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Abstract: This paper focuses on the practical application of Markowitz’s mean-variance model and Capital 
Asset Pricing Model (CAPM) in the stock market. Stock data was obtained using the Tushare interface, data 
preprocessing and visualization were performed by using Python. Multiple stocks from the Shanghai and 
Shenzhen markets were analyzed using the mean-variance model, and an efficient frontier chart was 
created. Through empirical research, the optimal investment portfolio with the highest Sharpe ratio and 
lowest variance was identified, and their expected returns and volatility were compared. Finally, the CAPM 
model was fitted using the least square methods to evaluate the returns and volatility of individual stocks in 
relation to the market. Besides, the Fama-French three-factor model, which is a developmental model based 
on CAPM, was also used for the analysis. This study provides valuable investment strategy references for 
investors. It addresses the concerns of investors regarding the evaluation of portfolio returns and risks, 
achieving optimal asset allocation. Furthermore, it deepens the understanding of the significance of 
Markowitz’s mean-variance model and the CAPM model in financial risk management. 
 
Keywords: Markowitz mean-variance model, capital asset pricing model, Fama-French three-factor model, 
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1. Introduction 
In recent years, as our people’s incomes have been growing, their awareness of and enthusiasm for 

investment have also been increasing. People are increasingly inclined to invest in stocks and funds, 
wanting to grow their wealth, but wanting to minimize the risk and maximize the expected return as much 
as possible. So how do you get higher returns with manageable risk? This requires asset allocation, which is 
a portfolio issue. One of the four investment principles of investment science is diversification to reduce risk. 
The systematic study of diversification is known as portfolio theory [1]. This theory was pioneered by 
American economist Harry M. Markowitz in the early 1950s. The theoretical basis of the model is that 
investors in the investment market need to carefully consider the expected return and risk level of each 
security, as well as the degree of correlation between the securities, in order to select the optimal 
investment portfolio, thereby reducing investment risk, at the same time, it is necessary to take into account 
one’s own risk-tolerance ability and investment preferences, in order to ensure that the investment strategy 
is in line with the individual’s objectives. And Capital Asset Pricing Model (CAPM) [2] is built on the basis of 
portfolio theory, which simplifies the complex portfolio calculations into simple criteria for the fair 
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assessment of asset prices, so that investors can more easily choose high-quality investment targets. 
However, the CAPM model faces several limitations, such as the difficulty in determining the value of β, the 
neglect of factors like market frictions and irrational behavior, and the exclusive focus on systematic risk 
while ignoring the specific risk of individual stocks. These limitations may make the CAPM model not as 
effective and accurate in practice as it is in theory. In the early 1990s, Eugene Fama and Ken French 
introduced the classic three-factor model [3], which added two dimensions-market capitalization and 
value-as risk factors to the CAPM model. As a result, the three-factor model re-examines the CAPM model 
and provides explanations for the drivers of long-term stock returns. 

Since the introduction of the mean-variance model, there have been countless academic studies centered 
around this model. For example, Sun et al. [4] obtained the optimal portfolio with the largest Sharpe ratio 
and the optimal portfolio with the smallest variance through empirical research, compared and analyzed 
their expected return, standard deviation and Sharpe ratio, and gave the effective boundary of the asset 
portfolio. Zola [5] explored the issue of investors’ investment strategies in the investment decision-making 
process based on the mean-variance model. Song and Chen [6] empirically analyze China’s home furnishing 
industry based on the CAPM model, which is analyzed and verified using the CAPM model, so as to 
determine whether the CAPM model can reasonably analyze the price of assets. Li [7] used the BJS time 
series test to empirically investigate the traditional CAPM model and analyze its applicability to CSI 300 
index constituents. Luo [8] applied the Fama-French three-factor model in China’s A-share market and 
explained its performance and applicability comprehensively. Drawing on existing research results, this 
paper establishes a portfolio model by combining the Markowitz mean-variance model with the CAPM 
model for the data of twenty stocks from 2014 to 2024 on the Shenzhen Stock Exchange and the Shanghai 
Stock Exchange, and realizes the mining and analysis of the data using Python. The weights, risks and 
expected returns of each security corresponding to different conditions are finally derived, while the 
efficient frontier is drawn and investment recommendations are given for each asset in the portfolio. Finally, 
we will conduct a contrastive analysis of the three models based on the results of our experiments. 

2. Preliminary Theoretical of Models 
 Markowitz Mean-Variance Modeling 

The two core issues that investors value most are risk and expected return, so when assessing the risk 
and return of an asset investment, a balance needs to be found and an optimal asset allocation strategy 
adopted to achieve it. In his article, Markowitz discusses how the mean of risky assets can be used to 
predict expected returns and the variance or standard deviation can be used to assess the level of risk as a 
way to help investors choose the optimal portfolio of assets and make investment decisions. The main goal 
of the theory is to help investors make optimal investment decisions in the face of different risks and 
expected returns, in other words, to maximize investment returns or minimize investment risks. 
2.1.1. Mean-variance model  

The calculation formula is as follows: 
Step one, expected rate of return on the investment portfolio [9]. The expected rate of return on a 

portfolio represents the likelihood that an investor will earn an average return on the portfolio. The overall 
expected rate of return on the portfolio depends on the combined effect of the expected rates of return on 
the various securities. The expression of formula:   

𝐸𝐸(𝑅𝑅)𝑝𝑝 = ∑ 𝜔𝜔𝑖𝑖𝑅𝑅𝑖𝑖𝑛𝑛
𝑖𝑖=1   (1) 

where 𝐸𝐸(𝑅𝑅)𝑝𝑝 represents the expected return of the portfolio, 𝑅𝑅𝑖𝑖 is the expected return of the ith security, 
𝜔𝜔𝑖𝑖 is the investment weight of the ith security. 
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Step two, risks to the investment portfolio [10]. The degree of volatility of the various securities in a 
portfolio and their interrelationships have an impact on the degree of risk diversification in the portfolio. 
The standard deviation is used to measure the magnitude of the change in returns for each security, while 
the correlation coefficient is used to measure the correlation between the returns of two securities. The 
formula for its calculation is 

