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Abstract: Climate change affects ambient temperature through exchanges between the components of the 

soil-plant-atmosphere system. This impacts thermal comfort inside buildings, leading to heavy dependence 

on mechanical air conditioning. To mitigate the regulated thermal effects of the interaction of the above-

mentioned system, planting trees in cities remains one of the decisive solutions. The aim of this article is to 

set up a numerical simulation and optimization model of soil temperature profiles in the city of 

Yamoussoukro (Co te d’Ivoire) under two conditions (bare surface and covered surface) to assess the impact 

that changes in the temperature inside the soil have on the ambient temperature. The simulation took solar 

energy as the natural source of heat, producing a temperature gradient at the undisturbed soil profiles. The 

energy source was calculated by acquiring meteorological data over two years (2017–2018), with a time step 

of one minute. The finite element method was used to discretize the heat equation in space, and the finite 

difference method was used to discretize it in time. The resulting ordinary differential equation was 

numerically simulated using the 4th-order Runge-Kutta method. Particle Swarm Optimization was used to 

find optimal temperature profiles that would have no effect on the ambiance. The equations were 

implemented in MATLAB R2021b software. The model was validated by measuring soil and air temperatures 

and relative humidity in real-life situations over two seasons using a laboratory-built data acquisition 

instrument. The results showed that the presence of plants in a city reduces the ambient temperature, and 

the predicted values agree with the measured data. In a city, when the average annual temperature of the first 

20 cm of soil depth exceeds 20 °C, tree planting becomes imperative. 

 
Keywords: Numerical simulation, soil temperature, climate variability, finite element method, Particle 
Swarm Optimization (PSO) 

 
 

1. Introduction 

Soil temperature is an important meteorological property that strongly influences its chemical, 

thermophysical (thermal conductivity, thermal diffusivity), mineralogical, mechanical and biological 

properties [1]. Soil temperature has a feedback effect on ambient thermophysical properties. To this end, 

knowledge of the temperature profiles within soils is of interest to several fields of application, such as 

agriculture, geothermal energy, solar energy, environmental management [2], and civil engineering. This soil 

temperature controls the thermo-hydric equilibrium that is established between the soil surface [3] and the 
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atmosphere, as well as the physical processes involved [4]. 

In the thermo-hydric equilibrium processes between the temperature of the subsurface soil layers (0−40 

cm) and the ambient temperature [5], prior knowledge of the variation in soil temperature is decisive for 

taking ecological measures (reforestation, construction of ecological buildings, etc.) and combating global 

warming. These ecological actions will enable people to reduce their high demand for mechanical air 

conditioning in buildings and maintain their health. The focus of the present study is on the impact on 

ambient temperature of variations in the temperature of the soil with or without trees in a city. 

A number of studies have been carried out to determine soil temperature profiles [6], using analytical 

models [6–9], empirical models [10–14], numerical models [15–20], neural network models  [21], and 

experimental techniques [22]. The soil temperature profile depends not only on its own parameters [23] 

(mineralogy, texture, granulometry, thermal diffusivity and conductivity), but also on environmental 

properties (wind potential, ambient air temperature, latent heat flux, sensible heat flux, etc.) [24]. This makes 

its assessment a matter of careful implementation of the equations in order to opt for a more suitable solution. 

Although techniques for estimating soil temperature profiles do exist, they are unfortunately limited by long-

term diurnal and seasonal variations. In addition, the heterogeneity of the climate in a greenhouse produces 

convective heat fluxes that vary from one point on the soil surface to another [25]. 

Changing environmental conditions put soil properties at risk. Models for estimating soil temperature 

range from the simple to the complex, leaving the accuracy to the complex models (despite the difficulties 

encountered in setting them up) [2]. Previous models have been based on modified soil profiles (soils 

reworked during sampling and laboratory experiments) [25]. These models were based on estimates of the 

various fractions of liquid, gaseous and solid phases and of the granulometry and textural compartments of 

the soils [26]. These quantities did not express a perfect reality, but they only gave a vision of the constitution 

of the soil and the phenomena that could occur in it. Determining the optimum temperature profile within 

the soil is an important spatio-temporal characteristic of the soil-plant-atmosphere relationship. Lateral 

flows of water and heat in heterogeneous porous media can lead to significant losses in thermo-hydric 

properties caused by evaporation [27] and transpiration from plant leaves. At the soil-atmosphere interface, 

water and energy fluxes are highly dynamic and influenced by variations in temperature, the moisture 

gradient at different horizons, and the direction of water infiltration and heat transfer [28]. These reasons 

limit the practices and theories of previous modeling efforts [26]. 

To overcome these deficiencies, we have developed a numerical approach that takes into account heat 

transfer in both directions [26] (upward energy flux governed by evapotranspiration and downward energy 

flux governed by the temperature gradient between the surface and underlying layers). The aim of this article 

is to establish a mathematical model for assessing the impact of vegetation cover on variations in ambient 

temperature and to implement a decision criterion for achieving thermal comfort. Bidirectional heat 

propagation and evapotranspiration using a natural heat source supplied to the soil and plants are taken into 

account. 

Specifically, the aim is to: (i) determine the intensity of the conductive heat flux within the soil, governed 

by solar energy, using the closed energy balance equation; (ii) establish a mathematical model for simulating 

the soil temperature profile of bare and covered soil surfaces using the calculated conductive energy and 

study the impact of plants in a city; and (iii) establish a decision criteria based on the particle swarm 

optimization algorithm to find the average annual subsurface soil temperature above which the population 

should adopt ecological practices. The model was validated using measured data. 
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2. Materials and Methods 

2.1. Materials 

2.1.1. Study areas and database 

The study was carried out in two towns in the department of Yamoussoukro (latitude: 6.828, longitude: 

−5.289), Co te d’Ivoire. Yamoussoukro has an average annual rainfall of 1,028 mm and a relatively flat 

topography. The landscape is characterized by flat lowlands and very flat, low granite mountain ranges with 

an average altitude of around 200 m. Ferrallitic soils are the most abundant, with vegetation consisting of 

mesophilous forests, gallery forests and shrubby Savannah [29]. Our study focused on moderately humified 

ferralitic soils with sandy-clay textures on granitic and sedimentary rocks. The climate is humid tropical [30] 

with two seasons: a rainy season (March to October) and a dry season (November to February) [29]. Weather 

data from two years (2017–2018) recorded by Vantage Pro2 brand stations was used. The parameters 

measured by this station are ambient temperature, relative humidity, precipitation, wind speed and direction. 

2.1.2. Measuring instruments 

A data acquisition system was designed and built in the laboratory to prevent soil disturbance (Fig.  1). A 

metal rod into which DSB28 and DHT 11 sensors are inserted and protected by polystyrene thermal 

insulation (apart from the sensor end outlets) prevented thermal disturbance caused by contact between the 

rod and the ground. The sensors measure soil temperature from −40 °C to +150 °C, with an accuracy of 1%. 

 

 
Fig. 1. Data acquisition system. 

 

2.2. Methods 

2.2.1. Assessment of the heat source within the soil 

Soil and plants are subjected to a heat source calculated from the energy balance [31]: 

𝐺(𝑡, 𝑧) =  𝑅𝑛(𝑡) − (𝐻(𝑡) + 𝜆𝐸(𝑡)) (1) 

𝐺(𝑡, 𝑧): heat conduction flux in the soil (W/m2); H(t): sensible heat flux at the soil surface (W/m2); 𝜆𝐸(𝑡): 

latent heat flux to soil and plants (W/m2); 𝑅𝑛(𝑡): net radiation intensity at the soil surface (W/m2). 

To calculate the components of conductive heat, we needed to know the net solar radiation heat fluxes, 

sensible heat fluxes and latent heat fluxes, based on our assumptions. 

2.2.1.1. Assumptions 
Soil temperature simulation is based on exchanges between the soil, the plants, and the atmosphere, 

assuming that: 

• The space-time characteristics of a layer of soil and ambient air measured at the same altitude at the same 

time are identical. 
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• Heat exchanges take place horizontally by convection in the air, vertically by conduction in the soil, by 

radiation and by evapotranspiration at the soil surface. 

• Plants in the same plot have the same average canopy height, leaf resistance and leaf temperature; the 

entire soil surface has a constant rate of plant cover. 

2.2.1.2. Assessment of the energy fluxes 
The intensity of net solar radiation (𝑅𝑛(𝑡)) is expressed by Stefan-Boltzmann’s law [32]: 

𝑅𝑛(𝑡) = (1 − 𝛼) ⋅ 𝑅𝑠𝑤𝑑  (𝑡) + 𝜀 ⋅ 𝜎 (𝜀𝑎 ⋅ (𝑈𝑘= 10
𝑛−1 )

4
− (𝑈𝑘∈ [0,5]

𝑛−1 )
4
) (2) 

𝛼 : albedo of the earth’s surface; 𝜀: ground surface emissivity; 𝜎: Stefan-Boltzmann constant; 𝜀𝑎: effective 

emissivity of the atmosphere; 𝑈𝑘= 10
𝑛−1 : air temperature measured at a height of 10 m (°C); 𝑈𝑘 ∈ [0,5]

𝑛−1 : soil surface 

temperature (°C), measured between 0 and 5 cm into the ground; 𝑅𝑠𝑤𝑑(𝑡) : downward solar radiation. 

The sensible heat flux (𝐻(𝑡)) under wet environmental conditions is given by [5]: 

𝐻(𝑡) = (1 −  Λ)(𝑅𝑛(𝑡) − G0(𝑡)) (3) 

Λ : actual evaporation fraction; 𝐺0(𝑡): global solar irradiation (W/m²) 

The Surface Energy Balance System (SEBS) model is used to calculate the evapotranspiration fraction [33]: 

{

𝛬 = 𝛬𝑟 . 𝜆
𝐸𝑤𝑒𝑡(𝑡)

𝑅𝑛(𝑡)−𝐺0(𝑡)
                         (𝑎)

.

