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Abstract: The paper will discuss some classical epidemic models with the Ornstein-Uhlenbeck process. The 

mechanism of infectious disease models works in different ways. The influential factors involve population, 

psychology, environment, climate and so on. Especially, the parameters in models follow some certain 

assumptions, the Ornstein-Uhlenbeck process. In addition, the Ornstein-Uhlenbeck process was introduced 

into dynamic models to describe the transmission pattern. Finally, the simulation will provide to illustrate 

the correctness of the theoretical results. The summary of different models will provide the information for 

further study about the spread and control of epidemic diseases. 
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1. Introduction 

Throughout history, humans and viruses have had several rounds of confrontations, and each virus 

outbreak has claimed countless lives. Numerous people died, but the virus never stopped. Infectious 

diseases are a major threat to human health, and the outbreak of infectious diseases is often accompanied 

by social panic and economic crisis. Since SARS or even earlier, people have used mathematical models to 

predict the development of infectious diseases, and have achieved good results. However, the outbreak of 

COVID-19 at the end of 2019 has caused earth-shattering changes in the world. Therefore, the 

establishment of infectious disease prediction models can not only effectively control the epidemic and 

maintain social stability, but also apply the models to other fields with similar transmission methods to 

infectious diseases, such as network information dissemination, epidemiology and environmental science. 

The Ornstein-Uhlenbeck process plays an important role in epidemic and disease models. It has been 

studied by many scholars at home and abroad. A variety of epidemic models with many special features have 

also been studied in the literature. They provide us with different perspectives to understand the epidemic 

model and related innovations. About a century ago, Kermack and Mckendrick laid the foundation for the 

control and dynamics of epidemic diseases, they proposed the epidemic disease definite model, the SIR 

model. Korobeinikov and Wake [1] introduced Lyapunov functions for classical SIR, SIRS, and SIS 

epidemiological models. Li et al. [2] established a class of SIRS epidemic models based on psychological 

effects. In addition, Wang et al. [3] put forward a stochastic differential equation SIS epidemic model with the 

Ornstein-Uhlenbeck process. Fang et al. [4] study the spread trend of infectious diseases by a dynamic SEIR 

model based on the Susceptible Exposed Infectious Removed (SEIR) model. Recently, Olusegun [5] has been 
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interested in the analysis of multi-strain infection of vaccinated and has recovered population through the 

epidemic model. Corresponding results can also be found in Sun [6], Gong and Yang [7] and some others. 

Since ancient times, humans have been plagued by epidemics. This project mainly studies a kind of 

stochastic prediction model containing the Ornstein-Uhlebeck process, and the model considers the 

possibility of multiple factors, such as environment, psychology, population and others. In addition, the 

author summarizes the application scope and advantages and disadvantages of different models, and makes 

a comparative analysis of the development trend of infectious diseases, to fully understand the transmission 

mechanism and disease control theory of infectious diseases. This project achieves the optimal control 

solution based on computer simulation and understanding of the prediction of infectious disease 

transmission mechanisms. 

Diseases are affected by a variety of factors in the process of infection, such as population density, 

psychological factors, environmental factors, medical level, etc. Therefore, the uncertainty, limitation and 

complexity of transmission pathways lead to the diversity of models, so that predictive models and 

multivariate analysis provide a strong theoretical basis for disease control and prevention [8]. 

2. The Summary of Epidemic Models 

In this section, we will consider several classical epidemic models. Modeling infectious diseases at 

different stages can capture the rich dynamics relationships that exist in interdependent diseases. The key 

to modeling infectious diseases is to divide the population into several easily monitored stages according to 

the stages of infection and to find the dynamic relationship between the parts. This idea of dividing the 

whole part into several parts to find its dynamic connotation applies to many modeling problems. 

Research methods mainly through mathematical model research, mathematical model research is to 

simulate the trend and development process of disease epidemic through mathematical modeling, 

especially the analysis of the inflection point and peak period, to provide services for disease prevention 

and control and the formulation of health policies. Common infectious disease models can be divided into 

the following types according to the types of infectious diseases: SI, SIS, SIR, SEIR, and according to the 

transmission mechanism, they can be divided into different types based on the ordinary differential 

equation, partial differential equation, and network dynamics equation . 

