
  

Fractional-Order Chaotic Lorenz-84 Atmosphere System 
Stabilization Using a Feedback State Space Control 

 

Nasr-Eddine Mellah1, Sakina Benrabah2, Samir Ladaci3* 

1 Department of Electronics, DCCP Lab, Ecole Nationale Polytechnique, Oudek road, El Harrach 16200 
Algiers, Algeria. 
2 Department of Mathematics, University of Mentouri Brothers of Constantine 1, 25001, Constantine, 
Algeria. 
3 Department of Automatic Control Eng., DCCP Lab, Ecole Nationale Polytechnique, Oudek road, El Harrach 
16200 Algiers, Algeria. 
 
* Corresponding author. Tel.: +213(0)777809846; email: samir.ladaci@g.enp.edu.dz (S.L.) 
Manuscript submitted April 18, 2025; accepted May 19, 2025; published June 23, 2025. 
doi: 10.17706/ijapm.2025.15.1.69-77 
 

Abstract: This paper explores the stabilization of the three-dimensional Fractional-Order (FO) chaotic 
Lorenz-84 atmosphere model through control strategies. Employing the Grünwald-Letnikov approximation 
for fractional integration, the chaotic system is simulated to understand its intricate dynamics. The main 
focus lies in utilizing state-space feedback control to adapt input signals based on system states, aiming to 
steer chaotic dynamics towards stability. Additionally, control gains optimization is conducted through 
Particle Swarm Optimization (PSO) to guarantee robust stabilization of the chaotic atmosphere model.  
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1. Introduction 
For decades, chaotic systems—those that exhibit unpredictable but deterministic behavior—have 

captivated scientists [1]. Now, a new layer of complexity is emerging: partial chaotic systems. These systems 
are described by more complex mathematics that go beyond the realm of integer-order derivatives, and 
exhibit richer dynamics, full of potential applications across various disciplines [2]. However, harnessing 
this potential depends on our ability to control these complex systems. 

Controlling partial chaotic systems represents an exciting frontier with broad implications across 
engineering, biology, and secure communications [3]. Methodologies include traditional control techniques, 
partial-order controllers, adaptive strategies, optimization, and chaos synchronization [4]. Challenges 
include limited understanding, robust controller design, scalability, computational complexity, and 
experimental validation [2]. Addressing these issues requires multidisciplinary collaboration to unleash 
their full potential. 

Among the countless complex dynamic behaviors observed in the natural sciences, atmospheric models 
stand out as an exemplary case study. In 1984, Edward Lorenz made modifications to his system of 
equations, giving birth to the Lorenz-84 model [5]. By taking advantage of hyper-graphs, we detect chaos 
situations characterized by incorrect values, leading to deeper exploration [6, 7]. 

In recent years, research into fractional calculus and its applications has experienced a boom in both the 
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quantity of work and the variety of application subjects and methods used [8–10]. 
In the field of chaotic systems, the introduction of fractional order operators has made it possible to 

model several physical phenomena and, above all, to add a degree of complexity to data encryption systems, 
particularly for secure communication [11, 12]. Several fractional order control and synchronization 
techniques have been proposed in the specialized literature such as adaptive control [13], sliding mode 
control [14], PID control [15], etc. 

The proposed methodology is based on the Grünwald-Letnikov approximation of partial integral to 
simulate and understand the complex behavior of the system [16] with the primary goal of reducing the 
chaotic tendencies inherent in the model and guiding it towards stability using advanced control 
methodologies. Our approach is based on the use of state space feedback control, a powerful technique for 
manipulating system dynamics by modifying input signals based on system states [17]. Furthermore, we 
harness the capabilities of Particle Swarm Optimization (PSO)—a nature-inspired transformational 
algorithm—to determine the optimal control gains, ensuring effective stability of the chaotic Lorenz-84 
atmospheric model [18]. 

This paper is organized as follows: Section 2 presents some basic definitions of fractional calculus. 
Section 3 is dedicated to the description of the fractional order Lorenz-84 system. Then, Section 4 presents 
the proposed control strategy. Simulation results are given in Section 5 whereas Section 6 concludes this 
paper.  