𝛬𝑟 = 1 −
𝐻(𝑡)−𝐻𝑤𝑒𝑡 (𝑡)

𝐻𝑑𝑟𝑦(𝑡)−𝐻𝑤𝑒𝑡 (𝑡)
                          (𝑏)        

 (4) 

with, 

{
 
 

 
 𝐻𝑤𝑒𝑡(𝑡) =

(𝑅𝑛(𝑡)−𝐺0(𝑡)) − 
𝜌𝑎𝑖𝑟.𝐶𝑃,𝑎𝑖𝑟

𝑟𝑎 + 𝑟𝑙𝑒𝑎𝑣𝑒𝑠 + 𝑟𝑠𝑜𝑖𝑙

𝑒𝑠.𝑒𝑎
𝛾

(1+
∆

𝛾
)

           
𝜆𝐸𝑤𝑒𝑡(𝑡) = 𝑅𝑛(𝑡) − 𝐺0(𝑡) − 𝐻𝑤𝑒𝑡(𝑡)              

                     
𝐻𝑑𝑟𝑦(𝑡) = 𝑅𝑛(𝑡) − 𝐺0(𝑡)                                      

 

𝑟𝑙𝑒𝑎𝑣𝑒𝑠 : stomatal resistance of leaves (s/m); 𝑟𝑠𝑜𝑖𝑙 : resistance to water vapor diffusion in the soil (s/m); 

𝐻𝑑𝑟𝑦(𝑡): sensible heat in dry conditions; 𝐸𝑤𝑒𝑡: evaporation from the soil surface; 𝐻𝑤𝑒𝑡(𝑡): sensible heat in wet 

conditions𝐶𝑃,𝑎𝑖𝑟; = 1.012 J/kg: specific heat of air; 𝜌𝑎𝑖𝑟 : air density; 𝑒𝑎: air vapor pressure measured at the 

reference surface (2 m); 𝑒𝑠 : air vapor pressure at saturation; 𝑟𝑎 : aerodynamic resistance measured at the 

reference surface (2 m); 𝛾 : psychrometric constant; ∆ : saturation vapor pressure gradient at ambient 

temperature. 

The sensible heat equation in its final form is: 

𝐻(𝑡) =
(𝐻𝑑𝑟𝑦(𝑡)−𝐻𝑤𝑒𝑡(𝑡))(𝑅𝑛(𝑡)−𝐺0(𝑡))−𝐻𝑑𝑟𝑦(𝑡).𝜆𝐸𝑤𝑒𝑡(𝑡)

(𝐻𝑑𝑟𝑦(𝑡)−𝐻𝑤𝑒𝑡(𝑡)−𝜆𝐸𝑤𝑒𝑡(𝑡))
 (5) 

The parameters of this formula were calculated from meteorological data that had been sequenced into 

two typical seasons (a dry season for clear-sky days and a wet season for rainy days). 

The latent heat flux (𝜆𝐸) is assessed by [34] : 

𝜆𝐸 (𝑡) =  Λ. (𝑅𝑛(𝑡) − 𝐺0(𝑡)) (6) 

2.2.2. Numerical simulation and optimization of the soil temperature 

The heat equation was numerically solved to predict the mean soil temperature profile based on 

meteorological data. The finite element method was used for the appropriate numerical discretization of this 
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equation. 

2.2.2.1. Heat equation, functional spaces and boundary conditions 
The heat migration in the soil is governed by numerically solving the heat equation in a domain 𝛺 =

[𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥] in time 𝑡 ∈ [0, 𝑇] [5]: 

{
 
 
 
 
 

 
 
 
 
 
𝜕𝑢

𝜕𝑡
(𝑧, t) +𝑚𝑖𝑛𝑖=1,…,𝑚 [−𝐷 (

𝜕2𝑢

𝜕𝑧2
(𝑧, 𝑡) + (𝛼 +  𝛽)𝜕𝛺0) − 𝐺(𝑡, 𝑧)] = 0,   in    [0, 𝑇]𝑋 𝛺     (𝑎)  

   
𝑢(𝑧, 𝑡 = 0) = 𝑢0(z)                                                                                              𝑜𝑛  [0, 𝑇]𝑋 𝛺     (𝑏)

 
𝜕𝑢

𝜕𝜂
(𝑧 = 0, 𝑡) =  𝛼                                                                                            𝑜𝑛    [0, 𝑇] 𝑋 𝜕𝛺0    (𝑐1) 

𝜕𝑢

𝜕𝜂
(𝑧 = 𝑧𝑚𝑎𝑥, 𝑡) = 𝛽                                                                                      𝑜𝑛    [ 0, 𝑇] 𝑋 𝜕𝛺0     (𝑐2)

 
𝜕𝑢

𝜕𝜂
(𝑧, 𝑡) = 0                                                                                                            𝑜𝑛  [ 0, 𝑇] 𝑋 𝜕𝛺   (𝑑)

 

    (7) 

𝐷 = 𝐷(𝑧, 𝑡) : soil thermal diffusivity (m²/s) considered constant because its values are little affected by 

temperature variation [35]; (𝑎): heat equation; (b) : initial conditions; (𝑐1), (𝑐2) and (d): boundary conditions 

of Eq. (7a) ; 𝛼 ≥ 𝛽 > 0, where 𝛼 and 𝛽 are constants and 𝑡 ∈ [0, 𝑇]; 𝜂→: external, centrifugal normal vector 

placed at the boundary of the domain 𝛺. 

2.2.2.2. Numerical prediction of the solution to the heat equation 
We consider 𝛺 to be a regular bounded open of ℝN and a heat flux 𝐺(𝑡, 𝑧) ∈ 𝐿2([0, 𝑇]; 𝐿2( 𝛺 ) ), with  𝐿2( 𝛺 ) 

the Banach space and a regular initial data belonging to a Hilbert subspace (𝑢0(𝑧)  ∈ 𝐻0
1(𝛺 )). This leads to a 

unique solution 𝑢 ∈ 𝐿2( [0, 𝑇] ; 𝐻0
1(𝛺 ) ) ∩  𝐶([0, 𝑇]; 𝐿2( 𝛺 )) of the heat equation [36]. The principle of the 

finite element method is to multiply the initial Eq. (7a) by a test function (𝜐) in a Sobolev space 𝐻0
1(𝛺 ). Any 

test function υ ∈ 𝐻1( Ω ) is continuous on 𝐻0
1(𝛺 ) and a regular solution of the heat equation in the sense that 

∂υ

∂Z
 ∈ 𝐿2( [0, 𝑇] ; 𝐿2( 𝛺 ) ) [37]. The solution of the equation 𝑢 ∈ 𝐿2([0, 𝑇] ; 𝐻2( Ω )) ∩  𝐶([0, T] ;  𝐻0

1(𝛺 )) and 

the test function υ ∈ 𝐿2( [0, 𝑇] ; 𝐻0
1(𝛺 ) ) ∩ 𝐶([0, 𝑇] ;  𝐿2( 𝛺 ))  have been obtained. The Sobolev space is a 

subspace of the Hilbert space 𝐻1(𝛺 ) defined by: 

𝐻1(𝛺) = {𝑣 ∈ 𝐿2( 𝛺) , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡, ∀ 𝑖 ∈ {1,… , 𝑁},
𝜕𝑣

𝜕𝑧𝑖
∈ 𝐿2( 𝛺), 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑒𝑎𝑘 𝑠𝑒𝑛𝑠𝑒 }  (8) 

To make it easier to solve the equation, we first omit the various boundary conditions, to which we will 

return later. The heat equation becomes: 

𝜕𝑢

𝜕𝑡
(𝑧, 𝑡)𝑣(𝑧) +𝑚𝑖𝑛𝑖=1,…,𝑚 [−𝐷 (

𝜕2𝑢

𝜕𝑧2
(𝑧, 𝑡)𝑣(𝑧) + (𝛼(𝑡) +  𝛽(𝑡))

𝜕𝛺0
𝑣(𝑧)) − 𝐺(𝑡, 𝑧)𝑣(𝑧)] = 0,       𝑖𝑛   [0, 𝑇]𝑋𝛺     (9) 

By applying Green’s Theorem, we can perform integration by parts [37] in the 𝛺 domain. This gives an 

equivalent equation of the type: 

∫
𝜕𝑢

𝜕𝑡
(𝑧, 𝑡)𝑣(𝑧)𝑑𝑧

 

𝛺
+𝑚𝑖𝑛𝑖=1,2,…,𝑚 [−𝐷 (−∫

𝜕𝑢

𝜕𝑧
(𝑧, 𝑡)

𝜕𝑣

𝜕𝑧
(𝑧)𝑑𝑧 + ∫

𝜕𝑢

𝜕𝑧
(𝑧, 𝑡)𝑣(𝑧). 𝜂 . 𝑑𝑆⃗⃗⃗⃗ ⃗ − (𝛼 +  𝛽)(𝑡) ∫ 𝑣(𝑧)

.

𝜕Ω0
𝑑𝑧

 

𝜕Ω

 

𝛺
) − ∫ 𝐺(𝑡, 𝑧)

 

Ω
𝑣

(z)dz] = 0,      𝑖𝑛  [0, 𝑇] 𝑋 𝛺   (10) 

Taking into account only the Dirichlet’s condition on the adiabatic sidewalls, all values of the test function 

(𝑣) at the boundary of the 𝜕𝛺 domain cancel. This gives a new equation: 

∫
𝜕𝑢

𝜕𝑡
(𝑧, 𝑡)𝑣(𝑧)𝑑𝑧

 

𝛺
+𝑚𝑖𝑛𝑖=1,2,…,𝑚 [𝐷 (∫

𝜕𝑢

𝜕𝑧
(𝑧, 𝑡)

𝜕𝑣

𝜕𝑧
(𝑧)𝑑𝑧 − (𝛼 +  𝛽)(𝑡) ∫ 𝑣(𝑧)

.