These models use mathematical equations to describe the dynamics of disease spread. They can be 

simple or complex, depending on the level of detail required to capture the specific characteristics of a 

disease. Epidemic models can be used to estimate parameters such as the basic reproduction number (R0), 

which is the average number of secondary infections caused by an infected individual in a fully susceptible 

population. By adjusting the parameters and assumptions in these models, researchers can simulate 

different scenarios and evaluate the potential impact of different interventions in controlling an 

epidemic  [9]. 

The basic reproduction number (R0) implies the number of secondary infections in an otherwise 

susceptible population caused by a single initial individual. It is a widely used estimate of the severity of an 

epidemic outbreak and quantifies the transmission potential of a disease. A R0 of 1 or less indicates that the 

outbreak is coming to an end, as it can produce less than its initial number over time. A value greater than 

one indicates a growing epidemic, producing more than its current number. The infectious disease is 

dynamic and changes over time, eventually decreasing. Gross estimates of R0 for COVID-19 ranged from 2.2 

to 2.7. The UK strain’s R0 is also higher than that of other strains. 

• The basic transmission number of COVID-19 is 5.7, and if R0 is less than 1, the infection will gradually 

disappear. 

• If R0 > 1, the infection will spread exponentially and become an epidemic. However, it won’t last 
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forever, as the number of people likely to be infected slowly decreases. Some of the population may die 

from the infection, while others may recover and develop immunity. 

• If R0 = 1, the infectious disease becomes endemic in the population. The higher the R0 number, the 

harder it is to control the epidemic. Omicron, a variant of COVID-19 and by far the most transmissible virus, 

has an estimated mean R0 value of 9.5, which is considered higher than the delta of 5.08. Measles has the 

highest base number of infections, between 16 and 18, HIV and Ebola have relatively low R0, and 

smallpox is between 5 and 7. 

2.1. Model 1 SI 

The SI model is the simplest form of all disease models. Individuals are born into the simulation with no 

susceptible. Once infected and with no treatment, individuals stay infected and infectious throughout their 

life, and remain in contact with the susceptible population.  

 

0 = S′(t) + I′(t) (1) 
 

S′(t) = −λIS, S(0) = S0 > 0 (2) 
 

I′(t) = λIS − αI, I(0) = I0 ≥ 0 (3) 
 

where S(t) is the susceptible and I(t) is the infected. But the infected can’t be recovered. S0 and I0 are initial 

values. The HIV virus is a typical example of the SI model. The constants λ and α are the transmission rate 

and removal rate, average values are all greater than 0. Suppose let 𝜎 =
𝜆

𝛼
, 

1

𝜎
 is the relative removal rate. 

The equation cannot be solved for S(0) and I(0), but we can evaluate the different values of λ, α, S0, and I0 by 

Matlab, then we get the trend of the curve for S0 and I0. This model is not very widely applicable, because 

the infected cannot be cured. 

• The transmission rate depends on the relative level between the transmission rate of the patient and the 

cure rate of the patient, and if the cure rate of the patient is greater than the transmission rate of the 

patient, then the infection will eventually disappear; 

• Even if patients are spreading faster than they can be cured, only a fraction of the population will 

eventually become infected; 

• The final proportion of infected people is 1 − 1/σ, σ = ρ/µ, σ is the effective contact number of each 

patient during the entire infection period, which can be understood as the total number of patients in 

contact with the entire illness period. 

The Equilibrium solution is 

• Unstable solution: I(0) = 0, S(0) = P 

• Stable solution: I∞ = N, S∞ = 0 

2.2. Model 2 SIS 

The SIS model developed on the basis of the SIR model takes into account that the infected person can be 

cured and become susceptible. The contact number in the infectious period on the surface of the SIS model 

is an important indicator of the spread, prevention and control of infectious diseases, which determines 

whether the infectious diseases will eventually be zero or develop into local long-term diseases. Common 

cold, and dysentery can be categorized by the SIS model. 

