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Abstract: In field or laboratory planned experiments, it is possible to observe vague, incomplete, or 

imprecise data due to known or unknown reasons. Thus, the analysis should take into consideration the 

imprecision in data vales. In recent past, researchers have proposed various approaches such as fuzzy, 

intuitionistic fuzzy and neutrosophic logic and analysis, which provide better understanding, analysis and 

interpretations of the imprecise data. Experimental design and analysis is a systematic, rigorous approach 

to problem solving that applies principles and techniques at the data collection stage so as to ensure the 

generation of valid, defensible, and supportable conclusions. Factorial designs are widely used in 

experiments that involve several factors and where it is necessary to study the joint effects of the factors on 

a response. Several special cases of the general factorial design are important because they are widely used 

in research work and also because they form the basis of other designs of considerable practical value. 

These designs are widely used in factor screening experiments as well. The most important of these special 

cases is that of k factors, each at only two levels. These levels may be quantitative or they may be qualitative. 

A complete replicate of such a design is called a 2k-factorial design. In this paper, we consider the first 

design in the 2k-series which is one with only two factors, say A and B, each run at two levels. The levels of 

the factors may be arbitrarily called low and high. This design is called a 22-factorial design. For the 

imprecise response data, we will define a neutrosophic 22-factorial design (N22FD), neutrosophic model 

and neutrosophic analysis. As an illustration, we consider an investigation into the effect of the 

concentration of the reactant and the amount of the catalyst on the conversion (yield) in a chemical process. 

The objective of the experiment is to determine if adjustments to either of these two factors would increase 

the yield.  

 
Keywords: Imprecise data, neutrosophic statistics, neutrosophic factorial design, neutrosophic analysis 

 

1. Introduction 

It is commonly noted in field or laboratory planned experiments that the collected data or information is 

vague, incomplete, or imprecise due to measurement errors or data collection errors. In the classical data 

analysis, methods assume that data values are precise and do not take into account the imprecise nature of 

the data. However, the analysis should take into consideration any likely imprecision in data set. To 

understand and analyze imprecision, Smarandache [1−3] has proposed neutrosophic logic and 

neutrosophic math which is an extension of fuzzy logic where a variable 𝑥 is described by triplet values, i.e., 

𝑥 = (𝑡, 𝑖, 𝑓), where 𝑡 is the degree of truth, 𝑓 is the degree of false and 𝑖 is the level of indeterminacy. A 

neutrosophic data 𝑥 can be expressed as 𝑥 = 𝑑 + 𝑖, where 𝑑 is the determinate (sure) part of 𝑥, and 𝑖 is the 

indeterminate (unsure) part of 𝑥. For example, suppose a measured value 𝑥 is not precisely known but we 
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know that 𝑥 ∈ [8,8.6]. This data value can be expressed as 𝑥 = 8 + 𝑖, where 𝑖∈[0,0.6]. That means, for sure 𝑥 ≥ 

8 (meaning that the determinate part of 𝑥 is 8), while the indeterminate part 𝑖∈[0,0.6] means the possibility 

for number 𝑥 to be greater than or equal to 8 but less than or equal to 8.6. In field or laboratory planned 

experiments, it is possible to observe vague, incomplete, or imprecise data due to known or unknown 

reasons. Thus, the analysis should take into consideration the imprecision in data vales. Kumari et al. [4] 

have introduced the neutrosophic completely randomized design that is a generalization of the completely 

randomized design. They studied the flexible way of handling imprecise elements in completely randomized 

design. AlAita et al. [5] have proposed a novel method for ANCOVA using neutrosophic statistics. They 

applied the Neutrosophic Analysis of Covariance (NANCOVA) in three different designs, neutrosophic 

completely randomized design, neutrosophic randomized complete block design, and neutrosophic 

split-plot design. Authors have implemented and explained proposed method using numerical examples. 