𝜕Ω0
dz 

 

𝛺
) − ∫ 𝐺(𝑡, 𝑧)

 

Ω
𝑣(z)𝑑𝑧] = 0,      𝑖𝑛   [0, 𝑇] 𝑋 𝛺 

 (11) 

The 𝑢(𝑡, 𝑧) solution of the heat Eq. (11) and its natural heat source G(𝑡, 𝑧) are functions of time t, taking 
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their values in the 𝛺 domain space. Eq. (11) is written: 

∫
𝜕𝑢

𝜕𝑡
(𝑧, 𝑡)𝑑𝑡 ∫ 𝑣(𝑧)𝑑𝑧

 

Ω|t

 

𝛺|𝑧
+𝑚𝑖𝑛𝑖=1,2,…,𝑚 [𝐷 (∫

𝜕𝑢

𝜕𝑧
(𝑧, 𝑡).

𝜕𝑣

𝜕𝑧
(𝑧)𝑑𝑧 − (𝛼 +  𝛽)(𝑡) ∫ 𝑣(𝑧)

.

𝜕𝛺0
𝑑𝑧

 

𝛺
) − ∫ 𝐺(𝑡, 𝑧)

 

Ω
𝑣(𝑧)𝑑𝑧] = 0,      𝑖𝑛   [0,

𝑇] 𝑋 𝛺   (12) 

Since the domain 𝛺 and the test function 𝑣ℎ(𝑧) are time invariant, we write: 

𝑑

𝑑𝑡
∫

𝜕𝑢

𝜕𝑡
(𝑧, 𝑡)𝑑𝑡 ∫ 𝑣(𝑧)𝑑𝑧

 

Ω

 

𝛺
+𝑚𝑖𝑛𝑖=1,2,…,𝑚 [𝐷 (∫

𝜕𝑢

𝜕𝑧
(𝑧, 𝑡).

𝜕𝑣

𝜕𝑧
(𝑧)𝑑𝑧 − (𝛼 +  𝛽)(𝑡) ∫ 𝑣(𝑧)

.

𝜕Ω0
𝑑𝑧

 

𝛺
) − ∫ 𝐺(𝑡, 𝑧)

 

Ω
𝑣(z)𝑑𝑧] =

0,        𝑖𝑛  [0, 𝑇] 𝑋 𝛺   (13) 

Solving the heat equation in the n-dimensional Hilbert space (𝑉ℎ  𝜖𝐻
1(Ω) ) is done by a variational 

approximation in its subspace 𝑉0ℎ  𝜖 𝐻0
1(Ω) to obtain 𝑛-equations with 𝑛 unknowns. 

The finite element space is based on the discrete space of globally continuous functions on each mesh. This 

space is defined by: 

𝑉0ℎ = {𝑣 ∈ 𝑉ℎ,     𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡      𝑣(0) = 𝑣(1) = 0 }  (14) 

According to the Compactness Theorem, we note [38]: 

• ≺ 𝑢𝑘 1(𝑡), 𝑣 ≻, is the scalar product of ∫
𝜕𝑢

𝜕𝑡
(𝑧, 𝑡)𝑑𝑡 ∫ 𝑣(𝑧)𝑑𝑧

 

Ω

 

𝛺
 ; 

• ≺ (𝛼(𝑡), 𝛽(𝑡)), 𝑣 ≻∂Ω0 , the scalar product of (𝛼(𝑡) +  𝛽(𝑡)). ∫ 𝑣(𝑧)
.

𝜕Ω0
𝑑𝑧 ; 

• 𝑎(𝑢𝑘(𝑡), 𝑣) = ∫
𝜕𝑢

𝜕𝑧
(𝑧, 𝑡).

𝜕𝑣

𝜕𝑧
(𝑧)

 

Ω
𝑑𝑧 , is a continuous bilinear form of 𝐻0ℎ

1 (Ω)  for  𝑣 𝜖 𝑉0ℎ    (𝑉0ℎ  being a 

subspace of the Hilbert space). 

• ≺ 𝐺(𝑡), 𝑣 ≻ is the scalar product of ∫ 𝐺(𝑡, 𝑧). 𝑣(𝑧)𝑑𝑧
 

Ω
, which is a continuous linear form of 𝐻1(Ω) 𝜖 𝐿2(Ω). 

By choosing the test function in the 𝐻0
1(Ω) space of the variational formulation, the heat equation takes the 

form of an ordinary differential equation with boundary conditions that are easier to solve. We obtain the 

internal variational formulation, which consists of finding 𝑢(𝑡), a function of [0, 𝑇] with values in 𝐻0
1(Ω) of 

resolution: 

{
 
 
 
 

 
 
 
  

𝑑

𝑑𝑡
≺ 𝑢𝑘(𝑡), 𝑣 ≻ +𝑚𝑖𝑛𝑖=1,2,…,𝑚 [𝐷(𝑎(𝑢𝑘(𝑡), 𝑣) −≺ (𝛼(𝑡), 𝛽(𝑡))∂Ω0 , 𝑣 ≻∂Ω0) −≺ 𝐺𝑘(𝑡), 𝑣 ≻𝐿2(Ω)] = 0,   

                                                                                                                      ∀ 𝑣 𝜖 𝐻0
1(Ω),   𝑖𝑛   [0, 𝑇] 𝑋 Ω          (𝑎)    

𝑢𝑘( 𝑡 = 0) = 𝑢0,ℎ(𝑧)                                                                                                       𝑜𝑛      [0, 𝑇] 𝑋Ω    (𝑏)

 
𝜕𝑢0

𝜕𝜂
( 𝑡) = 𝛼                                                                                                                   𝑜𝑛     [0, 𝑇]𝑋𝜕𝛺0     (𝑐1)

 
𝜕𝑢𝑘=𝑛𝑑𝑙

𝜕𝜂
( 𝑡) = 𝛽                                                                                                         𝑜𝑛    [0, 𝑇]𝑋𝜕𝛺0     (𝑐2)

  
𝜕𝑢𝑘

𝜕𝜂
( 𝑡) = 0                                                                                                                   𝑜𝑛     [0, 𝑇] 𝑋𝜕Ω    (𝑑)

 (15) 

with 𝑉0ℎ = 𝐻0
1(Ω). 

According to the Lax-Milgram Theorem, the relation (2.15-(a)) admits a unique solution 𝑢𝑘(𝑡) (existence 

and uniqueness of the solution) [38]. Moreover, 𝑢0 ∈ 𝐻0
1(Ω) is an approximation of the initial solution 𝑢0(𝑧) 

at the upper boundary, whose validity comes from the Trace Theorem [39]. The fact that 𝑢0 ∈ 𝐿
2(Ω),(𝐿2(Ω) 

being a Banach space) [37] where 𝐿2 is a Hilbert space and 𝐺𝑘 ∈ 𝐿
2([0, T] ;  𝐻0

1(Ω)) ∩ 𝐶([0, 𝑇]; 𝐿2(Ω)) then 

the set of components of the heat equation admits a unique solution 𝑢𝑘(𝑡) ∈ 𝐿
2([0, T] ;  𝐻0

1(Ω)) ∩

𝐶([0, 𝑇]; 𝐿2(Ω)). 

According to the discrete minimum principle [40], the variational annotation of Eq. (15a) in the weak sense 

is given: 

 
1 k explains the spatial points for calculating the thermal profiles within the soil according to depth 
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(
𝜕𝑢𝑘

𝜕𝑡
(𝑡), 𝑣 − 𝑢𝑘(𝑡)) + 𝐷[𝑎(𝑢𝑘(𝑡), 𝑣 − 𝑢𝑘(𝑡)) −≺ (𝛼(𝑡), 𝛽(𝑡)), 𝑣 − 𝑢𝑘(𝑡) ≻𝜕Ω0] ≤≺ 𝐺𝑘(𝑡), 𝑣 − 𝑢𝑘(𝑡) ≻𝐿2(Ω) ,    ∀  𝑣 𝜖 𝐻0

1(Ω),        

𝑖𝑛   [0, 𝑇] 𝑋 Ω  (16) 

To solve this system, we introduce a ‘hat function’ (∅𝑘)1≤𝑘≤𝑛𝑑𝑙 of 𝐻0
1(Ω) in the finite element basis, and we 

pose 𝑣ℎ = (∅𝑘)1≤𝑘≤𝑛𝑑𝑙 , with 𝑛𝑑𝑙, the degree of freedom. Consider 𝑈𝑘, a vector in ℝ
𝑛𝑑𝑙 with coordinates of 𝑢1, 

so that the decomposition of 𝑢𝑘 on the basis of ∅𝑘 is written as 𝑢𝑘 = ∑ 𝑢𝑘 . ∅𝑘
𝑛𝑑𝑙
𝑘=1  and we pose: 

𝑈𝑘 =  ∑ 𝑢𝑘(𝑧) = (𝑢1, 𝑢2, … , 𝑢𝑛𝑑𝑙)
𝑛𝑑𝑙
𝑘=1 ,    ∀ 𝑡 ∈ [0, 𝑇] (17) 

For a regular mesh, when ∅𝑘(𝑧𝑖) to ∅𝑘(𝑧), 0 ≤ 𝑖, 𝑘 ≤ 𝑛𝑑𝑙, we define the ‘hat’ function by: 

∅𝑘(𝑧) =  ∅ (
𝑧𝑖−𝑧𝑘

ℎ
) =  {

1                 𝑖𝑓    𝑖 = 𝑘
0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (18) 

The spatial pitch is defined by ℎ = 𝑧𝑘+1 − 𝑧𝑘. Through the values of h at the mesh nodes, the basis function 

allows any function of 𝑉0ℎ to be unisolvantly characterized [22]. For any function 𝑢𝑘  𝜖 𝑉0ℎ uniquely defined 

by its values at the nodes (𝑧𝑘)1≤𝑘≤𝑛𝑑𝑙 in the space 𝑉0ℎ  𝜖 𝐻0
1(Ω) of dimension n, the function 𝑢𝑘  𝜖 𝑉0ℎ  is defined 

by: 