𝜎𝜎𝑝𝑝2 = ∑ ∑ 𝜔𝜔𝑖𝑖𝜔𝜔𝑗𝑗𝐶𝐶𝐶𝐶𝐶𝐶�𝑅𝑅𝑖𝑖 ,𝑅𝑅𝑗𝑗�𝑛𝑛
𝑗𝑗=0 =𝑛𝑛

𝑖𝑖=0 ∑ ∑ 𝜔𝜔𝑖𝑖𝜔𝜔𝑗𝑗𝜌𝜌𝑖𝑖𝑖𝑖σ𝑖𝑖σ𝑗𝑗𝑛𝑛
𝑗𝑗=0

𝑛𝑛
𝑖𝑖=0      (2) 

where 𝜎𝜎𝑝𝑝2 is the variance of the portfolio, σ𝑖𝑖 is the standard deviation of security i, σ𝑗𝑗 is the standard 
deviation of security j, 𝜔𝜔𝑖𝑖 is the investment weight of security i, 𝜔𝜔𝑗𝑗 is the investment weight of security j, 

𝐶𝐶𝐶𝐶𝐶𝐶�𝑅𝑅𝑖𝑖 ,𝑅𝑅𝑗𝑗� is the covariance between security i and j, 𝜌𝜌𝑖𝑖𝑖𝑖 is the correlation coefficient between security i 

and security j, i.e., 𝜌𝜌𝑖𝑖𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑅𝑅𝑖𝑖,𝑅𝑅𝑗𝑗�
σ𝑖𝑖σ𝑗𝑗

. 

Eq. (2) reveals that the diversification effect of a portfolio is mainly determined by a combination of the 
correlation between two securities, the volatility of different securities, and the investment ratio. Portfolio 
risk can only be effectively reduced if less correlated securities are selected for the portfolio, and the 
correlation coefficient has a more significant effect on portfolio risk than the standard deviation. 
2.1.2. Efficient boundary model 

An investor typically chooses a portfolio mix from viable pools that will deliver the highest possible 
return with the lowest possible risk. The efficient set is also called the efficient frontier, it is a subset of the 
feasible set of portfolios that satisfy the following two conditions [11], (i) the portfolio with the lowest risk 
at a certain rate of return, (ii) the portfolio with the highest rate of return at a certain risk. Two important 
definitions in the model are the efficient asset portfolio and the minimum variance portfolio. A portfolio is 
an efficient mean-variance portfolio if it has the highest expected return subject to a specific variance 
constraint and has the smallest variance subject to a specific expected return requirement, then it is an 
efficient mean-variance portfolio. The set consisting of all mean-variance efficient asset portfolios is defined 
as the efficient frontier. A portfolio of assets is a minimum variance portfolio if it minimizes risk at a given 
level of expected return. The left side of the effective boundary is the outward curved shape formed by the 
upper edge of the feasible region, and the point of the minimum variance combination lies on the left side of 
the effective boundary, i.e., on the left boundary in Fig. 1. 

 

 
Fig. 1. Effective boundary model. 
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 Capital Asset Pricing Model 
The Capital Asset Pricing Model (CAPM) was developed based on the mean-variance theory, which is 

based on Markowitz’s assumptions that the stock market is efficient, assets are infinitely allocable, an 
investor can buy any stock, an investor chooses a portfolio based on the mean and the variance, an investor 
is risk averse and will never be satisfied, there are risk-free assets, and an investor is free to perform 
operations such as borrowing and lending [1]. Markowitz’s portfolio theory, while having some theoretical 
value, is difficult to apply in practice because its calculations are too complex. Sharpe innovated on the 
theory by adding new assumptions, thus making the model more concise. It assumes that capital markets 
are completely perfect, with no transaction costs, that information is very liquid and easily accessible, that 
all investors can borrow at the same interest rate and have the same fixed investment horizon and 
expectations, and that investors have the same understanding of expected returns, standard deviation, and 
security covariance. Based on the above assumptions, the model can be expressed as 

𝐸𝐸(𝑅𝑅𝑖𝑖) = 𝑅𝑅𝑓𝑓 + 𝛽𝛽𝑖𝑖𝑖𝑖�𝐸𝐸(𝑅𝑅𝑚𝑚) − 𝑅𝑅𝑓𝑓�, 

where 𝐸𝐸(𝑅𝑅𝑖𝑖), 𝑅𝑅𝑓𝑓  represents the expected rate and risk-free rate of return on a stock or portfolio 
respectively, 𝐸𝐸(𝑅𝑅𝑚𝑚) denotes the portfolio of the return on market, and 𝛽𝛽𝑖𝑖𝑖𝑖 is a systematic risk measure 
for a stock or portfolio. 

According to the Capital asset pricing model, it can be concluded that the determination of the expected 
rate of return requires the following three main factors. First, the risk-free rate of return 𝑅𝑅𝑓𝑓, it represents 
the time value of money and is usually based on the bank interest rate of three-month time deposits or the 
interest rate of one-year treasury bonds. Second, the market risk premium 𝐸𝐸(𝑅𝑅𝑚𝑚)−𝑅𝑅𝑓𝑓 it reflects the 
difference between the return on a market portfolio and the risk-free rate, which captures the reward due 
per unit of risk. Third, the risk factor β, it is the measurement of how a security responsive to the market 

portfolio fluctuations and is calculated by using the formulation β = σ𝑖𝑖𝑀𝑀
σ𝑀𝑀
2 , where σ𝑖𝑖𝑀𝑀  denotes the 

covariance of any security 𝑆𝑆𝑖𝑖 for the market portfolio M, σ𝑀𝑀2  is the market risk. 
Of course, the CAPM model has another significant factor to analyze, known as the asset’s alpha, denot-ed 

by α and expressed as α = 𝐸𝐸(𝑅𝑅𝑎𝑎)−𝐸𝐸(𝑅𝑅𝑒𝑒). It is calculated as the difference between the expected rate of 
return on actual investments and the expected rate of return in market equilibrium. The reasonableness of 
asset pricing can be judged according to the changes in the following factors: First, when α is greater than 
zero, it implies that asset prices are undervalued because the expected rate of return on real investment is 
higher than the expected rate of return in the market, and a higher rate of return can only be obtained by 
purchasing the asset at a relatively low price. Second, when α is less than zero, the expected return on real 
investment is lower than the expected return in the market equilibrium, which implies that the price of the 
asset is overvalued, and the investor is not able to obtain an adequate return. Third, when α is equal to zero, 
the expected return on real investment is equal to the expected rate of return in the market equilibrium, 
which suggests that the price of the commodity is considered to be a reasonable price [11]. 