The proposed NANCOVA method is found to be flexible and effective in the presence of uncertainty when 

compared to the existing method. AlAita et al. [6] have proposed neutrosophic statistics analysis for 

split-plot and split-block designs. In their proposed method, neutrosophic hypothesis is formulated, a 

decision rule is suggested, and neutrosophic ANOVA table is given. A numerical example and a simulation 

study demonstrate the effectiveness of the proposed method.  

Factorial designs are widely used in experiments that involve several factors and where besides the 

effects of main factors, it is necessary to study the joint effects of the factors on an observed response. 

Several special cases of the general factorial design are important to the experimenter as they are widely 

used in research work and also because they form the basis of other designs of considerable practical value. 

These designs are widely used in factor screening experiments as well. The most important of these special 

cases is that of k factors, where each factor is at two levels. These levels may be quantitative or they may be 

qualitative. A complete replicate of such a design is called a 2k-factorial design.  

In this paper, we consider the first design in the 2k-series which is one with only two factors, say A and B, 

each run at two levels. The levels of the factors are arbitrarily called low (−) and high (+). This design is 

called a 22-factorial design. For the imprecise response data values, we will define a neutrosophic 

22-factorial design (N22FD), neutrosophic model and neutrosophic analysis. As an illustration, we consider 

an investigation into the effect of the concentration of the reactant and the amount of the catalyst on the 

conversion (yield) in a chemical process. The objective of the experiment is to determine if adjustments to 

either of these two factors would increase the yield.  

2. Neutrosophic 22-Factorial Design 

The Neutrosophic 22-Factorial Design (N22FD) is a factorial design with two factors A and B, each run at 

two levels, and have the imprecise response which is a neutrosphic variable. As an example [7], let a 

researcher wish to investigate the effect of the concentration of the reactant (A) and the amount of the 

catalyst (B) on the conversion yield (𝑦) in a chemical process. The objective of the experiment is to 

determine if adjustments to either of these two factors would increase the yield. Further, let factor A be the 

reactant concentration with two levels, 15% (low level) and 25% (high level). The catalyst is factor B with 

two levels, the high level denoting the use of 2 pounds of the catalyst and the low level denoting the use of 1 

pound. The experiment is replicated three times (i.e., 𝑛 = 3), so there are 12 runs (observations). The order 

in which the runs are made is random, so this is a completely randomized experiment. The data obtained 

from this experiment is in Table 1 and also shown in Fig. 1. Note that some data values of the response 

variable conversion (yield) are neutrosophic values. 
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Table 1. Effect of the Concentration of the Reactant and the Amount of the Catalyst on the Conversion (Yield) 
in the Chemical Process 

Factor Treatment Replicate 
Total 

A B Combination I II III 

− − A low, B low 28 25 [26,28] [79,81] 
+ − A high, B low [35,37] 32 32 [99,101] 
− + A low, B high [16,20] [18,20] [20,26] [54,66] 
+ + A high, B high [30,32] 30 29 [89,91] 

 

 
(a) 

 
(b) 

Fig. 1. Conversion yield in the chemical process for treatment combinations:  

(a) Lower value; (b) Upper value. 

 

By convention, the effect of a factor is denoted by a capital Latin letter. Thus, A refers to the effect of factor 

A, B refers to the effect of factor B, and AB refers to the AB interaction effect. In the 22-design, the low and 

high levels of A and B are denoted by “+” and “−”, respectively. The letter a represents the treatment 

combination of A at the high level and B at the low level, b represents A at the low level and B at the high 

level, and ab represents both factors at the high level. By convention, (1) is used to denote both factors at 

the low level. For the given data values, it is therefore noted that  

 
(1) = [79,81], 𝑎 = [99,101], 𝑏 = [54,66], 𝑎𝑏 = [89,91]. 