 

0 = S′(t) + I′(t) + S′(t) (4) 
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S′(t) = µP − 
𝛽𝑆𝐼

𝑃
 + γI − 𝑣𝑆, S(0) = S0 > 0 (5) 

 

I′(t) = 
𝛽𝑆𝐼

𝑃
 − γI − 𝑣𝑆, I(0) = I0 ≥ 0 (6) 

 
If the susceptible person S(t) comes into contact with the infectious person, he becomes the infected 

person R(t), and the infected person becomes the susceptible person after treatment and recovery. This 

model is most commonly used for the common cold and dysentery. The infectious rate, β, controls the rate of 

spread which represents the probability of transmitting disease between a susceptible and an infectious 

individual. Recovery rate, γ = 1/D, is determined by the average duration, D, of infection. The birth rate is µ, 

µP is the newly-born population, 
𝛽𝑆𝐼

𝑃
 is the number of the infected people [10]. 

The Equilibrium solution is 

• Unstable solution: I(0)=0, S(0) = P 

• Stable solution: I∞ = (1− 
𝛾

𝛽
)P, S∞ = 

𝛾

𝛽
P 

2.3. Model 3 SIR 

Considering the basic and classical epidemic model, SIR model. The SIR model of infectious diseases is 

more appropriate for epidemics without incubation periods, and is not applicable to the COVID-19 outbreak in 

early 2020. 

 

P(t) = S(t) + I(t) + R(t) (7) 
 

Where S(t) is the susceptible, I(t) is the infected, R(t) is the recovered. P(t) is the total number at time t. 

Model 3 means that the population has been divided into three groups. People who are immune don’t play 

in it. The basic assumption for the SIR model is that S(t), I(t), and R(t) are all continuous and differential 

functions. The virus has no incubation period, and the disease appears shortly after infection[11]. 

 

S′(t) + I′(t) + R′(t) = 0 (8) 
 

S′(t) = −αSI, S(0) = S0 > 0 (9) 

 
I′(t) = αSI − βI, I(0) = I0 ≥ 0 (10) 

 
R′(t) = βI(t), R(0) = R0 = 0 (11) 

 
It assumes that individuals progress from susceptibility to infection, and then to recovery with immunity. 

This model is useful for diseases where recovery confers immunity. 

 

I′(t) < 0 ⇒  
𝛼𝑆(𝑡)

𝛽
< 1 (12) 

 

I′(t) > 0 ⇒  
𝛼𝑆(𝑡)

𝛽
> 1 (13) 

 
I′(t) = 𝛼𝑆(𝑡)𝐼(𝑡) − βI(t) = 0 (14) 

 

𝑆(𝑡) = 
𝛽

𝛼
 (15) 
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where S(t) is a monotonically decreasing function. If I′(t) = 0, it shows that the infectious disease was at its 

worst. If I′(t) < 0, it shows that the epidemic began to gradually subside. The greater the value of 
𝛽

𝛼
, the 

sooner the epidemic will subside. In the lockdown and isolation at the same time, the use of scientific 

research and intensive care methods to improve the cure rate and will lower the 𝛼 and 𝛽, therefore the 

value of 
𝛽

𝛼
 will become greater, the turning point of the epidemic is as early as possible. 

The Equilibrium solution is 

• Unstable solution: I(0) = 0, S(0) = P 

• Stable solution: I∞ = 0, S∞ + R∞ = P  

The following Fig. 1 shows an example simulation of this model.  
 

 

Fig. 1. SIR model. 

 

A typical SIR Model simulated solution. This result is obtained with the following parameters: β = 0.02, α 

= 0.22, days = 100, and the initial values: I(0) = 0, R(0) = 0. 

2.4. Model 4 SEIR 

Based on the classic SIR model, the derived SEIR model adds susceptible patients, mainly for patients with 

incubation period and common infectious diseases, making it more suitable for simulating the new 

coronavirus 

 

P(t) = S(t) + E(t) + I(t) + R(t) (16) 
 

where E(t) represents the number of people with an incubation period, SEIR is more appropriate for the 

COVID-19 outbreak. P(t) represents the number of total population at time t. S(t), E(t), I(t), and R(t) are all 

continuous and differentiable functions of time t. 