𝑢𝑘(𝑧) =  ∑ 𝑢𝑘(𝑧𝑘)∅𝑘(𝑧) ≈ ∑ 𝑢𝑘(𝑧𝑘)∅𝑘
𝑛𝑑𝑙
𝑘=1

𝑛𝑑𝑙
𝑘=1 ,      ∀  𝑧𝑘 ∈ Ω   (19) 

The heat Eq. (16) becomes: 

𝑑

𝑑𝑡
∑ 𝑢𝑘(𝑧𝑘) ∫ ∅𝑘 . ∅𝑖

 

Ω
𝑑𝑧 + 𝐷∑ 𝑢𝑘(𝑧𝑘) ∫ ∅𝑘∅𝑖

 

Ω
𝑑𝑧 − 𝐷(𝛼(𝑡) + 𝛽(𝑡)) ∫ ∅𝑘∅𝑖𝑑𝑧

 

∂Ω
≤ ∫ 𝐺(𝑡)∅𝑖

 

Ω
𝑑𝑧𝑛𝑑𝑙

𝑘=1
𝑛𝑑𝑙
𝑘=1 , ∀ 𝑣 𝜖 𝑉ℎ ,   𝑖𝑛  [0, 𝑇] (20) 

In the Compact notation, the Eq. (20) is written as: 

𝑑

𝑑𝑡
≺ 𝑢𝑘 . ∅𝑘 , ∅𝑖 ≻ +𝐷. 𝑎( ∑ 𝑢𝑘 . ∅𝑘 , ∅𝑖) − 𝐷.≺ (𝛼(𝑡), 𝛽(𝑡)). ∅𝑘 , ∅𝑖 ≻𝜕Ω0≤ … ≺ 𝐺(𝑡), ∅𝑖 ≻𝐿2(Ω)

𝑛𝑑𝑙
𝑘=1 , 

∀  ∅𝑖  𝜖 𝑉0ℎ , 1 ≤ 𝑖, 𝑘 ≤ 𝑛𝑑𝑙, 𝑖𝑛 [0, 𝑇] 𝑋 Ω (21) 

The last approach consisted of using the finite element method for spatial discretization, and the finite 

difference method for temporal discretization, since the implementation of a finite element method in space 

and time is of no particular interest when the domain Ω is invariant in time [37]. 

2.2.2.3. Semi-discretization in space 
The weak variational formulation of the heat equation is discretized in space. In this discretization, the 

spatial step is written as an index. To do this, an internal variational approximation is established by 

introducing a finite-dimensional subspace 𝑉0ℎ𝜖𝐻0
1(Ω) . Typically, 𝑉0ℎ  is a finite element subspace 𝑄𝑘 , for a 

uniform rectangular mesh. The semi-discretization of the Eq. (21) is the variational approximation in the 

weak sense: 

Find 𝑢ℎ(𝑡) as a function of [0, T] with values in 𝑉0ℎ such that: 

𝑑

𝑑𝑡
≺ 𝑢𝑘,ℎ(𝑡). 𝜙𝑘 , 𝜙𝑖 ≻𝐿2(Ω)+𝐷𝑎(∑ 𝑢𝑘,ℎ

𝑛𝑑𝑙
𝑘=1 (𝑡). 𝜙𝑘 , 𝜙𝑖) ≤  ≺ 𝐺(𝑡), ∅𝑖 ≻𝐿2(Ω)+𝐷 ≺ (𝛼(𝑡), 𝛽(𝑡))∅𝑘 , ∅𝑖 ≻𝜕Ω0 ,   ∀  𝜙𝑖 ∈  𝑉0,ℎ , 1 ≤ 𝑖, 𝑘 ≤ 𝑛𝑑𝑙,   𝑖𝑛 [0

, T]𝑋 Ω          (22) 

Introducing a basis (∅𝑘) 1≤𝑘≤𝑛𝑑𝑙 of the finite elements of 𝑉0ℎ, we look for 𝑢ℎ(𝑡) in the form: 

𝑢ℎ(𝑡) = ∑ 𝑈𝑘,ℎ
𝑛𝑑𝑙
𝑘=1 (𝑡). ∅𝑘   (23) 

with 𝑈ℎ = (𝑈𝑘,ℎ)1≤𝑘≤𝑛𝑑𝑙: coordinate vector of 𝑢𝑘,ℎ. 
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The 𝜙𝑘 functions are independent of time, unlike the coordinates of 𝑈𝑘,ℎ(t). We note 𝛼 = ∑ 𝑈0,ℎ
𝑛𝑑𝑙
𝑘=1 (𝑡). ∅𝑘 

and 𝛽 = ∑ 𝑈𝑘=𝑛𝑑𝑙,ℎ
𝑛𝑑𝑙
𝑘=1 (𝑡). ∅𝑘, i.e., 𝛼(𝑡) = ∑ 𝛼𝑛𝑑𝑙

𝑘=1 𝑘=0
(𝑡) and 𝛽(𝑡) = ∑ 𝛽𝑛𝑑𝑙

𝑘=1 𝑘=𝑛𝑑𝑙
(𝑡). 

For 1 ≤ 𝑖, 𝑘 ≤ 𝑛𝑑𝑙, the heat equation and its boundary conditions are written: 

{
 
 
 
 

 
 
 
 ∑ ≺ 𝜙𝑘 , 𝜙𝑖 ≻𝐿2(𝛺)

𝑛𝑑𝑙
𝑘=1

𝑑𝑈𝑘,ℎ(𝑡)

𝑑𝑡
+𝐷∑ 𝑎(𝜙𝑘 , 𝜙𝑖)

𝑛𝑑𝑙
𝑘=1 𝑈𝑘,ℎ(𝑡) ≤≺ 𝐺(𝑡), ∅𝑖 ≻𝐿2(𝛺)+𝐷 ≺ (𝛼(𝑡), 𝛽(𝑡))∅𝑘 , ∅𝑖 ≻𝜕𝛺0 ,

                                                                                     ∀  𝜙𝑖 ∈  𝑉0,ℎ , 1 ≤ 𝑖, 𝑘 ≤ 𝑛𝑑𝑙,   𝑖𝑛 [0, 𝑇] 𝑋 𝛺    (𝑎)
 

𝑈𝑘,ℎ(𝑧, 𝑡 = 0) = 𝑈0,ℎ(𝑧),                                                                 ∀  𝑈0,ℎ(𝑧) ∈ 𝑉0,ℎ ,    𝑜𝑛      [0, 𝑇] 𝑋𝛺   (𝑏)
𝜕𝑈𝑘=0,ℎ

𝜕𝜂
(𝑧 = 0, 𝑡) = 𝛼                                                                                                        𝑜𝑛   [0, 𝑇]𝑋𝜕𝛺0  (𝑐1)

𝜕𝑈𝑘=𝑛𝑑𝑙,ℎ

𝜕𝜂
(𝑧 = 𝑧𝑚𝑎𝑥, 𝑡) = 𝛽                                                                                               𝑜𝑛  [0, 𝑇]𝑋𝜕𝛺0    (𝑐2)

𝜕𝑈1≤𝑘<𝑛𝑑𝑙,ℎ

𝜕𝜂
(𝑧, 𝑡) = 0                                                                                                           𝑜𝑛    [0, 𝑇]𝑋 𝜕𝛺     (𝑑)

 (24) 

The established equations are implemented by defining the mass matrix and the stiffness matrix. The ‘mass 

matrix’ 𝑀𝑖,𝑘,ℎ  is defined by [41]: 

𝑀𝑖,𝑘,ℎ =≺ 𝜙𝑘 , 𝜙𝑖 ≻𝐿2(Ω) (25) 

The coefficients of the ‘mass matrix’ are evaluated using the following structure [5]: 

𝑀𝑖,𝑘,ℎ = {

2

3
ℎ                              𝑓𝑜𝑟    𝑘 = 𝑖

1

6
ℎ                        𝑖𝑓   |𝑘 − 𝑖| = 1

0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (26) 

We also define the ‘stiffness matrix’ 𝐾𝑖,𝑘,ℎ: 

𝐾𝑖,𝑘,ℎ = ∫ 𝜙𝑘
′ . 𝜙𝑖

′𝑑𝑧 = 𝑎(𝜙𝑘 , 𝜙𝑖)
 

Ω
   (27) 

The coefficients of this stiffness matrix are calculated as follows: 

𝐾𝑖,𝑘,ℎ =

{
 
 

 
 

2

ℎ
                          for    𝑘 = 𝑖

−1

ℎ
                    𝑖𝑓  |𝑘 − 𝑖| = 1

0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (28) 

The heat equation approximation is equivalent to a system of ordinary differential equations given by: 

{
 
 
 
 
 

 
 
 
 
 𝑀𝑖,𝑘,ℎ .

