⃗ 𝑛+1 = −𝛾𝑉⃗ 𝑛 ∙ 𝑁⃗⃗ 𝑛+1 + (1 + 𝛾)𝑉⃗ 𝑏[𝑡𝑛+1 + 𝑍(𝑛)] ∙ 𝑁⃗⃗ 𝑛+1    (9) 
 

 
Fig. 2. (Color online)𝑉𝑟𝑚𝑠 curves for a set of different initial velocities 𝑉0 and their subsequent overlap using 

the scaling transformations (conservative case). (a) 𝑉𝑟𝑚𝑠 vs. n constructed from the mapping for and ϵ = 0.08, 

p = 3, η = 0.5 and different values of V0. (b) Overlap of the curves in (a) into a single universal curve using the 

scaling transformations 𝑉𝑟𝑚𝑠 → 𝑉𝑟𝑚𝑠/𝑉0
ζ
 and n → n/𝑉0

𝑧. 

 

Fig. 3a) shows that fractional energy loss does indeed suppress the FA. We can now write a new set scaling 

hypotheses as: (i) 𝑉𝑟𝑚𝑠 ∝ [(𝜂𝜖)2𝑛]𝛽 or n ≪ nx, with 𝛽 ≈0.5; (ii) the velocity reaches a plateau described by 

𝑉sat ∝ (1 − 𝛾)𝜁1(𝜂𝜖)𝜁2 , for n ≫ nx, where 𝜁1 ≈ −0.5 and 𝜁2 ≈1; (iii) the crossover iteration is given by nx ∝

(1 − 𝛾)𝑧1(𝜂𝜖)𝑧2 , with 𝑧1 ≈ −1  and 𝑧2 ≈ 0 . The two scaling laws for this case are 𝑧1=
𝜁1

𝛽
  and 𝑧2=

𝜁2

𝛽
− 2 . 

Again the overlap of the curves into a single universal one can be done using scaling transformations: 𝑉𝑟𝑚𝑠→ 

𝑉𝑟𝑚𝑠/(1 − 𝛾)𝜁1(𝜂𝜖)𝜁2  and n → n/(1 − 𝛾)𝑧1(𝜂𝜖)𝑧2 . The curves overlap into a single universal plot, is given in 

Fig. 3b).  
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It’s worth mentioning that, in both the conservative and dissipative case, the exponent 𝛽 ≈ 0.5 indicates 

diffusive growth in velocity, typical of stochastic energy transfer in chaotic systems. This behavior is 

consistent with the universality class of Fermi acceleration in time dependent billiards and reflects weak 

anomalous diffusion in velocity space prior to saturation [33]. The fact that the same exponent appears in 

both regimes suggests that the dynamics in n ≪ nx is governed by the same fundamental mechanism of chaotic 

energy transfer from the boundary to the particle. 

Our main goal in this analysis is to investigate the broken symmetry between the two regimes, examining 

how the velocity distributions, and their associated averages, relate to 𝑉𝑟𝑚𝑠 , as will be discussed in the 

following sections. 

 

 
Fig. 3. (Color online) curves for a set of different control parameters 𝛾   and 𝜖𝜂 , with their subsequent 

overlap obtained through the scaling transformations (dissipative case). (a) 𝑉𝑟𝑚𝑠  vs. 𝑛(𝜖𝜂)2  constructed 

from the mapping for initial velocity V0 = 10−5 for different values of γ and ηϵ. (b) Overlap of the curves in (a) 

into a single universal curve using the scaling transformations 𝑉𝑟𝑚𝑠 → 𝑉𝑟𝑚𝑠 / (1 − 𝛾)𝜁1(𝜂𝜖)𝜁2   and n → 

n/(1 − 𝛾)𝑧1(𝜂𝜖)𝑧2 . 

3. Conservative Case 

We begin this characterization exploring the underlying symmetry properties of the system in the absence 

of dissipation. We aim to answer how the velocity distribution behaves in this regime, and what it can reveal 

about the mechanisms responsible for symmetry breaking. 