 

3. Factor Effects 

In a two-level factorial design, we define the main (average) effect of a factor as the change in response 

produced by a change in the level of that factor averaged over the levels of the other factor. Thus, the main 

effect of A: 
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𝐴 =  
𝑎𝑏+𝑎−𝑏−(1)

2𝑛
 (1) 

The main effect of factor B:  

𝐵 =
𝑎𝑏+𝑏−𝑎−(1)

2𝑛
 (2) 

We define the interaction effect AB as the average difference between the effect of A at the high level of B 

and the effect of A at the low level of B. Thus, the AB interaction effect: 

𝐴𝐵 =
𝑎𝑏+(1)−𝑎−𝑏

2𝑛
 (3) 

Using the treatment combination values: (1) = [79,81], 𝑎 = [99,101], 𝑏 = [54,66], 𝑎𝑏 = [89,91] , we 

estimate the factor effects as  

𝐴 =  
𝑎𝑏 + 𝑎 − 𝑏 − (1)

2𝑛
=

[89,91] + [99,101] − [54,66] − [79,81]

2(3)
 

=
[188,192] − [133,147]

6
=

[41,59]

6
= [6.83,9.83] 

𝐵 =  
𝑎𝑏 + 𝑏 − 𝑎 − (1)

2𝑛
=

[89,91] + [54,66] − [99,101] − [79,81]

2(3)
 

=
[143,157] − [178,182]

6
=

[−39, −21]

6
= [−6.6, −3.5] 

𝐴𝐵 =  
𝑎𝑏 + (1) − 𝑎 − 𝑏

2𝑛
=

[89,91] + [79,81] − [99,101] − [54,66]

2(3)
 

=
[168,172] − [153,167]

6
=

[1,19]

6
= [0.17,3.17] 

The effect of A (reactant concentration) is positive and [6.83,9.83]. This suggests that increasing A from 

the low level (15%) to the high level (25%) will increase the yield by [6.83,9.83]. The effect of B (catalyst) is 

[−6.6, −3.5]; this suggests that increasing the amount of catalyst added to the process from 1 pound to 2 

pound will decrease the yield. The interaction effect [0.17,3.17] appears to be small relative to the two main 

effects. And, hence can be ignored in the design regression model. 

4. Analysis of Variance (ANOVA) for the Neutrosophic 22-Factorial Experiment 

In factorial design experiments, it is useful to examine the magnitude and direction of the factor effects to 

determine which variables are likely to be important. The analysis of variance is used to confirm this 

interpretation. Effect magnitude and direction are considered along with the ANOVA, because the ANOVA 

alone does not convey this information. 

We use the factor contrast to compute the sum of squares. Sum of squares due to factor A: 

𝑆𝑆𝐴 =  
[𝑎𝑏+𝑎−𝑏−(1)]2

4𝑛
 =

([89,91]+[99,101]−[54,66]−[79,81])

4(3)

2

=
([41,59])2

12
=

[1681,3481]

12
= [140.08,290.08]. 

Sum of squares due to factor B: 

𝑆𝑆𝐵 =  
[𝑎𝑏+𝑏−𝑎−(1)]2

4𝑛
 =

([89,91]+[54,66]−[99,101]−[79,81])

4(3)

2

=
([−39,−21])2

12
=

[441,1521]

12
= [36.75,126.75] 

Sum of squares due to interaction of factors, i.e., AB: 

𝑆𝑆𝐴𝐵 =  
[𝑎𝑏+(1)−𝑎−𝑏]2

4𝑛
 =

([89,91]+[79,81]−[99,101]−[54,66])

4(3)

2

=
([1,19])2

12
=

[1,361]

12
= [0.08,30.08] 

Total Sum of Squares: 
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𝑆𝑆𝑇 = ∑ 𝑦𝑖𝑗𝑘
2

𝑖,𝑗,𝑘
−

𝑦...
2

4𝑛
= [8979,9851] −

[103041,114921]

4(3)
= [274.25,392.25] 

𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝐴 − 𝑆𝑆𝐵 − 𝑆𝑆𝐴𝐵 = [274.25,392.25] − [140.08,290.08] 
−[36.75,126.75] − [0.08,30.08] = [54.66,97.34] 

The complete ANOVA for the neutrosophic 22-factorial design is summarized in Table 2. On the basis of 

the P-values, we conclude that the main effects of factor A (reactant concentration) and factor B (amount of 

catalyst) are statistically significant. There is no significant interaction between factor A and factor B. This 

confirms initial interpretation of the data based on the magnitudes of the factor effects. 