𝑑 𝑈𝑘,ℎ

𝑑𝑡
(𝑡) +  𝐷.𝐾𝑖,𝑘,ℎ . 𝑈𝑘,ℎ(𝑡) ≤ 𝐺𝑖(𝑡)  + 𝐷. 𝐾𝑖,𝑘,ℎ . (𝛼 + 𝛽)(t) ,   ∀ 1 ≤ 𝑖, 𝑘 ≤ 𝑛𝑑𝑙,   𝑖𝑛 [0, T] 𝑋 Ω  (𝑎)

 
𝑈𝑘,ℎ(𝑧, 𝑡 = 0) = 𝑈0,ℎ(𝑧)                                                                        ∀  𝑈0,ℎ(𝑧) ∈ 𝑉0,ℎ ,    𝑜𝑛      [0, 𝑇]𝑋Ω     (𝑏)

 
𝜕𝑈𝑘=0,ℎ

𝜕𝜂
(𝑧 = 0, 𝑡) =  𝛼                                                                                                                  𝑜𝑛   [0, 𝑇]𝑋𝜕𝛺0    (𝑐1) 

 
𝜕𝑈𝑘=𝑛𝑑𝑙,ℎ

𝜕𝜂
(𝑧 = 𝑧𝑚𝑎𝑥, 𝑡) =  𝛽                                                                                                         𝑜𝑛   [0, 𝑇]𝑋𝜕𝛺0    (𝑐2)

 
𝜕𝑈1≤𝑘<𝑛𝑑𝑙,ℎ

𝜕𝜂
(𝑧, 𝑡) = 0                                                                                                                        on    [0, 𝑇] 𝑋 𝜕𝛺    (𝑑)

  (29) 

2.2.2.4. Time discretization 
The finite difference method is used to discretize the differential Eq. (29) in time. The system of equations 

is rewritten as: 

{
 
 
 
 

 
 
 
  𝑀𝑖,𝑘,ℎ

𝑑𝑈𝑘,ℎ
𝑛

𝑑𝑡
+  𝐷𝐾𝑖,𝑘𝑈𝑘,ℎ

𝑛 ≤   𝐺𝑖
𝑛 +𝐷.𝐾𝑖,𝑘,ℎ (𝛼 + 𝛽)

𝑛 ,     ∀   1 ≤ 𝑖, 𝑘 ≤ 𝑛𝑑𝑙,   𝑖𝑛 [0, T] 𝑋 Ω     (𝑎)

𝑈𝑘,ℎ(𝑧, 𝑡 = 0) = 𝑈0,ℎ
0  ,                                                            ∀  𝑈0,ℎ

0 ∈ 𝑉0,ℎ ,     𝑜𝑛  [0, 𝑇]𝑋Ω           (𝑏)
𝜕𝑈𝑘=0,ℎ

𝜕𝜂
(𝑧 = 0, 𝑡) =   𝛼𝑛                                                                                       𝑜𝑛   [0, 𝑇]𝑋𝜕𝛺0     (𝑐1) 

𝜕𝑈𝑘=𝑛𝑑𝑙,ℎ

𝜕𝜂
(𝑧 = 𝑧𝑚𝑎𝑥 , 𝑡) =  𝛽

𝑛                                                                                 𝑜𝑛   [0, 𝑇]𝑋𝜕𝛺0  (𝑐2)

𝜕𝑈1≤𝑘<𝑛𝑑𝑙,ℎ

𝜕𝜂
(𝑧, 𝑡) = 0                                                                                               𝑜𝑛     [0, 𝑇]𝑋 𝜕𝛺   (𝑑)

  (30) 
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For an infinitesimal variation in the time interval (∆𝑡 = 𝑑𝑡), we break [0, 𝑇] down into 𝑁𝑛 sub-intervals. 

Each sub-interval Δ𝑡  corresponds to the ‘time step’ which measures the length of time between two 

successive instants 𝑡𝑛. and and 𝑡𝑛−1. This length is defined by ∆𝑡 =
𝑇−𝑡0

 𝑁𝑛
 where 𝑁𝑛 corresponds to the number 

of node iteration points such that 𝑁𝑛 = 𝑛𝑑𝑙 for 𝑡𝑛 = 𝑡𝑛−1 + Δ𝑡 and 𝑡𝑛−1 = 𝑛. Δ𝑡, with 0 ≤ 𝑛 ≤ 𝑁ℎ. We denote 

𝑈𝑘,ℎ
𝑛−1, the approximation of 𝑈𝑘,ℎ(𝑡𝑛−1)  at time 𝑡𝑛−1, and 𝑈𝑘,ℎ

𝑛 , the approximation of 𝑈𝑘,ℎ(𝑡𝑛) at time 𝑡𝑛, used 

for the rest of the numerical scheme. 

In practical implementation, time is meshed on the basis of the day in minutes (𝑡𝑛−1 =  24  60  ), and 

spatial meshing is performed every 2.5 cm (𝑧𝑛−1 =  2.5  100). 

2.2.2.5. Total spatial-temporal discretization 
The numerical solution of the studied system of equations is obtained using the 𝜃-scheme. In practice, this 

scheme is unconditionally stable for 𝜃 ∈ [
1

2
, 1]. The space-time discretization of the heat Eq. (30a) is obtained: 

{
 
 
 
 

 
 
 
 𝑀𝑖,𝑘,ℎ .

𝑈 𝑘,ℎ
𝑛 −𝑈𝑘,ℎ

𝑛−1

∆𝑡
+  𝐷.𝐾𝑖,𝑘,ℎ . [𝜃. 𝑈 𝑘,ℎ

𝑛 + (1 − 𝜃).𝑈 𝑘,ℎ
𝑛−1 − 𝜃. 𝛼𝑛 − (1 − 𝜃). 𝛼𝑛−1 −  𝜃. 𝛽𝑛 − (1 − 𝜃). 𝛽𝑛−1 ] ≤  𝜃. 𝐺𝑖

𝑛 + (1 − 𝜃). 𝐺𝑖
𝑛−1,

           ∀   1 ≤ 𝑖, 𝑘 ≤ 𝑛𝑑𝑙,      𝑖𝑛 [0, T] 𝑋 Ω          (𝑎)
 

𝑈𝑘,ℎ
𝑛 (𝑧, 𝑡 = 0) = 𝑈0,ℎ

0                                                                                                                 ∀  𝑈0,ℎ
0 ∈ 𝑉0,ℎ ,     𝑜𝑛  [0, 𝑇]𝑋Ω   (𝑏)

𝜕𝑈𝑘=𝑛𝑑𝑙,ℎ(𝑧𝑘=𝑧0 ,𝑡)

𝜕𝜂
= 𝐷.𝐾𝑖,𝑘,ℎ(𝜃𝛼

𝑛 +  (1 − 𝜃)𝛼𝑛−1 )                                                                         𝑜𝑛    [ 0, 𝑇]𝑋 𝜕𝛺0    (𝑐1) 

𝜕𝑈𝑘=𝑛𝑑𝑙,ℎ(𝑧𝑘=𝑧𝑚𝑎𝑥 ,𝑡)

𝜕𝜂
= 𝐷.𝐾𝑖,𝑘,ℎ(𝜃𝛽

𝑛 +  (1 − 𝜃)𝛽𝑛−1)                                                                      𝑜𝑛    [ 0, 𝑇] 𝑋 𝜕𝛺0      (𝑐2)

𝜕𝑈1≤𝑘<𝑛𝑑𝑙 ,ℎ(𝑧𝑘,𝑡)

𝜕𝜂
= 0                                                                                                                            𝑜𝑛  [ 0, 𝑇] 𝑋 𝜕𝛺      (𝑑)

 (31) 

with 𝑈𝑘
𝑛 = ∑ 𝑈𝑖

𝑛𝑛𝑑𝑙
𝑖=1  and 𝑈𝑘

𝑛−1 = ∑ 𝑈𝑖
𝑛−1𝑛𝑑𝑙

𝑖=1 . 

The temperature propagation in the ground is considered as a one-dimensional and anisotropic evolution 

in a heterogeneous medium. 

2.2.2.6. Choice of method and numerical solution of the ordinary differential equation 
In order to obtain an accurate numerical solution of the Ordinary Differential Equation, the Runge-Kutta 

method of order 4 is chosen because [42] it automatically updates the calculated values. 

Let be the estimates 𝑈𝑘−1,ℎ
𝑛−1  , 𝑈𝑘,ℎ

𝑛−1 , 𝑈𝑘+1,ℎ
𝑛−1   and 𝑈𝑘,ℎ

𝑛   at times 𝑡𝑛−1 , 𝑡𝑛  established at spatial nodes 𝑘 − 1 , 𝑘 , 

𝑘 + 1  in the domain 𝛺  meshed in ℎ . Eq. (31) is assumed to be a Cauchy problem and is given Neumann 

conditions in each phase. This problem is written as follows: 

{
 
 
 
 

 
 
 
 𝑈𝑘,ℎ

𝑛 ≤ 𝑈𝑘,ℎ
𝑛−1 +𝑀𝑖,𝑘,ℎ

−1. ∆𝑡 [(𝜃 𝐺𝑖
𝑛 + (1 − 𝜃)𝐺𝑖

𝑛−1) − 𝐷𝐾𝑖,𝑘,ℎ  (𝜃𝑈𝑘,ℎ
𝑛 + (1 − 𝜃)𝑈𝑘,ℎ

𝑛−1 − (𝜃. 𝛼𝑛(1 − 𝜃). 𝛼𝑛−1 −  𝜃. 𝛽𝑛 − (1 − 𝜃). 𝛽𝑛−1))] ,

                                                                                                                                                                          ∀   1 ≤ 𝑖, 𝑘 ≤ 𝑛𝑑𝑙,      𝑖𝑛 [0, T] 𝑋 Ω   (𝑎)
 

𝑈𝑘,ℎ
𝑛 (𝑧, 𝑡 = 0) = 𝑈0,ℎ

0                                                                                                                                               ∀  𝑈0,ℎ
0 ∈ 𝑉0,ℎ ,     𝑜𝑛  [0, 𝑇]𝑋Ω  (𝑏)

𝜕𝑈𝑘=𝑛𝑑𝑙,ℎ(𝑧𝑘=𝑧0 ,𝑡)

𝜕𝜂
= 𝐾𝑖,𝑘,ℎ . 𝐷. [𝜃𝛼

𝑛 +  (1 − 𝜃)𝛼𝑛−1 ]                                                                                                          𝑜𝑛    [ 0, 𝑇]𝑋 𝜕𝛺0    (𝑐1) 

𝜕𝑈𝑘=𝑛𝑑𝑙,ℎ(𝑧𝑘=𝑧𝑚𝑎𝑥 ,𝑡)

𝜕𝜂
= 𝐾𝑖,𝑘,ℎ . 𝐷. [𝜃𝛽

𝑛 +  (1 − 𝜃)𝛽𝑛−1 ]                                                                                                   𝑜𝑛    [ 0, 𝑇] 𝑋 𝜕𝛺0      (𝑐2)

𝜕𝑈1≤𝑘<𝑛𝑑𝑙 ,ℎ(𝑧𝑘,𝑡)

𝜕𝜂
= 0                                                                                                                                                                       𝑜𝑛  [ 0, 𝑇] 𝑋 𝜕𝛺      (𝑑)