 
S′(t) + E′(t) + I′(t) + R′(t) = 0 (17) 

 
S′(t) = − βSI/P + σR (18) 

 

International Journal of Applied Physics and Mathematics

118 Volume 14, Number 4, 2024



 

E′(t) = βSI/P − αE (19) 
 

I′(t) = αE − γI (20) 
 

R′(t) = γI − σR (21) 

 
where the parameter α determines the average retention time of immunity obtained by recovered 

individuals. The system has two fixed points: S = P (I = R = 0) or S = γ/β(I/R = α/γ). The former indicates that 

the disease is eradicated from the studied area, while the latter represents the epidemic status. The 

parameter condition for eliminating the epidemic is γ > βP. If this cannot be achieved, it is necessary to 

minimize α and increase γ as much as possible to enable more people to maintain immunity against the 

disease. 

A typical SEIR Model simulated solution. This result is obtained with the following parameters: β = 0.5, σ = 

0.00549, γ = 0.14286, α = 0.1, days = 365, and the initial values: I(0) = 0, R(0)=0. Fig. 2 shows that the 

Basic Reproduction Number, R0 is 3.5 since Jan. 2020. 

 

 

Fig. 2. SEIR graphing. 

 

The SEIR model extends the SIR model by including an exposed (E) compartment for individuals who have 

been exposed to the disease but are not yet infectious. This is particularly relevant for diseases with an 

incubation period. 

The transitions between compartments in the SEIR model are governed by parameters such as the 

transmission rate, the rate at which exposed individuals become infectious, and the recovery rate. These 

parameters are used to describe the dynamics of disease spread and can be adjusted according to the specific 

characteristics of the disease being modeled. 

Overall, the SEIR model is a valuable tool in epidemiology for studying the dynamics of infectious diseases 

and informs public health interventions to mitigate their impact. 
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2.5. Model 5 SIRS 

The SIRS model applies to susceptible people, sick people and recovered people. Recovered people have 

only temporary immunity, and those who become susceptible after the unit time are likely to be re-infected 

again and become ill. 

 

P(t) = S(t) + I(t) + R(t) (22) 

 
The model assumptions: The total number of population at time t is P(t), which does not take into 

account for births and deaths of the population, migration and immigration, the total population does not 

change. S(t) represents the susceptible. I(t) are the infected. R(t) is the recovered. A susceptible person is 

infected by effective contact with a sick person, becomes sick, can be cured and becomes susceptible again, 

has temporary immunity, no incubation period. 

 
P′(t) = S′(t) + I′(t) + R′(t) = 0 (23) 

 

S′(t) = −
𝛽𝑆𝐼

𝑃
+ 𝜉𝑅, S(0) = S0 > 0 (24) 

 

I′(t) = 
𝛽𝑆𝐼

𝑃
 – γI, I(0) = I0 ≥ 0 (25) 

 
R′(t) = γI – 𝜉R, R(0) = 0 (26) 

 
where β controls spreading rates, ξ means recovery rates, γ means infectious rates. When β is larger, the 

infection speed is greater. When it is larger, the recovery speed is faster, and the epidemic trend of the 

infectious disease will slow down. When γ is larger, the probability of reinfection of the susceptible people 

is higher, and the cycle of the infectious disease will be shorter [12]. 

The SIRS model overly simplifies the complexity of infectious disease transmission and neglects some real 

situations, such as population mobility, immunity changes and other factors. There are certain difficulties in 

parameter estimation and data collection in the model, resulting in a certain impact on the accuracy of the 

simulation results. The SIRS model may have poor application effects on certain specific types of infectious 

diseases and requires adjustment and improvement according to the actual situation. 

2.6. Model 6 SEIRS 

Now we will consider more complex disease transmission scenarios can be added to the model by 

introducing new groups and more complicated flows between them. The SEIRS model will allow us to 

model important aspects such as birth, death, loss of immunity and age. 

 
P(t) = S(t) + E(t) + I(t) + R(t) (27) 

 
The SEIRS model with demography. Rates are β (contact), σ (latency), γ (recovery), ξ (loss of immunity), 

α (infection-induced death), and µ (birth and background death). 