 
Table 2. Analysis of Variance Table for the Neutrosophic 22-Factorial Design 

Source of Variation Degrees of Freedom Sum of Squares Mean Square F1,8 P-value 
A 1 [140.08,290.08] [140.08,290.08] [11.51,42.47 ] [0.0002,0.009] 
B 1 [36.75,126.75] [36.75,126.75] [ 4.59,15.84] [0.004,0.064] 

AB 1 [0.08,30.08] [0.08,30.08] [0.01,3.76 ] [ 0.088 ,0.923] 
Error 8 [54.66,97.34] [6.83,12.17]   

 

5. Neutrosophic 22-Factorial Design Regression Model 

For the chemical process experiment considered above, the regression model without interaction term is  

𝑦 = 𝛽0 + 𝛽0𝑥1 + 𝛽2𝑥2 + 𝜀,  (4) 

where 𝑥1 is a coded variable that represents the reactant concentration, 𝑥2 is a coded variable that 

represents the amount of catalyst, and the β’s are regression coefficients. The relationship between the 

natural variables, the reactant concentration and the amount of catalyst, and the coded variables is: 

𝑥1 =
𝐶𝑜𝑛𝑐−(𝐶𝑜𝑛𝑐𝑙𝑜𝑤−𝐶𝑜𝑛𝑐ℎ𝑖𝑔ℎ)/2

(𝐶𝑜𝑛𝑐ℎ𝑖𝑔ℎ−𝐶𝑜𝑛𝑐𝑙𝑜𝑤)/2
=

𝐶𝑜𝑛𝑐−(15+20)/2

(20−15)/2
=

𝐶𝑜𝑛𝑐−20

5
 (5) 

Thus, if the concentration is at the high level (Conc = 25%), then 𝑥1 = +1; if the concentration is at the 

low level (Conc = 15%), then 𝑥1 = −1. Further, 

𝑥2 =
𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡−(𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡𝑙𝑜𝑤−𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡ℎ𝑖𝑔ℎ)/2

(𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡ℎ𝑖𝑔ℎ−𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡𝑙𝑜𝑤)/2
  (6) 

Thus, if the catalyst is at the high level (Catalyst = 2 pounds), then 𝑥2 = +1; if the catalyst is at the low 

level (Catalyst = 1 pound), then 𝑥2 = −1.  

The fitted regression model with coded variables is 

𝑦̂ = [26.75, 28.25] + (
[6.83,9.83]

2
) 𝑥1 + (

[−6.6,−3.5]

2
) 𝑥2  (7) 

𝑦̂ = [26.75, 28.25] + [3.415,4.915] 𝑥1 + [−3.3, −1.75] 𝑥2 (8) 

where the intercept is the average of all 12 response values, and the regression coefficients 𝛽̂1  and 𝛽̂2 are 

one-half the corresponding factor effect estimates. The regression coefficient is one-half the effect estimate 

because a regression coefficient measures the effect of a one-unit change in 𝑥 on the mean of 𝑦, and the 

effect estimate is based on a two-unit change (from −1 to +1). This simple method of estimating the 

regression coefficients results in least squares parameter estimates.  

The fitted regression model with natural factor levels is 

𝑦̂ = [26.75, 28.25] + (
[6.83,9.83]

2
) (

𝐶𝑜𝑛𝑐−20

5
) + (

[−6.6,−3.5]

2
) (

𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡−1.5

0.5
)  (9) 

𝑦̂ =  [26.75, 28.25] + [3.415,4.915] (
𝐶𝑜𝑛𝑐−20

5
) + [−3.3, −1.75] (

𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡−1.5

0.5
)  (10) 
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𝑦̂ = [12.34, 24.49] + [0.683, 0.983] 𝐶𝑜𝑛𝑐 + [5.25, 9.9]𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡  (11) 

The regression model is used to predict values or calculate fitted value of 𝑦 at the four points in the 

design. The residuals are the differences between the observed and fitted values of 𝑦. When the reactant 

concentration is at the low level (𝑥1 = −1) and the catalyst is at the low level (𝑥2 = −1), the predicted yield: 

 𝑦̂ = [26.75, 28.25] + [3.415,4.915] (−1) + [−3.3, −1.75] (−1)[23.585, 28.135] (12) 

There are three observations at this treatment combination, and thus, the residuals are 

𝑒1 = [28, 28] − [23.585,   28.135] = [−0.135, 4.415] 

𝑒2 = [25, 25] − [23.585,   28.135] = [−3.135, 1.415] 

𝑒3 = [26, 28] − [23.585,   28.135] = [−2.135, 4.415] 

When the reactant concentration is at the high level (𝑥1 = +1) and the catalyst is at the low level (𝑥2 =

−1), the predicted yield is  

𝑦̂ = [26.75, 28.25] + [3.415,4.915] (+1) = [31.915, 36.465]) (13) 

and the residuals are: 

𝑒4 = [35, 37] − [31.915, 36.465] = [−1.465,5.085] 

𝑒5 = [32, 32] − [31.915, 36.465] = [−4.465,0.085] 

𝑒6 = [32, 32] − [31.915, 36.465] = [−4.465,0.085] 

When the reactant concentration is at the low level (𝑥1 = −1) and the catalyst is at the high level (𝑥2 =

+1), the predicted yield is  

𝑦 ̂ = [26.75, 28.25] + [3.415,4.915]  (−1) + [−3.3, −1.75] (+1) = [18.535,23.085] (14) 

and the residuals are: 

𝑒7 = [16,20] − [18.535,23.085] = [−7.085,1.465]  

𝑒8 = [18,20] − [18.535,23.085] = [−5.085,1.465] 

𝑒9 = [20,26] − [18.535,23.085] = [−3.085,7.465]  

When the reactant concentration is at the high level (𝑥1 = +1) and the catalyst is at the high level (𝑥2 =

+1), the predicted yield is  

𝑦̂ = [26.75, 28.25] + [3.415,4.915] (+1) + [−3.3, −1.75] (+1) = [26.865,31.415]  (15) 

and the residuals are: 

𝑒10 = [30,32] − [26.865,31.415] = [−1.415,5.135] 

𝑒11 = [30, 30] − [26.865,31.415] = [−1.415,3.135] 

𝑒12 = [29, 29] − [26.865,31.415] = [−2.415,2.135]  

The predicted values and residuals are plotted in Fig. 2. 

6. Conclusion 

Neutrosophic logic, neutrosophic math, and neutrosophic statistics are important tools to understand 

and analyze the incomplete, vague and imprecise information/data. There is a huge scope for fuzzy data 

derived from experimental design set up. The work can easily be extended to other areas of designing too. 

We have shown the application of neutrosophic analysis of the neutrosophic 22-factorial design by 

considering the experimental data that was collected to investigate the effect of the concentration of the 
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reactant and the amount of the catalyst on the conversion yield in a chemical process. The objective of the 

experiment is to determine if adjustments to either of these two factors would increase the yield. It was 

concluded that the effect of reactant concentration is positive and [6.83,9.83]. This suggests that increasing 

reactant concentration from the low level (15%) to the high level (25%) will increase the yield by 

[6.83,9.83]. The effect of catalyst is [−6.6,−3.5]; this suggests that increasing the amount of catalyst added to 

the process from 1 pound to 2 pounds will decrease the yield. The interaction effect [0.17,3.17] appears to 

be small relative to the two main effects. And, hence can be ignored. As a future research, author plans to 

extend the neutrosophic analysis to the 2k-factorial designs and response surface models. 

 

 
(a) 

 
(b) 

Fig. 2. Predicted and observed conversion yield: (a) Lower observations; (b) Upper observations. 
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