 (32) 

2.2.2.7. Conditions for obtaining the numerical solution of the non-linear temperature 
profile 

The term 𝑈𝑘,ℎ
𝑛 , on the right-hand side of the ordinary differential inequality Eq. (32a) is approximated by 

𝑉𝑘,ℎ
𝑛   to obtain the non-linear soil temperature profile. We therefore evaluated 𝑉𝑘,ℎ

𝑛   by the left-handed 

decentralized one-step explicit Euler method. For 𝑉𝑘,ℎ
𝑛 = 𝑈𝑘,ℎ

𝑛 , we have: 

𝑉𝑘,ℎ
𝑛 =  𝑈𝑘,ℎ

𝑛−1 +
𝐷.∆𝑡

ℎ2
(𝑈𝑘−1,ℎ

𝑛−1 − 2𝑈𝑘,ℎ
𝑛−1 + 𝑈𝑘+1,ℎ

𝑛−1 )  (33) 

After rearrangement, we obtain the expression for 𝑉𝑘,ℎ
𝑛 : 

𝑉𝑘,ℎ
𝑛 =  (1 − 2

𝐷.∆𝑡

ℎ2
) .𝑈𝑘,ℎ

𝑛−1 +
𝐷.∆𝑡

ℎ2
. (𝑈𝑘+1,ℎ

𝑛−1 +𝑈𝑘−1,ℎ
𝑛−1 ) (34) 
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Because of the numerical stability of the 𝜃-scheme, we take 𝜃 = 1 2⁄  because the explicit Euler method is 

unconditionally stable and the CFL (Courant-Friedrich-Levy) condition in ∞ is satisfied (2.𝐷. ∆𝑡. 𝑈𝑘,ℎ
𝑛−1 ≤

ℎ2)  [43]. Eq. (32a) is rewritten as: 

𝑈𝑘,ℎ
𝑛 ≤ 𝑈𝑘,ℎ

𝑛−1 +𝑀𝑖,𝑘,ℎ
−1. ∆𝑡. [𝜃𝐺𝑖

𝑛 + (1 − 𝜃)𝐺𝑖
𝑛−1 − 𝐷𝐾𝑖,𝑘,ℎ (𝜃. 𝑉𝑘,ℎ

𝑛 + (1 − 𝜃)𝑈𝑘,ℎ
𝑛−1 − (𝜃 𝛼𝑛  + (1 − 𝜃)𝛼𝑛−1 +  𝜃𝛽𝑛 + (1

− 𝜃)𝛽𝑛−1))],   ∀   1 ≤ 𝑖, 𝑘 ≤ 𝑛𝑑𝑙,          𝑖𝑛  [0, T] 𝑋 Ω     (35) 

By replacing 𝑉𝑘,ℎ
𝑛  with its expression in Eq. (32a), we obtain: 

𝑈𝑘,ℎ
𝑛 ≤ 𝑈𝑘,ℎ

𝑛−1 +𝑀𝑖,𝑘,ℎ
−1. ∆𝑡 [(𝜃 𝐺𝑖

𝑛 + (1 − 𝜃)𝐺𝑖
𝑛−1) − 𝐷𝐾𝑖,𝑘,ℎ [𝜃 ((1 − 2

𝐷.∆𝑡

ℎ2
) . 𝑈𝑘,ℎ

𝑛−1 +
𝐷.∆𝑡

ℎ2
(𝑈𝑘+1,ℎ

𝑛−1 +𝑈𝑘−1,ℎ
𝑛−1 )) + (1

− 𝜃). 𝑈𝑘,ℎ
𝑛−1 − (𝜃𝛼𝑛 + (1 − 𝜃)𝛼𝑛−1 + 𝜃.𝛽𝑛 + (1 − 𝜃)𝛽𝑛−1) ]],     ∀   1 ≤ 𝑖, 𝑘 ≤ 𝑛𝑑𝑙,      𝑖𝑛  [0, T] 𝑋 Ω  (36) 

With 𝛼𝑎𝑣 = ∑ 𝛼𝑛𝑑𝑙
𝑘=1 𝑘=0

(𝑡) = 𝜃𝛼𝑛 + (1 − 𝜃)𝛼𝑛−1  and  𝛽𝑎𝑣 = ∑ 𝛽𝑛𝑑𝑙
𝑘=1 𝑘=𝑛𝑑𝑙

(𝑡) = 𝜃𝛽𝑛 + (1 − 𝜃) ⋅ 𝛽𝑛−1. 

Then: 

𝑈𝑘,ℎ
𝑛 ≤ 𝑈𝑘,ℎ

𝑛−1 + 𝑀𝑖,𝑘,ℎ
−1 ⋅ ∆𝑡 [𝜃𝐺𝑖

𝑛 + (1 − 𝜃)𝐺𝑖
𝑛−1 −𝐷𝐾𝑖,𝑘,ℎ [𝜃 ((1 − 2

𝐷.∆𝑡

ℎ2
)𝑈𝑘,ℎ

𝑛−1 +
𝐷⋅∆𝑡

ℎ2
(𝑈𝑘+1,ℎ

𝑛−1 + 𝑈𝑘−1,ℎ
𝑛−1 )) + (1 − 𝜃)𝑈𝑘,ℎ

𝑛−1 − (𝛼𝑎𝑣 +

𝛽𝑎𝑣) ]],      ∀   1 ≤ 𝑖, 𝑘 ≤ 𝑛𝑑𝑙,      𝑖𝑛  [0, T] 𝑋 Ω  (37) 

The Eq. (37) is expressed as: 

𝑈𝑘,ℎ
𝑛 ≤ 𝑈𝑘,ℎ

𝑛−1 + ∆𝑡.𝑀𝑖,𝑘,ℎ
−1 ⋅ 𝑓𝑛−1,  ∀   1 ≤ 𝑖, 𝑘 ≤ 𝑛𝑑𝑙,    𝑖𝑛  [0, T] 𝑋 Ω    (38) 

with, 𝑈𝑘,ℎ
𝑛 = 𝑈𝑘,ℎ(𝑡𝑛); 𝑈𝑘,ℎ

𝑛−1 = 𝑈𝑘,ℎ(𝑡𝑛−1) and 𝑓
𝑛−1 = 𝑓 (𝑡𝑛−1,   𝑈𝑘,ℎ(𝑡𝑛−1)). 

The temperature profile over time is obtained by integrating the function 𝑓𝑛−1 over time: 

∫ 𝑓𝑛−1𝑑𝑡 = 𝜃𝐺𝑖
𝑛 + (1 − 𝜃)𝐺𝑖

𝑛−1 − 𝐷𝐾𝑖,𝑘,ℎ [𝜃 ((1 − 2
𝐷.∆𝑡

ℎ2
)𝑈𝑘,ℎ

𝑛−1 +
𝐷∆𝑡

ℎ2
(𝑈𝑘+1,ℎ

𝑛−1 + 𝑈𝑘−1,ℎ
𝑛−1 )) + (1 − 𝜃)𝑈𝑘,ℎ

𝑛−1 − (𝛼𝑎𝑣 + 𝛽𝑎𝑣)]
𝑇

0
, ∀   1

≤ 𝑖, 𝑘 ≤ 𝑛𝑑𝑙,    𝑖𝑛  [0, T] 𝑋 Ω  (39) 

with, 𝑛 = 1,2,… ,𝑁𝑛. 

The 4th-order Runge-Kutta method was used to increase the accuracy of the model. For details of this 

method, see [44]. 

2.2.2.8. Presentation of initial and boundary conditions 
Measured mean temperatures and moisture and calculated heat flux at the soil surface and at −100 cm soil 

depth were used as upper surface initial conditions and lower boundary conditions, respectively. These 

values are uniform for all soil depths 𝑧𝑘 at time t = 0 and are denoted 𝑈0,ℎ
0 , 𝛼 and 𝛽. The initial conditions for 

which the values of the temperature and energy fluxes do not cancel out (𝑈0,ℎ
0 , 𝑈𝑛𝑑𝑙,ℎ

0 ) ∈ ∂Ω0  and 

(𝐺0,ℎ
0 , 𝐺𝑛𝑑𝑙,ℎ

0 ) ∈ ∂Ω0 ), are called “Neumann conditions”. Applying the 𝜃 − scheme  to the ODE, we take the 

mean ambient temperature and heat fluxes calculated at the soil surface and at 100 cm depth. These 

correspond to initial conditions and domain boundaries. On the other hand, the lateral edges, for which the 

flows are zero, are considered adiabatic and are referred to as Dirichlet conditions (Table 1). 
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Table 1. Measured values of thermal diffusivity and boundaries conditions 

Surface types 
Soil parameters 

Covered soil Bare soil 

Soil thermal diffusivity 𝐷(𝑧, 𝑡) 2.0510−6  (𝑚2/𝑠) 

Boundaries 
conditions 

Measured soil 
temperatures 

Ground surface temperature (°C) 
26.69 30.12 

Ground temperature measured at 100 cm depth (°C) 
17.5 18 

Heat fluxes 

𝛼 at ground surface (W/m2) 
16.19 25.54 

𝛽 at 100 cm depth (W/m2) 
6.57 8.178 

 

2.2.3. Optimization of the temperature profile 

Optimization is used to find the best solution from many feasible solutions [37]. Feasible solutions are 

those that satisfy all the constraints of the optimization problem. In this case, the best solution was to 

minimize the soil temperature profile in order to find the optimum soil temperature that would not increase 

the ambient temperature [45]. The optimized function is called the objective function. The variables in this 

function are decision variables. 