 
P′(t) = S′(t) + I′(t) + R′(t) = 0 (28) 

 

S′(t) = µP− 
𝛽𝑆𝐼

𝑃
 + ξR− µS, S(0) = S0 ≥ 0  (29) 

 

E′(t) = 
𝛽𝑆𝐼

𝑃
− 𝜎𝐸 − µE, E(0) = E0 ≥ 0 (30) 
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I′(t) = σE − γI − (µ + α)I, I(0) = I0 ≥ 0 (31) 

 
R′(t) = γI − ξR − µR, R(0) = 0 (32) 

 

where µP means birth cases, 
𝛽𝑆𝐼

𝑃
 means infection cases, ξR means lost immunity cases, µS and (µ+α)I means 

death cases, σE means latency, and γI means recovery cases. 

The six models above are only the basic models of the spread of infectious diseases, and many factors are not 

considered, such as the birth and death of the population, migration and immigration. There are also more 

detailed factors that can be considered, such as the speed of population flow, the age distribution of 

susceptible people, the susceptibility of different groups to the disease, the severity of symptoms of infected 

people, population density, the level of medical care, the means of inspection and quarantine, the level of 

government attention, and the psychological factors of the population. These factors have a direct or indirect 

effect on the number of exposures, morbidity, cure rate, and duration of infection. 

3. Main Results 

The Ornstein-Uhlenbeck process, named after Leonard Ornstein and George Eugene Uhlenbeck, is a 

stochastic process that describes the velocity of a particle undergoing Brownian motion subject to a 

frictional force. It is commonly used in physics, economics, and finance to model mean-reverting behavior. 

In some cases, the parameters in the models may satisfy the certain assumptions. The parameters in the 

infectious disease model satisfies Ornstein-Uhlenbeck process. The Ornstein-Uhlenbeck process is 

important in many areas, including: 

• Statistical mechanics, where it originated, 

• Mathematical finance, where it appears in the Vasicek model for the term structure of interest rates. 

• It can protect actual systems, such as mechanical arms. 

Firstly, the basic model for processes of this type is given by the (linear) stochastic differential equation, the 

Ornstein-Uhlenbeck Process is given by 

 

γt= 𝛾 + (𝛾0 − 𝛾)𝑒−𝑘𝑡 + 𝜌 ∫ 𝑒−𝑘(𝑡−𝑠)𝑑𝐵𝑡
𝑡

0
 (33) 

 

Whose solution is called the Ornstein-Uhlenbeck process with k and ρ. B(t) is a Wiener process. The OU-

process is time-dependent. The OU-process is time-dependent. The noise of OU-process does not have as 

large a difference in values between adjacent two steps as Gaussian noise. Instead, it will explore for a 

certain distance in the positive or negative direction around the mean value, like the fluctuations of 

commodity prices and interest rates. This is conducive to exploration in one direction[13]. 

Due to the random variability of the environment, white noise is often introduced to establish the 

dynamics model of infectious diseases. r0 = r(0), the expectation and variance of r(t): 

 

E(γ(t)) = γ + (𝛾0 − 𝛾) 𝑒−𝑘𝑡 (34) 
 

V(γ(t)) = 
𝜌2

2𝑘
(1 − 𝑒−2𝑘𝑡) (35) 

 

Combining Eqs. (33), (34), and (35), 𝜌 ∫ 𝑒−𝑘(𝑡−𝑠)𝑑𝐵𝑡
𝑡

0
 follow normal distribution (0, 

𝜌2

2𝑘
(1 − 𝑒−2𝑘𝑡)), we 

obtain: 
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𝜌 ∫ 𝑒−𝑘(𝑡−𝑠)𝑑𝐵𝑡
𝑡

0
=

𝜌

√2𝑘
√1 − 𝑒−2𝑘𝑡 𝑑𝐵𝑡

𝑑𝑡
  𝑎. 𝑠.  (36) 

 

Therefore, Eq. (33) can rewrite as 

 

𝛾𝑡 =  𝛾 + (𝛾0 − 𝛾)𝑒−𝑘𝑡 + 𝜎𝑡
𝑑𝐵𝑡

𝑑𝑡
 (37) 

 

where 𝜎𝑡 =
𝜌

√2𝑘
√1 − 𝑒−2𝑘𝑡 and 𝐵𝑡 follow the Brownian motion [14]. 