In summary, the cornerstone of modern financial market price theory is the Capital Asset Pricing Model 
(CAPM), which has a wide range of practical applications in the areas of asset valuation, cost of capital 
budgeting, and resource allocation, despite its many assumptions and conditions that are difficult to fully 
satisfy. The CAPM model is widely recognized in the field of securities theory, which focuses on analyzing 
the sensitivity between security returns and changes in market portfolio returns to help investors 
determine whether the additional returns they receive are matched by the associated risks.  
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 Fama-French Three-Factor Model 
The Capital Asset Pricing Model suggests that the return on a stock is only linearly related to the 

systematic risk of the stock market as a whole. That is, the expected return of a stock is only related to the 
systematic risk of the market. However, Banz found that a stock’s return is also linked to its market value. In 
a series of subsequent studies, book-to-market ratio (BE/ME), price-earnings ratio inverse (E/P), and 
several other metrics have been shown to explain stock price movements, indicating that stock prices are 
influenced by a range of risk factors [12]. 

Fama and French demonstrated that a three-factor model [13] can be developed to explain stock returns. 
The model suggests that the excess return of a portfolio (including individual stocks) can be explained by its 
exposure to three factors: the market asset portfolio 𝑅𝑅𝑚𝑚−𝑅𝑅𝑓𝑓, the market capitalization factor (SMB), and 
the book-to-market ratio factor (HML). Although more than three factors have now been developed, these 
three are the most basic and important, and all other factors are based on it or even influenced by it. This 
multifactor equilibrium pricing model can be expressed as: 

𝐸𝐸(𝑅𝑅𝑖𝑖𝑖𝑖) − 𝑅𝑅𝑓𝑓𝑓𝑓 = 𝛽𝛽𝑖𝑖[(𝐸𝐸(𝑅𝑅𝑚𝑚𝑚𝑚) − 𝑅𝑅𝑓𝑓𝑓𝑓] + 𝑠𝑠𝑖𝑖𝐸𝐸(𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡) + ℎ𝑖𝑖𝐸𝐸(𝐻𝐻𝐻𝐻𝐼𝐼𝑡𝑡), 

where 𝑅𝑅𝑓𝑓𝑓𝑓 denotes the risk-free rate of return at time t, 𝑅𝑅𝑚𝑚𝑚𝑚 denotes the market rate of return at time t 
and 𝑅𝑅𝑖𝑖𝑖𝑖 denotes the return on asset i at time t, respectively. 𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡 is the simulated portfolio return of the 
market capitalization factor at time t and 𝐻𝐻𝐻𝐻𝐼𝐼𝑡𝑡 is the simulated portfolio return of the book-to-market 
ratio factor at time t. β, 𝑠𝑠𝑖𝑖 , and ℎ𝑖𝑖 represents the coefficients of the three factors, respectively, and the 
regression model is expressed as follows: 

𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑓𝑓𝑓𝑓 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖(𝑅𝑅𝑚𝑚𝑚𝑚 − 𝑅𝑅𝑓𝑓𝑓𝑓) + 𝑠𝑠𝑖𝑖𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡 + ℎ𝑖𝑖𝐻𝐻𝐻𝐻𝐼𝐼𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖 

3. Mean-Variance Modeling for Portfolio Data Analysis 
There are five main steps to analyze the portfolio data. First, obtain past trading data of stocks using 

financial databases. Second, preprocess the data and store it. Next, use data visualization techniques to 
show the basic direction of the stocks. Then, calculate metrics such as the stock’s annualized return, the 
volatility of its annualized return, the covariance between stocks and the correlation coefficients. Finally, 
construct 10,000 groups of stochastic portfolios, draw the efficient frontier, and find the return, volatility, 
and portfolio weight parameters of the optimal portfolio when the Sharpe ratio has maximum and 
minimum variance. 

 Sample Stock Selection and Data Acquisition 
3.1.1. Stock selection  

The stocks selected in this article include: Shanghai Stock Exchange (SSE) and Shenzhen Stock Exchange 
(SZSE) stock markets. For the benchmark index, the CSI 300 index was selected to represent the A-share 
market. On the one hand, it is a more recognized stock market index in the industry, and on the other hand, 
there are corresponding futures products tracking the CSI 300 index. Based on the results of the social 
network method analysis [14] and the performance of fund positions, it can be seen that influential fund 
managers prefer to hold positions in stocks with large outstanding market capitalization and low share 
price volatility.In addition, large-capitalization stocks have the advantages of good stability, low price 
volatility, strong financing ability, and suitability for medium- to long-term investment [15]. Therefore, in 
order to better represent the portfolio, satisfy the public investors as well as to be able to analyze it with 
more data, this paper selects stocks from China’s Shanghai and Shenzhen stock markets based on the size of 
the market capitalization, and a total of 20 stocks are selected. Due to the need to analyze data over a longer 

International Journal of Applied Physics and Mathematics

55 Volume 15, Number 1, 2025



  

period of time, the six newly listed stocks in the top 20 by market capitalization were excluded, including 
China Mobile, CATL, CNOOC, China Telecom, PSBC, and Foxconn. Six more stocks are added based on market 
capitalization, including Wuliangye, BOCOM, Citic Securities, East Money, Zijin Mining, and CIB. Based on 
data availability, the years 2014 through 2024 were selected as the sample period. 
3.1.2. Data acquisition 