2. Fractional-Order Operators 
With a 300-year history, fractional calculus extends differentiation/integration for non-integer orders, 

finding recent application in control systems through definitions such as Caputo and Grünwald-Letnikov 
derivatives [6, 19].  

2.1. Grunwald-Leitnikov (G-L) Definition 
For q > 0, the definition of the G-L fractional order derivative is. 

 
𝐷𝐷𝐺𝐺𝐺𝐺
𝑞𝑞 𝑓𝑓(𝑡𝑡) = 𝑙𝑙𝑙𝑙𝑙𝑙

ℎ→0
ℎ−𝑞𝑞 ∑ (−1)𝑗𝑗ℎ

𝑗𝑗=0 �
𝑞𝑞
𝑗𝑗� 𝑓𝑓(𝑘𝑘ℎ − 𝑗𝑗ℎ)                           (1) 

 
where h is a sample period, and coefficients: 

 
𝑊𝑊𝐽𝐽

𝑞𝑞 = �
𝑞𝑞
𝑗𝑗� = 𝛤𝛤(𝑞𝑞+1)

𝛤𝛤(𝑗𝑗+1)𝛤𝛤(𝑞𝑞−𝑗𝑗+1)                                                                                   (2) 
 

With 𝑊𝑊0
𝑞𝑞 = �𝑞𝑞0� = 1 are the following binomial coefficients: 

 
(1 − 𝑧𝑧)𝑞𝑞 = ∑ (−1)𝑗𝑗∞

𝑗𝑗=0 �
𝑞𝑞
𝑗𝑗� 𝑧𝑧

𝑗𝑗 = ∑ 𝑊𝑊𝑗𝑗
(𝑞𝑞)∞

𝑗𝑗=0 𝑧𝑧𝑗𝑗                                                                   (3) 
 

The fractional G-L integration is formulated as: 
 

𝐼𝐼𝐺𝐺𝐺𝐺
𝛾𝛾 𝑓𝑓(𝑡𝑡) = 𝑙𝑙𝑙𝑙𝑙𝑙

ℎ→0
ℎ𝛾𝛾 ∑ (−1)𝑗𝑗ℎ

𝑗𝑗=0 �
−𝛾𝛾
𝑗𝑗 � 𝑓𝑓(𝑘𝑘ℎ − 𝑗𝑗ℎ)                           (4) 

 
With 𝑊𝑊0

−𝛾𝛾 = �−𝛾𝛾0 � = 1are the following binomial coefficients: 

 
(1 − 𝑧𝑧)−𝛾𝛾 = ∑ (−1)𝑗𝑗∞

𝑗𝑗=0 �
−𝛾𝛾
𝑗𝑗 � 𝑧𝑧

𝑗𝑗 = ∑ 𝑊𝑊𝑗𝑗
(−𝛾𝛾)∞

𝑗𝑗=0 𝑧𝑧𝑗𝑗                                                           (5) 
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2.2. Grunwald-Leitnikov (G-L) Approximation 
Due to sampling in industrial control, numerical approximations are essential for capturing the fractional 

dynamics. 
The Grünwald-Letnikov (G-L) approximation for the fractional derivative integral of causal function f(t) at 

time t = kh is given by: 
 

𝐷𝐷𝑞𝑞𝑓𝑓(𝑘𝑘ℎ) ≃ ℎ−𝑞𝑞 ∑ 𝑤𝑤𝑗𝑗
𝑞𝑞𝑘𝑘

𝑗𝑗=0 𝑓𝑓(𝑘𝑘ℎ − 𝑗𝑗ℎ)                                 (6) 
 

𝐼𝐼𝐺𝐺𝐺𝐺
𝛾𝛾 𝑓𝑓(𝑘𝑘ℎ) ≃ ℎ𝛾𝛾 ∑ 𝑤𝑤𝑗𝑗

−𝛾𝛾𝑘𝑘
𝑗𝑗=0 𝑓𝑓(𝑘𝑘ℎ − 𝑗𝑗ℎ)                                 (7) 

 
The coefficients 𝑤𝑤𝑗𝑗

𝑞𝑞and 𝑤𝑤𝑗𝑗
−𝛾𝛾 represent binomial coefficients from the Eqs. (8) and (10), respectively. 