Due to the randomness and variability of the Environment, we introduce the white noise into the dynamic 

differential equations. For example, in SIS model, 𝛾 ⟶ 𝛾 + 𝜎𝑑𝐵(𝑡), we have 

 

𝑑𝑆(𝑡) = (𝜇𝑃 −
𝛽𝑆𝐼

𝑃
+ 𝛾𝐼 − 𝑣𝑆)𝑑𝑡 + 𝜎𝐼𝑑𝐵(𝑡) (38) 

 

𝑑𝐼(𝑡) = (
𝛽𝑆𝐼

𝑃
− 𝛾𝐼 − 𝑣𝐼)𝑑𝑡 − 𝜎𝐼𝑑𝐵(𝑡) (39) 

 
Substituting Eq. (37) into Differential equations, Eqs. (5) and (6), 

 

𝑑𝑆(𝑡) = (𝜇𝑃 −
𝛽𝑆𝐼

𝑃
+ (𝛾 + (𝛾0 − 𝛾)𝑒−𝑘𝑡)𝐼 − 𝑣𝑆) 𝑑𝑡 + 𝜎𝐼𝑑𝐵(𝑡) (40) 

 

𝑑𝐼(𝑡) = (
𝛽𝑆𝐼

𝑃
− (𝛾 + (𝛾0 − 𝛾)𝑒−𝑘𝑡)𝐼 − 𝑣𝐼)𝑑𝑡 − 𝜎𝐼𝑑𝐵(𝑡) (41) 

 
where the initial value I(0) = I0, when k goes to ∞, the stochastic model will eventually change to Eqs. (5) and 

(6). 

The Ornstein-Uhlenbeck process with intercepts can be divided into three parts. There are long-term 

averages, average conversions, and Brownian motion. Among them, β, k, ρ are all constants, representing the 

rate of mean reversion, the long-term average, and the volatility, respectively. As time goes on, we expect the 

process to drift towards k, because as r0 approaches, the damping decreases, and as s approaches t, the 

Brownian motion term is zero [15]. 

The process shows mean-reverting behavior as it tends to return to the mean µ over time due to the term 

(k(µ−Xt)dt). The term (σdBt) represents the stochastic component due to randomness in the system. 

The Ornstein-Uhlenbeck process has applications in various fields, including physics to model the motion 

of particles in a medium, finance to model interest rates or asset prices that tend to revert to a long-run 

average, and neuroscience to model the behavior of neurons that fire in response to stimuli. 

4. Conclusion 

The key to establishing an infectious disease model is to divide the population into several easily 

monitored parts according to the stage of infection, and to find the dynamic relationship between the parts. 

Many scholars at home and abroad have revised and innovated the model according to different research 

objects, which can be applied to the fields with common characteristics of infectious diseases. 

The significance of the infectious disease model lies in the mechanism, prediction, prevention and control 

guidance. The change of parameters depends on the intensity and measures of epidemic prevention and 

control in reality. 

Limited by the model principle and data, this study has certain limitations. The results of this study 

confirm that the model is reliable in analyzing of infectious disease situation, which can provide theoretically 

support for formulating epidemic prevention strategies in the future. However, this paper does not consider 
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the impact of measures such as prevention and control isolation, vaccination and asymptomatic infected 

persons on the epidemic situations, which will inevitably differ from reality and will be considered in further 

studies. 

In this study, the basic models of several infectious diseases are established according to the general 

transmission mechanism. The transmission process of different types of infectious diseases has its own 

different characteristics, and to clarify these characteristics requires considerable pathological knowledge, so 

it is impossible to analyze the transmission of various infectious diseases from a medical point of view. The 

establishment of mathematical models of infectious diseases, the description of the transmission process of 

infectious diseases, the analysis of changes in the number of infected people, and the exploration of means 

to stop the spread of infectious diseases has been the subject of concern for experts and officials in various 

countries. 
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