Business analysis through data collection is an activity that many securities firms engage in, with 
influential module libraries such as Tushare, Rqdatac, and Windpy. Using Tushare, a free open source 
financial data interface, we can easily access historical stock trading data. Tushare covers a large amount of 
financial data, including basic stock lists, listed company information, trading calendars, daily quotes, mid- 
and high-frequency minute quotes, compounding factors, income statements, balance sheets, cash flow 
statements and other data, which can satisfy most of the quantitative trader data needs, and it is a suitable 
tool for all types of investment and financial research. This article primarily analyzes 20 stocks, which 
include the following: ICBC (601398), Kweichow Moutai (600519), ABC (601288), PetroChina (601857), 
CCB (601939), BOC (601988), China Life (601628), China Merchants Bank (600036), Ping An (601318), 
China Shenhua (601088), BYD (002594), Yangtze Power (600900), Sinopec (600028), Midea (000333), 
Wuliangye (000858), BOCOM (601328), Citic Securities (600030), East Money (300059), Zijin Mining 
(601899), and CIB (601166). Tushare’s third-party financial database needs to be installed and upgraded to 
the latest before you can access the data. Before getting the data in Python you also have to go to the 
Tushare website to register as a Tushare community user and go to the user center to view your personal 
Token credentials. Next the number of the stock you want to find can be searched in its data tool. After the 
above steps are completed, you can use Python to get the relevant stock data. This paper focuses on 
obtaining the closing price of each trading day of the twenty stocks listed above from October 9, 2014 to 
October 9, 2024, a total of 48,216 pieces of trading data. 

First we need to import the Tushare database and initialize the pro interface, then define a list to store 
the desired stock codes. Subsequently, you can use the for loop statement to iterate through each stock and 
get the ticker symbol, trade date as well as the closing price. Table 1 shows the first sixteen data in the 
acquisition data from which we can observe the acquisition data. 

 
Table 1. Acquired Raw Stock Data 

unnamed:0 ts_code trade_date close 
0 601398.SH 20241009 6.04 
1 601398.SH 20241008 6.12 
2 601398.SH 20240930 6.18 
3 601398.SH 20240930 6.01 
4 601398.SH 20240926 6.20 
… … … … 

 

 Preprocessing of Stock Data 
Since the data provided by Tushare did not meet the needs of our subsequent analysis, we needed to 

preprocess the data before proceeding with the analysis [16]. We chose to use the Pandas library to improve 
the efficiency of data processing, specifically including deleting rows, composite indexes, rows to columns, 
and other operations on the raw data. After data preprocessing, the data is consolidated into 2,433 data 
items that contain the date, the stock code, and the closing price for each trading day corresponding to each 
stock code. The final data is shown in Table 2 below. 
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Table 2. Processed Data 
transaction date 000333.SZ 000858.SZ 002594.SZ 300059.SZ 600028.SH 

09/10/2014 20.23 18.62 50.32 15.57 5.31 
10/10/2014 20.05 18.35 49.5 15.04 5.27 
11/10/2014 19.92 18.02 49.08 15.59 5.19 
12/10/2014 19.87 17.94 48.25 15.54 5.2 

… … … … … … 
 

 Visualization of Stock Data Trends 
Using the Matplotlib data visualization library in Python, the changes in stock prices between October 

2014 and October 2024 are presented. By first normalizing the stock prices by October 2014, and 
subsequently applying the plot() function to read and visualize the stock data, we can observe the basic 
movements of the twenty stocks over a period of less than ten years. The results are shown in Fig. 2 below. 
 

 
Fig. 2. The fundamental trends of the 20 selected stocks from October 2014 to October 2024. 

 

 Calculate Some Parameters of the Stock 
We will use the mean function, the volatility function, the covariance function, and the correlation 

function to estimate for each stock their annualized average stock price return, annualized stock return 
volatility, covariance with each other, and correlation coefficients. The results of the annualized average 
returns on stock prices that we obtained using the mean function can be seen in Table 3. 
 

Table 3. Average Annualized Return on Stock Price 
Stock code Average annualized return on stock price 

000333.SZ 1.151363 
000858.SZ 2.021022 
002594.SZ 1.674662 
300059.SZ −0.201253 
600028.SH 0.882634 
600030.SH 1.027935 
600036.SH 0.914212 
600519.SH 2.434457 
600900.SH 1.093581 
601088.SH 1.597046 
601166.SH 0.411518 
601288.SH 0.838829 
601318.SH 0.921685 
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601328.SH 0.470896 
601398.SH 0.553960 
601628.SH 1.483615 
601857.SH 0.467429 
601899.SH 1.705597 
601939.SH 0.660290 
601988.SH 0.620487 

 

The results of the annual volatility of stock returns that we obtained using the volatility function can be 
seen in Table 4. 

 

Table 4. Annual Volatility of Stock Returns 
Stock code Average annualized return on stock price 

000333.SZ 1.176512 
000858.SZ 1.160584 
002594.SZ 1.324901 
300059.SZ 1.730840 
600028.SH 0.753373 
600030.SH 1.069792 
600036.SH 0.898313 
600519.SH 0.941481 
600900.SH 0.606754 
601088.SH 1.017578 
601166.SH 0.813331 
601288.SH 0.592542 
601318.SH 0.889959 
601328.SH 0.643043 
601398.SH 0.598717 
601628.SH 1.148327 
601857.SH 0.846626 
601899.SH 1.208303 
601939.SH 0.709728 
601988.SH 0.628622 

 

The results of covariance and correlation coefficients for each stock that we obtained using covariance 
function and correlation function can be referred to as shown in Tables 5 and 6: 
 

Table 5. Covariance Matrix for the 5 of 20 Stocks 
Covariance matrix 000333.SZ 000858.SZ 002594.SZ 300059.SZ 600028.SH … 

000333.SZ 1.384179 0.683485 0.446898 0.641710 0.200278 … 
000858.SZ 0.683485 1.346955 0.557920 0.744513 0.157421 … 
002594.SZ 0.446898 0.557920 1.755362 0.824342 0.094099 … 
300059.SZ 0.641710 0.744513 0.824342 2.995807 0.287379 … 
600028.SH 0.200278 0.157421 0.094099 0.287379 0.567571  

… … … … … … … 
 

Table 6. Correlation Coefficient Matrix for the 5 of 20 Stocks 
Covariance 

coefficient matrix 000333.SZ 000858.SZ 002594.SZ 300059.SZ 600028.SH … 

000333.SZ 1.000000 0.500560 0.286701 0.315127 0.225957 … 
000858.SZ 0.500560 1.000000 0.362838 0.370628 0.180043 … 
002594.SZ 0.286701 0.362838 1.000000 0.359474 0.094274 … 
300059.SZ 0.315127 0.370628 0.359474 1.000000 0.220388 … 
600028.SH 0.225957 0.180043 0.094274 0.220388 1.000000  

… … … … … … … 
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 Simulation of Large Randomized Portfolios 
In order to better understand the returns and volatility of different portfolios, we used a stochastic 

function to generate 10,000 sets of random weights, each containing sixteen numbers representing the 
percentage of each stock in the overall investment. We apply the random random function from the Numpy 
library to generate the stock weight matrix. Next, we need to measure the return and volatility of these 
10,000 portfolios. Finally, with the help of the Matplotlib library, we present the dataset containing 10,000 
data points as in Fig. 3, so that we can visualize the performance of the portfolio and perform the necessary 
analysis. 
 