We examine both the root-mean-square velocity (𝑉𝑟𝑚𝑠) and the complete velocity distribution. Fig. 4 shows, 

for the first 100 collisions, the trajectories of 10 different initial conditions (𝜃𝑛, 𝛼𝑛) randomly chosen from 

[0, 2π] for V0 = 1, ϵ = 0.08, η = 0.5 and γ = 1. The curves were constructed from a direct solution of the mapping 

equations described in Section 2, with collision instants and positions determined via the bisection method, 

using a tolerance on the order of 10−12. The maximum and minimum values reached from these trajectories 

are saved, leading to the purple and turquoise lines, named 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛, respectively. The 𝑉𝑟𝑚𝑠 curve is 

green, still in the plateau region, as observed in Fig. 2. The average values of the velocity for the regions above 
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and below 𝑉𝑟𝑚𝑠 are shown in the blue and red curves, respectively. We refer to these quantities as 𝑉𝑚𝑎𝑥 and 

𝑉𝑚𝑖𝑛. 

In agreement with the plateau observed for 𝑉𝑟𝑚𝑠 , the distribution of velocities of each trajectory is 

distributed symmetrically around the initial value V0. The curves of 𝑉𝑚𝑎𝑥 , 𝑉𝑚𝑖𝑛 , 𝑉𝑚𝑎𝑥  and. 𝑉𝑚𝑖𝑛  also 

present such symmetry. Fig. 5 presents the evolution of the five curves 𝑉𝑟𝑚𝑠, 𝑉𝑚𝑎𝑥 , 𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛 

for V0 = 0.6, ϵ = 0.08, η = 0.5, p = 3, γ = 1 and n = 104 collisions. The symmetric behavior between the curves 

𝑉𝑚𝑎𝑥  and 𝑉𝑚𝑖𝑛  is broken after approximately 200 collisions, as highlighted in panel b). As observed in 

Fig.  6 increasing the value of n leads to a gradual flattening of the curve, eventually reaching a lower limit 

for the particle velocities. 

 

 

Fig. 4. (Color online) 𝑉𝑟𝑚𝑠, 𝑉𝑚𝑎𝑥 , 𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥 , and 𝑉𝑚𝑖𝑛 vs. n for V0 = 1, ϵ = 0.08, η = 0.5 and γ = 1. The 

circles represent different trajectories traversed by 10 initial conditions for each color. 

 

 
Fig. 5. (Color online) Evolution of the velocities and their averages during the dynamics of the system for the 

conservative case. a) 𝑉𝑟𝑚𝑠, 𝑉𝑚𝑎𝑥 , 𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥 , and 𝑉𝑚𝑖𝑛 vs. n for V0 = 0.6, ϵ = 0.08, η = 0.5 and γ = 1. Panel b) 

shows a magnified view of the crossover iteration nx obtained from the green curve. 
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This limit is given by the velocity of the moving boundary itself, given by Eq. (7), that is, the particles cannot 

have velocities lower than that of the boundary after the collision since, upon colliding, their velocities would 

be increased by the boundary itself. Thus, once the particles reach the lower limit, their value can only 

increase, leading to the observed symmetry breaking, where the distribution ceases to be Gaussian, as shown 

in blue in Fig. 6. This behavior is also observed in Fig. 5 for the curves 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛, with the first growing 

unboundedly and the second oscillating around the lower limit in the collision zone 𝑉𝑏 ∝ ±𝜂𝜖 . Together, 

these behaviors lead to the power-law growth of the 𝑉𝑟𝑚𝑠  curve, in blue. The presence of a lower limit 

combined with the absence of an upper limit for such a system also leads, for a sufficiently large number of 

collisions, to the phenomenon known as superdiffusion. This phenomenon is defined by a change in the 

diffusion exponent β, from the normal diffusion value of 0.5 to 1, a value characteristic of ballistic transport 

or strongly time-correlated dynamics, as characterized by Hansen et al. [35]. The crossover iteration, nx, then 

marks the point at which the average of the velocities reaches the lower limit. The blue distribution, for n = 

100, as shown in Fig. 6, corroborates this analysis, with the appearance of a “tail” to the right of V0. The same 

behavior is also corroborated by the probability density function P(V,n) for the same system, shown in green 

in Fig. 7. This distribution has as boundary conditions P(V,n)|V→0 = P(V,n)|V→∞ = 0 and P(V,n)n=0 = δ(V − V0), 

ensuring that all particles start with the same initial velocity, distributed across M different initial conditions, 

uniformly distributed over α, θ, and t. For a sufficiently small number of collisions, all velocities are centered 

around the initial velocity, according to the delta function. As the number of collisions increases, this 

distribution gradually “flattens” remaining symmetric for n = 100. 