2.2.3.1. Optimum temperature equation 
The Eq. (38) is rewritten as: 

𝑈𝑘,ℎ
𝑛 − 𝑈𝑘,ℎ

𝑛−1 + ∆𝑡𝑀𝑖,𝑘
−1 𝑚𝑖𝑛 𝐹𝑘,ℎ

𝑛−1 ≤ 0,        ∀   1 ≤ 𝑖, 𝑘 ≤ 𝑛𝑑𝑙,    𝑖𝑛  [0, T] 𝑋 Ω,    𝑖𝑛  [0, T] 𝑋 Ω  (40) 

From Eqs. (31a) and (39a), we identify the following form of equation: 

𝑀𝑖,𝑘,ℎ
𝑈𝑘,ℎ
𝑛 −𝑈𝑘,ℎ

𝑛−1

∆𝑡
= −∇𝐹𝑘,ℎ

𝑛−1 (41) 

The primitive of the function ∇𝐹𝑘,ℎ
𝑛−1 corresponds to the objective function below: 

𝐹𝑘,ℎ
𝑛−1 = (𝜃. 𝐺𝑖

𝑛 + (1 − 𝜃).𝐺𝑖
𝑛−1)𝑈𝑘,ℎ

𝑛−1 + 𝐷.𝐾𝑖,𝑘,ℎ(𝛼𝑎𝑣 + 𝛽𝑎𝑣)𝑈𝑘,ℎ
𝑛−1 −

1

2
𝐷𝐾𝑖,𝑘,ℎ [𝜃 ((1 − 2

𝐷.∆𝑡

ℎ2
)𝑈𝑘,ℎ

𝑛−12 +

𝐷.∆𝑡

ℎ2
((𝑈𝑘+1,ℎ

𝑛−1 )
2
+ (𝑈𝑘−1,ℎ

𝑛−1 )
2
)) + (1 − 𝜃)(𝑈𝑘,ℎ

𝑛−1)
2
],   ∀ 𝑡 ∈ [0, 𝑇] 𝑋 𝛺 (42) 

Minimizing this function means solving the problem: 

𝑈𝑘,ℎ
𝑛 = 𝑈𝑘,ℎ

𝑛−1 + ∆𝑡𝑀𝑖,𝑘,ℎ
−1𝑚𝑖𝑛 [(𝜃. 𝐺𝑖

𝑛 + (1 − 𝜃)𝐺𝑖
𝑛−1)𝑈𝑘,ℎ

𝑛−1 − 𝐷𝐾𝑖,𝑘,ℎ(𝛼𝑎𝑣 + 𝛽𝑎𝑣)𝑈𝑘,ℎ
𝑛−1 −

1

2
. 𝐷. 𝐾𝑖,𝑘,ℎ . [𝜃 ((1

− 2
𝐷.∆𝑡

ℎ2
) (𝑈𝑘,ℎ

𝑛−1)
2
+
𝐷.∆𝑡

ℎ2
((𝑈𝑘+1,ℎ

𝑛−1 )
2
+ (𝑈𝑘−1,ℎ

𝑛−1 )
2
)) + (1 − 𝜃)(𝑈𝑘,ℎ

𝑛−1)
2
]],     ∀  𝜙𝑖 ∈ 𝑉0,ℎ ,   1 ≤ 𝑖, 𝑘 ≤ 𝑛𝑑𝑙 𝑖𝑛 [0, 𝑇

] 𝑋 𝛺 (43) 

Solving the system of Eq. (43) corresponds to a constrained multi-objective optimization: 

{
 
 
 

 
 
 
𝑓𝑗(𝑡, 𝑈ℎ(𝑡, 𝑧)) = 𝑈𝑘,ℎ

𝑛−1 + ∆𝑡.𝑀𝑖,𝑘,ℎ
−1. 𝑚𝑖𝑛(𝐹𝑘,ℎ

𝑛−1) , ∀ 1 ≤ 𝑖, 𝑘 ≤ 𝑛𝑑𝑙,    𝑖𝑛  [0, T] 𝑋 Ω     (𝑎)
.

Constraints to:                                                                                                
∑ 𝑡(𝑖) = 𝑇𝑛
𝑖=1                                                                                       (𝑏) 

∑ 𝑧(𝑗) = 𝑧𝑚𝑎𝑥
𝑛
𝑗=1                                                                                 (𝑐)

0 ≤ 𝑡(𝑖) ≤ 𝑇                                                                                      (𝑑)

 0 ≤ 𝑧(𝑗) ≤ 𝑧𝑚𝑎𝑥                                                                                 (𝑒)

 (44) 
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2.2.3.2. Particle Swarm Optimization (PSO) 
Metaheuristic optimization techniques reduce the shortcomings of mathematical optimization 

methods  [46]. Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are two more attractive and 

popular methods for solving scientific and engineering problems [47–49]. A cross-comparison of the 

advantages in terms of convergence and accuracy shows that these two methods are remarkably accurate. 

While the genetic algorithm has a slight advantage, particle swarm optimization has a lower computational 

load [50]. The PSO method is an efficient algorithm developed by Kennedy and Eberhart in 1995 [34] to find 

the optimal solution to problems involving non-linear and non-convex ordinary differential  

equations [51–53]. In classical optimization problems with uniform meshes, as the number of iterations 

increases, the approximate solution can deviate considerably from the exact solution. For this reason, it is 

sometimes difficult to propose numerical methods for solving problems with initial conditions and boundary 

conditions [52, 53]. Therefore, this study established a model composed of finite element and finite difference 

methods to solve the partial differential equation and obtain an ordinary differential equation. The latter was 

solved by the Runge-Kutta method of order 4. The PSO method was applied to increase the convergence of its 

iterations and the accuracy of its optimal solution. Its formulation and coding are described in more detail 

in  [54]. 

2.2.3.3. Validation of the proposed model and implementation 
2.2.3.3.1. Measuring soil and ambient air temperature and humidity 
The acquisition system tube was inserted into the soil to measure instantaneous variations in soil 

temperature and humidity at different soil depths. DHT11 sensors were used to measure ambient air 

temperature and relative humidity. These data were used as boundary conditions (upper and lower). 

Measurements were carried out from January 1, 2017, to December 31, 2018, in the city of Yamoussoukro 

under two different conditions. The choice of sites was based on the criterion of having measured 

temperatures and humidities on a bare ground surface (built-up habitats only) and a covered ground surface 

(habitats with the presence of trees). 

Data recording began three days after the sensors were inserted in the soil (time for stabilization of the 

thermo-hydric properties between the soil and the sensors). The thermal diffusivity of soils is a property 

whose variation is practically constant [35]. Data recording began three days after the sensors were inserted 

in the soil (time for stabilization of the thermo-hydric properties between the soil and the sensors) (Fig. 2). 

The thermal diffusivity of soils is a property whose variation is practically constant. 

 

 
(a) 
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(b) 

Fig. 2. Soil and ambient air temperature and humidity measurements: (a) Data acquisition; 

(b)  Measurement of the thermal properties. 

 

2.2.3.3.2. Statistical analysis of model performance 
The performance of the proposed model is studied by estimating statistical parameters. Firstly, the Root 

Mean Squared Error (RMSE) between the simulated values and the measured data is calculated  [20]: 

RMSE =
1

𝑁+1
√∑ (𝑈𝑝𝑟,𝑖,𝑘 − 𝑈𝑜𝑏,𝑖,𝑘)

2𝑁+1
𝑖=1   (45) 

𝑁 + 1 total number of measurements; 𝑈𝑝𝑟,𝑖,𝑘: soil temperature predicted at time ième and kème depth; 𝑈𝑜𝑏,𝑖,𝑘: 

soil temperature measured at time ième and kème depth. 

The Mean Relative Error (ERM) was calculated using the Neural Network method, considering 60% of the 

data for the test phase, 20% for training and 20% for validation. The entire prediction model, decision criteria 

and model performance parameters were implemented using MATLAB R2021b software. 

3. Results and Discussion 

3.1. Results 

3.1.1. Assessment of the soil’s energy fluxes 

Fig. 3 shows the variation in thermo-hydric phenomena in the soil-plant-atmosphere system that affect 

energy migration in the soil (heat flux by conduction, latent heat flux, sensitive heat flux, and heat flux by net 

solar radiation). According to this figure, the values of net radiation heat flux vary between 200 W/m2 and 

255 W/m2; sensible heat flux varies between 100 W/m2 and 310 W/m2; latent heat flux varies between 0 and 

150 W/m2, and heat flux by conduction varies between −100 W/m2 and 50 W/m2. In addition, the intensities 

of net solar radiation and latent heat are greater than those of sensitive heat flux and heat flux by conduction 

(the lowest) in the soil. While the variation in heat by conduction is in line with that of sensitive heat, these 

two profiles move in opposite directions to those of latent heat and net solar radiation. It should also be noted 

that the intensity of latent heat remains lower than that of net solar radiation, although this is not always the 

case. 

 

25 Volume 15, Number 1, 2025

International Journal of Applied Physics and Mathematics



 

 
Fig. 3. Daily variations in heat fluxes. 

 

3.1.2. Simulated temperature profiles of bare and covered soil surfaces and impact of 
plants in a city 

3.1.2.1. Predicted temperature profiles of bare and covered soil surfaces 
Fig. 4 shows the space-time variation in mean temperature profiles within the soil (Fig. 4(a) for a bare 

surface; Fig. 4(b) for a covered soil surface). The analysis shows that soil temperature varies significantly in 

the first soil layers (0 to 40 cm deep). While soil temperatures decrease from 32.83 °C and 22 °C (Fig. 5(a)) 

and 25.62 °C to 21.64 °C (Fig. 4(b)) in the 40 cm thick subsurface strata, these temperatures remain 

practically constant below a depth of 60 cm. 

 

    
(a)         (b) 

Fig. 4. Space-time variation of soil temperature profile in the Yamoussoukro area: (a) bare surface (𝑈0,ℎ
0 =

30.12°𝐶 ; 𝑈𝑛𝑑𝑙,ℎ
0 = 18°𝐶 ; 𝛼 = 25.54 𝑊/𝑚² ; 𝛽 = 8.178 𝑊/𝑚² ); (b) covered surface  (𝑈0,ℎ

0 = 26.69°𝐶 ; 𝑈𝑛𝑑𝑙,ℎ
0 =

17.5°𝐶; 𝛼 = 16.19  𝑊/𝑚²; 𝛽 = 6.57 𝑊/𝑚²). 