 
Fig. 3. The relationship between volatility and returns of different Portfolios. 

 

 Find the Optimal Portfolio That Minimizes Variance 
Minimizing the risk of a portfolio of assets involves choosing a portfolio with minimum variance, i.e., the 

minimum variance when assets are combined in different proportions [17]. In building a portfolio of risky 
assets, portfolios of assets with different levels of risk and return need to be allocated to a range that is 
shaped like a bullet. Minimizing the variance of an asset portfolio implies that between the asset portfolios 
corresponding to the two ends of the bullet-shaped range, there exists an optimal asset portfolio with the 
same level of return but less risk. Of all the minimum variance asset portfolios, the portfolio at the leftmost 
end of the range has the smallest variance and is therefore called the minimum variance asset portfolio, 
which consists of the combination of all the end asset portfolios in the set. Seeking a portfolio of assets that 
minimizes variance is not necessarily the same as seeking a portfolio of assets that minimizes variance, only 
a portfolio of assets that minimizes variance can truly achieve the goal of minimizing variance. The 
minimum variance asset portfolio is not necessarily the optimal portfolio because the lowest risk tends to 
correspond to the lowest expected return at the efficient frontier [18]. Firstly, we introduce the optimize 
board in the Scipy library, then we define a function for solving optimization and a function for solving 
minimum variance, and set the constraints, i.e., the sum of the weights is equal to 1, and solve the problem 
through the minimize function, and the starting parameter list adopts a uniform distribution, i.e., all the 
weights of the 20 stocks are 0.1, and the final optimal portfolio weight vector with the minimum variance is 
[0.00000000e+00, 2.91126926e−17, 6.60140062e−02, 0.00000000e+00, 5.39138005e−02, 
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4.40489565e−19, 3.39165337e−17, 9.55159124e−02, 3.43927427e−01, 5.94045542e−17, 
0.00000000e+00, 2.24485622e−01, 3.62789786e−17, 2.49915515e−02, 1.79349088e−01, 
8.70413374e−18, 1.51282123e−18, 1.08767195e−02, 0.00000000e+00, 9.25872838e−04], the variance of 
the portfolio is 0.45479074486140575, and the expected return of the portfolio is 1.0853305515935308. 

 Find the Optimal Portfolio When the Sharpe Ratio is Maximized 
The Sharpe Ratio [13], also known as the Sharpe Index, is a standardized metric for evaluating a fund’s 

performance, which reflects a risk-adjusted rate of return. The Sharpe Ratio is an indicator used to assess 
the return performance of an underlying investment, such as a fund, relative to a risk-free rate. The 
magnitude of the indicator reflects the relationship between a fund’s risk-taking ability and the level of 
return, with a higher value implying a more favorable risk-to-return ratio and vice versa. The primary role 
of the Sharpe ratio is to measure the relationship between a portfolio’s risk-taking ability and excess return 
performance. It lacks a fixed standard to measure value and can only be shown by comparing it to other 

products. The expression for the Sharpe ratio is: Sharpe Ratio is equal to 𝐸𝐸(𝑅𝑅𝑝𝑝)−𝑅𝑅𝑓𝑓
𝜎𝜎𝑝𝑝

. In this paper, we will look 

for the portfolios with the largest Sharpe ratios out of the 10,000 random portfolios listed above. First, we 
define the median interest rate of 2.9% for ten-year Treasury bond rates from 2014 to 2024 as the risk-free 
rate of return. Additionally, we define the number of assets as twenty. Next, we define a statistics function to 
record the expected return, standard deviation, and Sharpe ratio of the portfolio [3]. In order to achieve the 
goal of minimizing the negative value of the Sharpe ratio, we use the optimize module in the Scipy library, 
and under the constraint that the sum of the weights is 1, the minimize function is used to carry out the 
calculations, and at the same time, the boundary constraints are defined, where we constrain the range of 
values of the weights of each asset to be 0 to 0.1, and after the constraints are completed, the solution can 
be carried out for the planning. The final optimal portfolio weight vector, which maximizes the Sharpe ratio, 
is [0.06529844, 0.1, 0.1, −0.16009687, 0.1, 0.1, 0.08829217, 0.1, 0.1, 0.1, −0.22924, 0.1, −0.00876801, 
0.02829231, 0.1, 0.1, −0.08377804, 0.1, 0.1, 0.1]. The expected return, volatility, and Sharpe ratio of the 
current portfolio are 1.71927608, 0.5993914 and 2.81998719, respectively. These values are based on the 
specified weight ranges, which should be allocated equally among the twenty stocks. 

4. Equity Investment Data Analysis for Capital Asset Pricing Models 
The Capital Asset Pricing Model (CAPM) has important implications for the valuation of assets, the cost of 

capital budgeting, and the allocation of resources. Through the use of the capital asset pricing model, it is 
possible to assess whether the value of assets in the securities market is reasonably priced in order to 
detect price errors in the market. An important application in asset allocation is to select different securities 
or portfolios and predict the coefficients based on the market trend, which can help us to get higher returns 
or avoid market risks. 