 

 
Fig. 6. (Color online) Probability density for a set of 3500 particles after n = 10, 30, 100 and 1000 collisions. 

The parameters used were V0 = 0.6, ϵ = 0.08, η = 0.5, p = 3 and γ = 1. 

 

4. Dissipative Case 

We now extend the previous analysis to the dissipative case, i.e., γ < 1, seeking to identify how dissipation 

affects the velocity dynamics and symmetry properties of the system. 

As observed in the 𝑉𝑟𝑚𝑠  curves in Section 2, the velocities now reach a plateau for a sufficiently large 

number of collisions. A sufficiently low initial velocity, V0 = 0.2, was chosen to exhibit both transitions: from 

the initial plateau at V0 to the growth regime at n1 and from the growth regime to the saturation regime at n2. 
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Fig. 7 presents the behaviors of 𝑉𝑟𝑚𝑠, 𝑉𝑚𝑎𝑥 , 𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛 for p = 3, ϵ = 0.1, η = 0.2, and γ = 0.999, 

ensuring that we are on the verge of the transition between the conservative and dissipative dynamics. 

 

 
Fig. 7. (Color online) Evolution of the velocities and their averages during the dynamics of the system for the 

dissipative case. a) 𝑉𝑟𝑚𝑠, 𝑉𝑚𝑎𝑥 , and 𝑉𝑚𝑖𝑛 vs. n for V0 = 0.2, ϵ = 0.1, η = 0.2, and γ = 0.999, with a magnified 

view of the crossover iteration n1 obtained from the quadratic fit (in red) of the blue curve. As shown, the 

crossover iterations n1 and n2 were also obtained from the black and green curves. b) 𝑉𝑟𝑚𝑠, 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛 

for the same parameters, with Vsat and the collision zone at Vb indicated by dotted lines. 

 

Fig. 7a) shows the crossover iterations n1 and n2 obtained by two different methods: (i) from the 

intersection between the growth and saturation regimes of the curves 𝑉𝑚𝑎𝑥 and 𝑉𝑟𝑚𝑠, represented by the 

dotted lines (ii) from the minimum of the 𝑉𝑚𝑖𝑛 through a quadratic fit, shown in red. The results found show 

complete compatibility. 

As for Fig. 7b), the curves of 𝑉𝑟𝑚𝑠 , 𝑉𝑚𝑎𝑥  and 𝑉𝑚𝑖𝑛  are shown, where the latter presents the same 

behavior observed in Fig. 5, a decay until the lower limit region, given by the boundary velocity. From this 

point on, 𝑉𝑚𝑖𝑛 oscillates within the collision region described by Vb ∝ ± 𝜂𝜖. The velocity 𝑉𝑚𝑎𝑥 presents a 

growth pattern until the moment in which it crosses the line given by the saturation velocity. This region 

marks, physically, velocities large enough that the losses due to dissipation, even if minimal, are comparable 

to the velocities themselves. The saturation velocity Vsat is then reached, after a sufficiently large number of 

collisions, not only for 𝑉𝑟𝑚𝑠 but also for 𝑉𝑚𝑎𝑥 . Such Vsat ∝ (1 − γ)−1/2ηϵ acts as an upper limit for the system’s 

velocity. This behavior is corroborated by the distributions presented in Fig. 8, constructed for V0 = 0.6, ϵ = 

0.08, η = 0.5, and p = 3. The figures are robust to the increase in collisions up to n = 50, 000 and to the variation 

of γ near the transition. For a sufficiently small number of collisions, the behavior observed in Fig. 6 is 

recovered; the distribution is centered symmetrically around the initial velocity V0. The increase in collisions 

leads to the asymmetric behavior observed in items a)−c), an upper limit inhibits the curve from spreading 

indefinitely, reaching a steady state, as indicated in Fig. 7b). The behavior is also consistent with the variation 

of the restitution coefficient γ, which controls how fast such a distribution flattens. Fig. 8b) shows, for the 

same n = 5, 000, a distribution that progressively spreads out as γ increases, approaching the transition at  

γ = 1. It is essential to mention that this upper limit given by the saturation velocity Vsat is also proportional 

to γ, allowing curves d)−f) to reach different maximum values. 