These coefficients can be computed using the following two recursive formulas for j = 1, 2, ..., k. 
 

𝑤𝑤0
𝑞𝑞 = 𝑤𝑤0

−𝛾𝛾 = 1 
 

𝑤𝑤𝑗𝑗
𝑞𝑞 = �1 −

1 + 𝑞𝑞
𝑗𝑗

�𝑤𝑤𝑗𝑗−1
𝑞𝑞 ,𝑤𝑤𝑗𝑗

−𝛾𝛾 = �1 −
1 − 𝛾𝛾
𝑗𝑗

�𝑤𝑤𝑗𝑗−1
−𝛾𝛾  

 

2.3. Fractional-Order Chaotic Lorenz-84 Model 
The equations below define the fractional Lorenz-84 system [9]: 
 

𝐷𝐷𝑞𝑞𝑥𝑥1(𝑡𝑡) = −𝑎𝑎𝑎𝑎1 − 𝑥𝑥22 − 𝑥𝑥32 + 𝑎𝑎𝑎𝑎 
 

𝐷𝐷𝑞𝑞𝑥𝑥2(𝑡𝑡) = −𝑥𝑥2 − 𝑥𝑥1𝑥𝑥2 − 𝑏𝑏𝑏𝑏1𝑥𝑥3 + 𝐺𝐺                                                                  (8) 
 

𝐷𝐷𝑞𝑞𝑥𝑥1(𝑡𝑡) = −𝑥𝑥3 + 𝑏𝑏𝑏𝑏1𝑥𝑥2 + 𝑥𝑥1𝑥𝑥3 
 
x1, x2, and x3 represent global westerly current, cosine phase strength, and sine phase strength, respectively. 
Parameters a and b represent advection of wave strength by easterly and westerly currents, respectively. F 
and G are positive thermal forcing terms that typically depend on temperature constants. 

By a simple analysis, we obtain an unstable equilibrium point. E = (7.99626863, 0.00652641402, 
0.029837024). 

To select the appropriate fractional order, we analyze the bifurcation diagram that shows the evolution of 
x2 with respect to q in Fig. 1. 
 

 
Fig. 1. Bifurcation diagram x2 = f(q). 
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When (F, G, a, b) = (8, 1, 0.25, 4) [20], the diagram allows us to identify the interval over which chaos 
exists. In our investigation, we selected a specific fractional system (q = 0.83) and analyzed the resulting 
attractor, which is shown in Figs. 2 and 3. The initial conditions used were x(0) = 1, y(0) = 1, and z(0) = 1. 

 

 
Fig. 2. Phase plane of fractional chaotic Lorenz-84. 

 

 
Fig. 3. State variables of fractional Lorenz-84 system. 

 

3. Control Strategy 
To control chaos in the Lorenz-84 model, we use a combination of State Feedback Control and Particle 

Swarm Optimization (PSO) based on ITAE as the key function. 

3.1. State Space Feedback Control 
Guiding a dynamic system to an equilibrium point using state-space equations and feedback control, 

where the control input is  
 

𝑈𝑈 = 𝑘𝑘𝑘𝑘                                                                                                (9) 
 
k is the feedback gain matrix. 

 

International Journal of Applied Physics and Mathematics

72 Volume 15, Number 1, 2025



  

3.2. Particle Swarm Optimization (PSO) 
An algorithm inspired by animal social behavior optimizes control gains for a state-space feedback 

controller, stabilizing the FO-chaotic Lorenz-84 model. This is achieved through iterative optimization of 
particle velocities and positions, guided by individual and neighbor experiences as follows [6]: 

Velocity update: 
 

𝑣𝑣(𝑡𝑡 + 1)𝑖𝑖𝑖𝑖 = 𝑤𝑤. 𝑣𝑣(𝑡𝑡)𝑖𝑖𝑖𝑖 + 𝑐𝑐1𝑟𝑟1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)𝑖𝑖𝑖𝑖 − 𝑥𝑥(𝑡𝑡)𝑖𝑖𝑖𝑖 + 𝑐𝑐2𝑟𝑟2�𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑗𝑗 − 𝑥𝑥(𝑡𝑡)𝑖𝑖𝑖𝑖�                       (10) 
 