 Examples of Calculating the CAPM Model for 20 Assets 
In this section, we will analyze one of the above 20 stocks and compare the returns and volatility of a 

single stock to the market for determining whether it is worth investing, and all the results are obtained by 
using Python. We use the CAPM model for stock analysis in the same way as the mean-variance model used 
above to obtain the data, from the open source financial database Tushare. First, we need to calculate the 
daily risk-free rate. In this article, we assume that the risk-free rate is 2.9% (as defined in Section 3.7), and 
since the CAPM model is analyzed using daily returns, the average daily risk-free rate is demanded. The 

formula for converting the annual interest rate to a daily rate is 𝑅𝑅fday =  (1 + 𝑅𝑅fyear)
1
365 − 1, The calculated 

daily interest rate is 7.94 × 10−5. 
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Next, the CAPM model equation 𝐸𝐸(𝑅𝑅𝑖𝑖) = 𝑅𝑅𝑓𝑓 + 𝛽𝛽𝑖𝑖𝑖𝑖(𝐸𝐸(𝑅𝑅𝑚𝑚) − 𝑅𝑅𝑓𝑓) is utilized to calculate the market risk 
premium and the stock excess return, respectively. We use the CSI 300 index returns to represent the 
market index returns, with data collected from 2014 to 2024. The results are shown below in Table 7. 

Table 7. Calculated Market Risk Premium 
Trade_date ICBC KweichowMoutai ABC PetroChina CCB … 

09/10/2014 −0.002879 −0.004579 −0.000079 0.003721 −0.000079 … 
10/10/2014 −0.002879 −0.006279 −0.004079 −0.006479 −0.004979 … 
13/10/2014 −0.008579 −0.018479 −0.008179 −0.005179 −0.007479 … 
14/10/2014 −0.000079 −0.007679 −0.000079 −0.001379 0.004921 … 
15/10/2014 −0.000079 0.015521 0.004021 0.001221 −0.000079  

… … … … … … … 
 
Then, the scatter plots of risk premiums are drawn to see the general relationship between the CSI 300 

and the market index return. The results of the execution are shown below in Fig. 4. 
 

 
Fig. 4. The relationship between the CSI 300 and the market risk premium for 20 stocks. 
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Finally, linear regression calculations were performed using the least squares method to fit the CAPM 
model. The regression results for ICBC are listed in Table 8 below. 

 

Table 8. Regression Results for ICBC (601398) 
OLS coef std err 𝒕𝒕 P > |𝒕𝒕| [0.025 0.975] 

const 0.0004 0.000 1.608 0.108 −8.31e−05 0.001 
CSI300 0.4601 0.017 27.501 0.000 0.427 0.493 
 
According to the regression results for ICBC showed in Table 8, we can get that α = 0.0004, which 

suggests that in addition to the gains from broader market fluctuations, own-value can generate an 
additional 0.04 percent, and α is greater than zero indicated that the asset is undervalued. We also know 
that β = 0.4601, it shows that the volatility of ICBC is more than 0.46 percent compared to the broader 
market index. We also obtained the simulation results for KweichowMoutai(600519) and listed in Table 9 
As is can be 

 
Table 9. Regression results for KweichowMoutai (600519) 

OLS coef std err 𝒕𝒕 P > |𝒕𝒕| [0.025 0.975] 
const 0.0009 0.000 3.137 0.002 0.000 0.002 

CSI300 0.8780 0.021 40.846 0.000 0.836 0.920 
 
Seen from Table 9, we have α = 0.0009, this means that the intercept term is insignificant. And the value 

of β is 0.8780, it indicates that if the broader market rises by 10%, the KweichowMoutai will expect to rise 
by 8.78%. 

Similarly, repeating the same steps for the rest of 18 stocks, we can obtain the following results showed in 
the following Table 10, 

 
Table10. Regression Results for the Rest of 18 Stocks 

Stock code α β 
601288.SH 0.0004 0.4757 
601857.SH 0.0001 0.6306 
601939.SH 0.0004 0.6175 
601988.SH 0.0004 0.4877 
601628.SH 0.0004 1.1111 
600036.SH 0.0006 0.8634 
601318.SH 0.0004 1.0198 
601088.SH 0.0007 0.7899 
002594.SZ 0.0008 1.1215 
600900.SH 0.0006 0.3027 
600028.SH 0.0003 0.6308 
000333.SZ 0.0008 1.0035 
000858.SZ 0.0009 1.1387 
601328.SH 0.0004 0.5967 
600030.SH 0.0004 1.2788 
300059.SZ 0.0012 1.5904 
601899.SH 0.0009 0.9274 
601166.SH 0.0003 0.7928 

 
From the results in Table 10, it can be seen that the values of α are all slightly flat or marginally 

overvalued. Among them, East Money has the largest α and the largest excess return for the same volatility 
scenario of the market. Besides, Citic Securities, Wuliangye, BYD and China Life have a large values of β, 
which indicates a relatively high risk among the twenty stocks. At the same time, we obtained the smaller β 
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values of Yangtze Power, ABC and BOC, this indicates that the three stocks have a less risky. Therefore, 
investors can choose to invest in stocks based on their own risk preferences. Investors who pursue high risk 
and high return can choose East Money, while those who are conservative can focus on Yangtze Power. 
Furthermore, if investors want to diversify their investments and build investment portfolios, they can 
allocate their holdings based on this indicator [19]. 

 Fama-French Three-Factor Model 
Based on the theoretical arguments above, we know that the CAPM model has many flaws for empirical 

analysis. So, instead, we use the optimization model of the CAPM model, the three-factor model, to conduct 
an empirical analysis of the above 20 stocks. In this paper, we only analyze these three factors at the most 
basic level. Although the other mined factors appear to be valid factors, many of them are in strong 
covariance with these three factors. The data we utilized was also procured from Tushare, spanning from 
October 2014 to October 2024. In this section, we obtained three factor data from the factor model data 
collected by the Central University of Finance and Economics. These three factors are: market risk premium 
(𝑅𝑅𝑀𝑀 − 𝑅𝑅𝐹𝐹), small market capitalization minus large market capitalization (SMB), and high book-to-market 
ratio portfolio returns minus low book-to-market ratio portfolio returns (HML). The market risk premium 
is the return on the market portfolio minus the risk-free rate. The SMB calculates the difference between 
the returns of a portfolio of stocks with small market capitalization and the returns of growth stocks. The 
HML calculates the difference between the returns of a portfolio of value stocks and the returns of growth 
stocks. 