The same distribution can also be characterized analytically by Fonseca et al. [36] 
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𝑃(𝑉, 𝑛) =
𝜏

√4𝜋𝐷𝑛
[𝑒

(
−(𝑉−𝑉0)2

4𝐷𝑛
)
− 𝑒

(
−(𝑉+𝑉0)2

4𝐷𝑛
)
],     (10) 

 

where τ = erf(
𝑉0

√4𝐷𝑛
)  is a normalization constant. This distribution retrieves the behavior P(V,0) = 𝛿(𝑉 −

𝑉0) and is constructed using the images method, assuming that there is a “barrier” at +∞ and an absorbing 

or reflecting one at 0. This equation only works as expected when the system is sufficiently close to the 

transition, i.e. γ → 1 since its obtaining arises from the solution of the diffusion equation 
𝜕𝑃(𝑉,𝑛)

𝜕𝑛
= 𝐷

𝜕2𝑃(𝑉,𝑛)

𝜕𝑉2 . 

In the conservative case, we would have to resort to a construction where such an upper limit does not exist, 

with only one lower “barrier”. It is also important to mention that the mechanisms presented so far seek to 

describe the behavior of the system on the verge of transition. Therefore, such results are not adequate to 

describe the system for values of γ far from 1. In strictly conservative or dissipative regimes, the modeling 

presented in Section 2 is sufficient. 

The symmetry breaking that occurs at the transition point γ = 1 is then characterized by the change from a 

regime where there is only a lower limit for the velocities given by the boundary, in the conservative case, to 

a second regime, dissipative, where the same lower limit exists alongside an upper limit given by the 

saturation velocity. This behavior can be verified both in the curves 𝑉𝑟𝑚𝑠, 𝑉𝑚𝑎𝑥 , 𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥 , 𝑉𝑚𝑖𝑛 and in 

the distribution P(V,n). A straightforward comparison between Figs. 5 and 7 show the same behavior for 𝑉𝑚𝑖𝑛 

and 𝑉𝑚𝑖𝑛, representing the lower limit, and significantly different behaviors for 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑎𝑥 . After an 

initial growth, the latter reaches a steady state for a sufficiently large number of collisions due to the 

dissipation effect, suppressing the FA. Other billiards framed by the LRA conjecture, such as the elliptical and 

annular [17, 37], that exhibit FA for the conservative case, which can then be suppressed by dissipation, may 

also be framed by this characterization. 

 

 
Fig. 8. (Color online) Probability density for a set of 3500 particles for V0 = 0.6, ϵ = 0.08, η = 0.5, p = 3. a), b), 

and c) show the behavior for γ = 0.999 and n = 1000, n = 5000, and n = 50,000 collisions. Figs. d), e) and f), 

for n = 5000 collisions, show the behavior for γ = 0.99, γ = 0.999 and γ = 0.9999. 
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5. Summary and Conclusions 

We characterized the symmetry breaking from a dissipative to a non-dissipative dynamics for a time-

dependent billiard. The transition leads to an upper limit alongside the preexisting lower limit defined by the 

velocity of the boundary. The discussion enabled us to identify the role of the velocity distribution in such 

symmetry breaking, with the quantity V min marking the crossover iteration as the point where it stops 

decreasing and starts increasing alongside the 𝑉𝑚𝑎𝑥 . This behavior leads to the power law growth regime for 

𝑉𝑟𝑚𝑠 and is exhibited in the conservative and dissipative scenarios. The quantities 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑎𝑥 , on the 

other hand, exhibit significant change after the transition, reaching an upper limit and eventual saturation for 

the dissipative case, suppressing the FA. The distributions P(V), phenomenological and analytical, 

corroborate this analysis. Characterizing the symmetry-breaking mechanisms allows a better understanding 

of the continuous phase transitions exhibited for these systems, marked by scaling invariance, with scaling 

laws and critical exponents defining the criticality near the transition. These results may be relevant for 

systems where time-dependent boundary interactions play a key role and may induce similar symmetry-

breaking mechanisms and phase transitions, such as optical billiards, microwave cavities, and plasma 

confinement devices, as well as other billiards framed by the LRA conjecture. 
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