 

3.1.2.2. Estimating the impact of plants in the Yamoussoukro city 
Fig. 5 shows the variation in average ambient temperature measured in the town of Yamoussoukro under 

two conditions. The brown curve expresses the ambient temperature profile for a bare ground surface, 
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compared with the green curve for a covered ground surface, where the difference between the two is given 

by the red curve. In this figure, the ambient temperatures rise rapidly from 06:20 am to reach high levels 

(between 30 °C and 38 °C (bare surface) and between 25 °C and 28 °C (covered surface)) during the day, 

before falling after 16:45 to a nighttime value of around 25 °C. The increase in temperature is less marked on 

vegetation-covered surfaces, whereas fairly significant increases are observed on bare ground surfaces, 

which increases the difference in temperature between these two surfaces. The maximum rate of increase 

was 27.91%, with an average of 9.37%, or 3.12 °C. Fig. 5(b) shows the variation in the relative humidity of 

the air around these two surfaces (blue curve for the covered surface and gray curve for the bare surface). 

Analysis of this figure shows that between 06:30 am and 04:45 pm, the amplitude of relative humidity is 

significant at the start of the day, decreasing rapidly during the day and returning to their values beyond this 

interval. During the study period, the covered surface had a high humidity (from 80% to 96.33% with an 

average of 85.57%) compared with a humidity range for the bare surface varying from 60% to 90% with an 

average of 72.93%. 

 

         
(a)     (b) 

Fig. 5. Effects of plants in reducing (a) ambient temperature and (b) ambient air humidity. 

3.1.2.3. Optimal soil temperature profile 
Optimization of the soil temperature profile showed that 20 °C is the optimum soil temperature, above 

which an increase in ambient temperature would have an increasing effect on the ambient air temperature. 

The relevance of the PSO method was shown to converge at the 5th iteration (Fig. 6). 

 

 
Fig. 6. Optimum floor surface temperature. 
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3.1.2.4. Validation of the numerical model 
Prediction error analysis of the proposed model gave an MSD error equal to 3.5110−5 °C, i.e., a numerical 

error of 3510−6 (Fig. 7) and a relative error of R = 0.998. Analysis of the model’s performance using the 

neural network method produced an error of 5.7710−12. 

 

 
Fig. 7. Numerical model convergence profile. 

 

3.2. Discussion 

Heat and water exchange between the components of the soil-plant-atmosphere system at the earth’s 

surface are produced by plant transpiration and evaporation from water and soil surfaces. These processes 

have a considerable impact on the energy balance within the soil. While latent heat explains the transpiration 

of plant leaves and the evaporation of water surfaces in the universe [27, 55], sensible heat explains the 

evaporation of soil surfaces in the atmosphere. The combination of latent heat and sensible heat results in 

potential evapotranspiration. The above-mentioned system operates as an open system, exchanging heat, 

water and matter [26] between its three components in order to achieve thermo-hydric equilibrium between 

them. The sun’s rays are the only source of energy for this process, while rain and groundwater provide water. 

After some of the radiation from the earth’s crust is reflected by particles suspended in the air, the plant cover 

and the surface of the minerals that make up the soil, the remainder, known as net solar radiation, is absorbed 

by the soil, increasing its conductive heat. The amount of solar radiation that penetrates the ground is greater 

when the ground surface is bare, and the sky is clear. The energy input by radiation is highest in the dry 

season and lowest in the rainy season; this contributes to the increase in latent heat and sensible heat. The 

conductive heat flux of the ground is the quantity of radiation gained (negative value) or lost (positive value) 

by it [56]. Sensible heat flux is the energy that increases atmospheric temperature, causing advection, while 

latent heat corresponds to the energy available for water evaporation. This justifies the strong increase in 

sensitive heat in the intensity of net radiation and ambient temperature in the dry seasons, compared with 

its low values in the rainy season [57]. In dry seasons, radiation intensity is at a maximum, so it limits the 

flow of water between the components of the soil-plant-atmosphere system to reduce biological phenomena 

(plant transpiration and microbial respiration); low values of latent heat are therefore obtained. The 

disadvantages of increases in ambient temperature are seen not only in the high electricity consumption in 

buildings [31], but also in the disruption to human health  [58, 59] (strong solar radiation reflected by 

polluting constituents in the universe). According to the work of [60], the interaction between air 

temperature and soil temperature can lead to the effects of meteorological warming and climate change, thus 

increasing organic carbon and nitrogen emissions. On the other hand, in the rainy season, the energy input 
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to soils and plants (important biological phenomena caused by the growth in plant height, leaf size and 

density, soil microorganisms, etc.) is low [59] increasing albedo. The evaporation of soil surfaces by the effects 

of radiant reflection in the universe, sensible heat flux and conductive heat flux are diminished compared to 

sensible heat flux. In addition, the intensity of latent heat remained lower than that of net solar radiation, 

since latent heat is a component of the radiant energy input at the Earth’s surface. On the other hand, 

unexpected events sometimes occur because of major advection phenomena that cool the ambient air, 

minimizing the effects of net radiant fluxes. From one season to the next, the conductive flow is high during 

the day (absorption of radiant heat) and low at night (re-emission of part of the heat absorbed from the 

ground during the day into the atmosphere, the other part being used for the development of plants and 

microorganisms). In this study, average temperature increases of 9.37%, or 3.12 °C, and maximum 

temperature increases of 27.91%, or 10.8 °C, were obtained when moving from a covered surface (with an 

average relative humidity of 85.57%) to a bare surface (with an average relative humidity of 72.93%). The 

presence of plants increases the albedo of the soil surface. This means that planting plants in a city increases 

the humidity of the air and reduces the ambient temperature. This temperature increases in the morning with 

the intensity of net solar radiation to reach its optimum and remains constant when all the minerals in the 

soil and the particles suspended in the air have reached their maximum degree of thermal absorption. After 

4:45 pm, this temperature decreases with the intensity of the sun’s rays, so the soil particles release the heat 

stored during the day into the universe. Soil is a complex porous medium, composed of three phases (solid, 

gaseous (air) and liquid (interstitial water)) [51] represented by composite soil minerals and interstitial 

fluids (air and liquid). Depending on the surface texture of the minerals making up a soil, and the proportion 

and luster of certain minerals (quartz, feldspar, mica), the soil reflects conductive heat back into the universe; 

this contributes to the sensible heat flux for any increase in ambient temperature. Our results gave an average 

bare soil temperature of between 18 °C and 32 °C, compared with an average covered soil temperature of 

between 17.5 °C and 26 °C. The plant cover dampened the thermal effects of solar radiation, thus minimizing 

the net surface flux and hence the conductive and sensitive fluxes. Our results are similar to those of  

Su et al. [61]. The work of Rahman et al. [47] confirmed that an increase in the temperature inside the soil 

contributes significantly to an increase in the ambient air temperature and vice versa. According to the work 

of Raman et al. [53] and Lee et al. [62], trees, compared to grasslands, perform better in mitigating human 

heat stress and promote ambient temperature attenuation ranging from 3.4 °C to 2.7 °C. Sun et al. [63] 

combined the GLDAS and Noah models to analyze the evolution of soil temperature from a depth of 0-200cm. 

They conducted their work in China using meteorological data (1948–2018). Their results showed that 

strong variations in soil temperature occur from 0 to −10 cm, and that this temperature remains low at great 

depths (−100 cm to −200 cm). Pe rez et al. [64] studied the impact of vegetation cover on reducing ambient 

temperature. Their results showed that the presence of plants on a soil reduces its ambient temperature by 

0.5 °C to 5 °C and a reduction of 55% in the dry season. This increase in ambient temperature also has an 

impact on the temperature inside houses. Soil temperatures ranged from 0 °C to 45 °C, which are greater than 

those in our study, as their studies were conducted in an arid climate whereas our studies were conducted in 

a humid tropical climate. According to the work of Ellison et al. [65], forests and trees are key regulators of 

water, energy and carbon cycles to enhance sustainability, adaptation and mitigation efforts. 

Dolschak et al. [66] conducted a study in Klausen-Leopoldsdorf, USA using Newton’s law to predict the 

temperature of soil-covered surfaces and a simulator to predict the temperature of bare soil to a depth of 0 

to −60 cm. The mean and absolute errors obtained were less than 0.9 °C and greater than 0.97 °C, respectively. 

These values are much higher than the error values in our study. Bayatvarkeshi et al. [67] have shown that 

soil temperature decreases with depth with temperatures between 0 °C and 45 °C. Contrary to our results, 

their results showed that the temperature was low at the beginning and end of the year. The WCANFIS model 
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was the most efficient model for different climates. Unfortunately, this model gave an error RMSE ≈ 0.4 °C 

and the accuracy of their model decreased with increasing soil depth. 

4. Conclusion 

This study used average canopy height, leaf area, wind speed, ambient temperature, albedo, solar radiation 

intensity and average soil temperature measured at the surface and at 100cm soil depth to establish a 

mathematical model for predicting soil temperature profiles. Soil temperature was measured in a real-life 

situation using a soil temperature and moisture data acquisition system. The study used solar energy, 

calculated as a natural source of energy supplied to the soil and overlying plants. 

Based on two measurement conditions (covered soil surface and bare soil surface), the results of this study 

showed that, not only does the increase in temperature inside the soil increase that of the ambient air and 

vice versa, but also, the presence of plants in a city lowers the temperatures inside the soil and the ambient 

air. The benefits of this practice lie in managing energy in buildings and improving human health through 

pleasant environmental air. 

The ideal would be to have an average annual optimum temperature of 20 °C in the first 40 cm of soil. Based 

on the numerical prediction errors to validate the accuracy of the models, we conclude that the present model 

predicts temperature profiles better than the results of previous work. 

The use of more than 10 years of experimental data could help future research to further increase the 

accuracy of the model. Secondly, it would be very interesting to compare building temperature profiles for 

each of these typical zones. 
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