Position update: 
 

𝑥𝑥(𝑡𝑡 + 1)𝑖𝑖𝑖𝑖 = (𝑡𝑡)𝑖𝑖𝑖𝑖 + 𝑣𝑣(𝑡𝑡 + 1)𝑖𝑖𝑖𝑖                                                                         (11) 
 
where: 
v(t)ij is the velocity of particle i in dimension j at time t. 
x(t)ij is the position of particle i in dimension j at time t. 
w is the inertia weight, controlling the influence of the previous velocity. 
c1 and c2 are acceleration coefficients representing the cognitive and social components, respectively. 
r1 and r2 are random numbers sampled from a uniform distribution in the range [0, 1]. 
pbestij is the best position achieved by particle i in dimension j so far. 
gbestj is the best position achieved by any particle in dimension j so far. 

3.3. Integral Time Absolute Error (ITAE) 
The system’s performance is evaluated by looking at the total error over time, calculated using the 

formula [21]: 
 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = ∫ |𝑒𝑒(𝑡𝑡)|∞
0 𝑡𝑡𝑡𝑡𝑡𝑡                                                                                       (12) 

 
where e(t) is the error at a given time. 

4. Simulation Results 
The following model describes the controlled fractional chaotic Lorenz-84 system incorporating the 

previously defined controller:  
 

𝑑𝑑𝑑𝑑1
𝑞𝑞

𝑑𝑑𝑑𝑑𝑞𝑞
= −𝑎𝑎𝑎𝑎1 − 𝑥𝑥22 − 𝑥𝑥32 + 𝑎𝑎𝑎𝑎 − 𝑘𝑘1𝑥𝑥1 

𝑑𝑑𝑑𝑑2
𝑞𝑞

𝑑𝑑𝑑𝑑𝑞𝑞
= −𝑥𝑥2 − 𝑥𝑥1𝑥𝑥2 − 𝑏𝑏𝑏𝑏1𝑥𝑥3 + 𝐺𝐺 − 𝑘𝑘2𝑥𝑥2                                                            (13) 

𝑑𝑑𝑑𝑑3
𝑞𝑞

𝑑𝑑𝑑𝑑𝑞𝑞
= −𝑥𝑥3 + 𝑏𝑏𝑏𝑏1𝑥𝑥2 + 𝑥𝑥1𝑥𝑥3 − 𝑘𝑘3𝑥𝑥3 

 
In this study, we look for the stabilization of the fractional chaotic Lorenz-84 system on its unstable 

equilibrium point. 
In order to find the best values for controller parameters k1, k2, and k3, we employed a PSO algorithm. The 

optimized values of k are shown in Fig. 4 and the corresponding reduction in error is evident in Fig. 5. 
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Fig. 4. Optimized controller parameters using PSO algorithm. 

 

 
Fig. 5. Reduction in error corresponding to optimized controller parameters. 

 
We utilize feedback with gains k1= 0.9, k2 = 0.01, and k3= 0.05 to stabilize the Lorenz-84 fractional chaotic 

system at a desired equilibrium point. The results are presented in Figs. 6 and 7. 
 

 
Fig. 6. State variables of fractional Lorenz-84 System with control. 
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Fig. 7. Phase plane of fractional chaotic Lorenz-84 with control. 

 
Simulation results show that the proposed controller is able to stabilize the fractional order chaotic 

system within a reasonable time. 

5. Conclusion 
This study explores stabilizing the three-dimensional fractional-order chaotic Lorenz-84 atmosphere 

model using control strategies. We employ the Grünwald-Letnikov approximation for fractional integration 
to accurately capture system dynamics. State-space feedback control adjusts input signals based on system 
states, guiding chaotic dynamics towards stability. Additionally, Particle Swarm Optimization (PSO) 
optimizes control gains to ensure robust stabilization. Results illustrate the effectiveness of state-space 
feedback control and PSO in stabilizing chaotic behavior of the Fractional-order Chaotic Lorenz-84 
Atmosphere System.  

Future work will address synchronization and control techniques for fractional-order chaotic systems 
with uncertainties and disturbances. 
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