Here we use the daily stock closing price data obtained above. Total of 2,432 trading days. Next we 
calculate the daily returns for each stock and combine the factor data with the daily returns. Then, we can 
also draw scatter plots and heat maps to compare the correlation between returns and the other three 
factors. For example, the fitting results of the ICBC(601398) are shown in Figs. 5 and 6. 

We can see that the linear relationship between yield and the other three factors may not be very obvious. 
However, the correlation between yield and the market risk premium factor is somewhat larger. Images are 
always less intuitive than data. As a result, we are going to use the accurate data to analyze. There are four 
common investment return metrics used in the following calculation, including total returns, max 
drawdown, information ratio, and Sharpe ratio which has been described above. Total Returns is the 
aggregate return over the entire back testing time period of the strategy, and the calculate formulation is 
𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒−𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 × 100%, where 𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 denotes the total final stock and cash value of the strategy, 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

denotes the total value of the strategy’s starting stock and cash. Max drawdown is the percentage decline 
from the highest value of the net worth to the greatest loss experienced over the entire time period. It is 
closely related to losses, meaning a smaller max drawdown is preferable. The calculation is given by Max(𝑃𝑃𝑥𝑥 
− 𝑃𝑃𝑦𝑦)/ 𝑃𝑃𝑥𝑥, where 𝑃𝑃𝑥𝑥 is the highest value of the net worth and 𝑃𝑃𝑦𝑦 is the value at a subsequent point in time. 
The information ratio measures the excess return per unit of excess risk: i.e., the higher the ratio, the better 

the performance. The formulation is expressed as 𝑅𝑅𝑝𝑝−𝑅𝑅𝑚𝑚
σ𝑡𝑡

, where 𝑅𝑅𝑝𝑝 denotes the annualized return of the 

strategy, 𝑅𝑅𝑚𝑚  refers to the benchmark annualized rate of return and σ𝑡𝑡  represents the annualized 
standard deviation of the difference in daily returns between the strategy and the benchmark. All the 
results are shown in Table 11: 
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Fig. 5. The scatter plot. 

 

 
Fig. 6. The heat map. 
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Table 11. Indicators of the 20 Stocks 
Stock 
code α β SMB HML total 

returns 
max 

draw-down 
Sharpe 

ratio 
information 

ratio 
sh.601398 0.000070 0.372938 −0.441232 0.639511 0.715909 0.476129 −2.105626 −2.470176e+06 
sh.600519 0.000934 0.681864 −0.883204 −0.439357 8.969064 0.515186 −1.470597 −1.725861e+06 
sh.601288 0.000084 0.404903 −0.405572 0.691987 0.875502 0.427368 −2.124978 −2.492904e+06 
sh.601857 −0.000303 0.692531 −0.358875 1.097309 0.077806 0.723549 −1.581914 −1.855781e+06 
sh.601939 0.000051 0.521717 −0.469032 0.788609 0.916870 0.465851 −1.802729 −2.114973e+06 
sh.601988 0.000045 0.423723 −0.377873 0.739064 0.781481 0.467857 −1.984734 −2.328402e+06 
sh.601628 0.000163 0.856570 −0.659994 0.564085 1.774522 0.535797 −1.211525 −1.421845e+06 
sh.600036 0.000345 0.646894 −0.707125 0.499099 2.541627 0.541538 −1.507065 −1.768450e+06 
sh.601318 −0.000161 0.923390 −0.650102 0.562067 0.329356 0.730493 −1.296863 −1.521654e+06 
sh.601088 0.000010 0.862009 −0.557856 1.271162 1.611650 0.505896 −1.320356 −1.549423e+06 
sz.002594 0.000562 1.038059 −0.304847 −0.587721 5.074921 0.553947 −1.016024 −1.192942e+06 
sh.600900 0.000425 0.284882 −0.309150 0.403923 2.646232 0.243028 −2.261837 −2.653602e+06 
sh.600028 −0.000232 0.675229 −0.352901 1.037419 0.239171 0.552480 −1.736064 −2.036621e+06 
sz.000333 0.000379 0.889650 −0.782799 0.000034 2.707860 0.624872 −1.239947 −1.455281e+06 
sz.000858 0.000773 0.941769 −0.931254 −0.476504 6.931257 0.687311 −1.210466 −1.420896e+06 
sh.601328 −0.000009 0.511230 −0.426829 0.748018 0.643357 0.544681 −1.888812 −2.215873e+06 
sh.600030 −0.000007 1.084718 −0.398528 0.439392 1.266617 0.648334 −1.238803 −1.453750e+06 
sz.300059 −0.000125 1.415365 −0.214936 −0.524733 0.599229 0.902180 −0.804270 −9.443943e+05 
sh.601899 0.000430 0.965050 −0.359533 0.675726 5.665354 0.622563 −1.143139 −1.341946e+06 
sh.601166 0.000019 0.636995 −0.530452 0.661888 0.801549 0.491165 −1.633524 −1.916512e+06 

 Summary of Investment Strategies 
The traditional Capital Asset Pricing Model (CAPM) facilitates the examination of the quantitative 

relationship between capital gains and risk, allowing for an assessment of the reasonableness of a stock’s 
price. A high risk coupled with a low price, or vice versa, it suggests that the price may be unreasonable and 
could be subject to change. Excess returns for a stock can be calculated using the values of alpha (α) and 
beta (β). Experimental results indicate that, according to the original CAPM model, East Money, Zijin Mining, 
and Wuliangye exhibit high alpha values, whereas PetroChina, Sinopec, and China Construction Bank (CIB) 
display low alpha values, other stocks possess similar alpha values. 

In contrast, the three-factor model reveals that Kweichow Moutai, Wuliangye, and Zijin Mining also have 
higher alpha values, while PetroChina and Sinopec maintain lower alpha values. Notably, the beta values 
derived from both models are quite similar. Although the CAPM model has theoretical limitations due to its 
less rigorous assumptions, and the Fama-French three-factor model is often regarded as more suitable for 
empirical applications, the experimental results show that both models provide remarkably similar 
analyses of these 20 stocks. This minimal difference does not decisively ascertain which model is superior. 

However, we can conduct an investment strategy analysis based on the common conclusions drawn from 
both models. Based on the principles of high returns and low risk, Wuliangye and Zijin Mining are identified 
as the most favorable stocks for investment, while PetroChina and Sinopec are considered the least 
attractive options. In summary, the conclusions regarding stock selection are derived from a thorough 
analysis of the data provided by the models. 

Technical analysis aligns with the weak-form efficient market hypothesis, and investors are also 
influenced by public and insider information based on their access and analytical skills. Furthermore, 
investment choices vary due to different risk appetites, preferences for certain companies, and irrational 
factors. Nonetheless, the conclusions drawn from this model offer valuable guidance for investors. 

 Comparative Analysis in Practical Applications 
From the efficient frontier illustrated in Fig. 3, it is evident that our selected portfolio is optimal. To 
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further validate its effectiveness, we can compare the experimental results with those of a portfolio that 
reflects the average diversification of these 20 stocks. The expected return, standard deviation, and Sharpe 
ratio of the equally weighted portfolio are calculated to be 1.03649823, 0.58646498 and 1.71791712, 
respectively. The portfolio with equal proportional diversification demonstrates a negligible difference in 
risk compared to the optimal risky portfolio identified using the mean-variance model; however, the return 
difference is approximately seven percent. Additionally, we can compare these results with the annualized 
returns of ETF funds in the market, which have also exhibited moderate performance [20]. The fitting 
effectiveness of the CAPM model and the Fama-French three-factor model [21] can be evaluated using the 
following indicators: 
• R-squared: The R-squared is also known as the coefficient of determination, represents the proportion 

of the variance for a dependent variable that is explained by one or more independent variables in a 
regression model. It is a key indicator for assessing a model’s goodness of fit. R-squared ranges from 0 to 1, 
the closer the R2-value is to 1, the better the model fits the data. 
• Adj.R-squared: The adjusted R-squared is a modified version of R-squared and serves as an 

im-portant statistical measure for evaluating the goodness of fitting a model in multiple linear regression 
analysis. Compared to R-squared, the adjusted R-squared more accurately reflects the model’s true 
predictive ability when estimating the variance of errors. Generally speaking, the closer the adjusted 
R2-value is to 1, the better the model’s interpretation of the data. Consequently, when comparing different 
models, we tend to prefer the one with a higher adjusted R-squared value. 
• Statistical Significance: The parameter estimates of the model should be statistically significant. The 

t-test, sometimes referred to as the F-test, is a statistical method used to ascertain the significance of the 
parameters within a given dataset. If the p-value of a parameter estimate is less than the significance level 
(e.g., 0.05), it is considered statistically significant, indicating a good model fit [22]. The results of the fitting 
are presented in Tables 12 and 13 below. 

 

Table 12. TheCAPM model regression indicators 
Stock code R-squared Adj.R-squared 𝒕𝒕 P > |𝒕𝒕| F-statistic Prob(F-statistic) 
600519.SH 0.402 0.402 3.137 0.002 1668 1.91e−279 
600036.SH 0.410 0.410 2.042 0.041 1727 5.71e−287 
000333.SZ 0.417 0.417 2.282 0.023 1778 1.85e−293 
000858.SZ 0.453 0.453 2.469 0.014 2060 0 

 

Table 13. The Fama-French three-factor model regression indicators 
Stock code R-squared Adj.R-squared 𝒕𝒕 P > |𝒕𝒕| F-statistic Prob(F-statistic) 
600519.SH 0.424 0.424 3.084 0.002 596 3.07e−290 
600036.SH 0.331 0.330 1.083 0.279 400.4 2.81e−211 
000333.SZ 0.353 0.352 0.965 0.335 440.7 1.58e−228 
000858.SZ 0.470 0.469 2.188 0.029 716.7 0 

 

From the figure, we can conclude that, compared to the Fama-French three-factor model, the R-squared 
(R2) value and adjusted R-squared value of the Capital Asset Pricing Model (CAPM) are relatively larger, the 
p-value of the CAPM is relatively smaller, and the F-statistic of the CAPM is larger. Therefore, we conclude 
that the CAPM fits better than the Fama-French three-factor model for the 20 stocks analyzed in this paper. 
Although the Fama-French three-factor model incorporates more factors than the CAPM, the experimental 
results indicate that the CAPM is more applicable to long-term data analysis of large-capitalization stocks in 
the Chinese A-share market. In other words, investors should pay more attention to market risk and 
fundamentals when making long-term value investments, while the Fama-French three-factor model may 
be more suitable for short-term investments [23]. 
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5. Conclusions 
Based on the results presented in the experimental data, it can be concluded that using Markowitz’s 

portfolio theory, it is possible to find ways of investing in portfolios consisting of multiple assets that 
minimize risk or maximize the Sharpe ratio, while also determining the efficient frontier. These results can 
help investors better manage risk and earn higher returns. Investors should also consider their own actual 
situation and risk tolerance as a basis for making rational investment decisions. Fitting the CAPM model 
using the least squares method, combining it with the Fama-French three-factor model, and comparing it 
with market indicators can provide valuable references for investors choosing individual securities or a 
portfolio of securities. The use of Python greatly simplifies the computation of the expected rate of return 
and the variance of the portfolio in the Markowitz’s portfolio theory, and it can also find out the optimal 
portfolio quickly, which is very important for the application of Markowitz’s portfolio theory in China’s 
financial market. This is valuable for applying Markowitz’s portfolio theory in the Chinese financial market. 
At the same time, it can also be used to compare the return and risk factors of a portfolio or a single security 
with the market, which is also crucial for the development of capital asset pricing models. The combination 
of traditional financial theories and emerging programming languages not only speeds up the solution of 
financial problems, but also improves the efficiency of the solution. This undoubtedly brings new 
opportunities for financial analysts as well as emerging technology talents, who should seize this 
opportunity to break through their own bottlenecks by utilizing the combined technology and contribute to 
the development of the financial industry. In addition, for emerging technology talents, they can also 
practice their own skills and play their own value in the field of financial analysis, which is also a good 
opportunity for learning and development. 
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