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Abstract: Krylov methods play a major role in solving Partial Differential Equations (PDEs) due to their 

scalability and low memory requirements. However, for difficult problems, Krylov methods exhibit slow 

convergence and may even not always converge. Increasing the numerical precision can improve the 

convergence rate of Krylov methods. In the current work, we evaluate the effect of Variable Precision (VP) on 

two Krylov-based solvers. Our solvers were applied to a relatively difficult PDE, discretized with the Spectral 

Element Method (SEM), which produces a set of dense and poorly conditioned system of linear equations. We 

show that, increasing the numerical precision allows us to both speedup the convergence of the solver and 

more accurately estimate the residual error, making the solver more reliable.  
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1. Introduction 

The wave equation is ubiquitous in modern physics: it is applied in a variety of applications such as 

mechanics, acoustics, electromagnetism, fluid dynamics, quantum mechanics, etc. 

As an example, it plays a critical role in practical geophysics both in direct and inverse problems. When 

dealing with large scale Three Dimensional (3D) models, the wave equation is usually solved in the time 

domain [1–7] and eventually transformed into the frequency domain via a Fast Fourier Transform (FFT) [1]. 

However, there is still motivation to solve the wave equation in the frequency domain as it is easier to 

implement a Perfectly Matched Layer (PML) [8, 9] and some physical properties, such as attenuation, in this 

domain. Moreover, working in the frequency domain drastically reduces the amount of data to manage during 

inverse problems. 

In the frequency domain, the wave equation becomes an indefinite Helmholtz equation, which is 

challenging to solve with Krylov methods [10]. The aim of the current work is to evaluate the effect of Variable 

Precision (VP) on two standard Krylov based solvers for the acoustic wave equation. 

The remainder of this paper is organized as follows. First, we present the equation to be solved. Then we 

explain how we discretize it using a Galerkin method and briefly discuss the properties of the discretized 

equations. Next, we introduce two Krylov methods and explain how finite precision impacts them. Finally, we 

show how VP affects the convergence of two iterative solvers. 
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2. Case Study: The Harmonic Wave Equation 

 Formulation 

In most, if not all, applications, the modeled wavefield u is assumed to propagate in an unbounded domain. 

A popular method to simulate an infinite domain is the Perfectly Matched Layer (PML): it is an absorbing 

layer Ω𝑝𝑚𝑙  inserted at the boundary of the domain Ω so that traveling waves can be properly absorbed 

before reaching the boundary of the domain ∂Ω.  

 
Fig. 1. Illustration of a PML. The truncated computational domain Ω is represented in white.  

 

The absorbing layer Ωpml is hatched with different hatching pattern for the x oriented PMLs and for the y 

oriented PMLs. The boundary of the whole domain is denoted ∂Ω. We also illustrate the behavior of a 

waveform traversing the PML. After entering Ωpml, the waveform is almost completely attenuated before 

reaching ∂Ω and being reflected back into Ω. 

Our absorbing layer is modeled as a complex-valued coordinate transformation which changes oscillating 

waves into exponentially decaying waves, thus almost nullifying the reflected waves c.f. Fig. 1. The frequency 

domain acoustic wave equation with a PML can be written as: 

−𝑐2∇. ∇𝑢 − 𝜔2𝑢 = 𝑓 𝑜𝑣𝑒𝑟 Ω , 
−𝑐2∇̃. ∇̃𝑢 − 𝜔2𝑢 = 𝑓 𝑜𝑣𝑒𝑟 Ωpml,        (1) 

𝑢 = 0    𝑜𝑛 𝜕Ω 

where u is the acoustic pressure in, c is the wave velocity in m/s, ω is the angular frequency in rad/s and �̃� is 

a modified differential operator obtained by a change of coordinate in the absorbing layer: 

∇̃= (
1/𝛾𝑥 𝜕/𝜕𝑥
1/𝛾𝑦 𝜕/𝜕𝑦

).          (2) 

Here 𝛾𝑥  and 𝛾𝑦  are complex valued functions and their form will determine the effectiveness of our 

absorbing layer. In the current work, we follow Bermudez’s framework [11]. We thus define Ω 

as(−𝑎, 𝑎) × (−𝑏, 𝑏), Ω ∪ Ω𝑝𝑚𝑙as (−𝑎∗, 𝑎∗) × (−𝑏∗, 𝑏∗), and: 

 𝛾𝑥(𝑥) = {
1         𝑖𝑓 |𝑥| < 𝑎

1 +
𝑖

𝜔
 𝜎𝑥(|𝑥|)  𝑖𝑓 𝑎 ≤ |𝑥| < 𝑎∗        (3) 

𝛾𝑦(𝑦) = {
1         𝑖𝑓 |𝑦| < 𝑏

1 +
𝑖

𝜔
 𝜎𝑦(|𝑦|)  𝑖𝑓 𝑏 ≤ |𝑦| < 𝑏∗ 

with the following absorbing functions: 

𝜎𝑥(𝑥) =
𝑐

𝑎∗−𝑥
,   𝜎𝑦(𝑦) =

𝑐

𝑏∗−𝑦
.       (4) 
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In order to solve Eq. (1) with a Galerkin method, we first need to formulate it in its equivalent weak form. 

This is obtained by integrating it against an arbitrary test function 𝑣 ∈ 𝕍 over Ω⋃Ωpml, then by integrating 

by parts over Ω⋃Ωpml and finally by applying the Dirichlet boundary conditions. This gives: 

∫ 𝑐2∇𝑢 ∙ ∇𝑣 −  𝜔2𝑢𝑣 𝑑𝑥 +  ∫ 𝑐2∇𝑢𝑇Γ∇𝑣 −  𝛾𝑥𝛾𝑦𝑢 𝑣 𝑑𝑥 =  ∫ 𝑓𝑣𝑑𝑥  ∀𝑣 ∈  𝕍,
ΩΩ𝑝𝑚𝑙Ω

    (5) 

where: 

Γ = (
𝛾𝑦/𝛾𝑥 0

0 𝛾𝑥/𝛾𝑦
)        (6) 

Note that, as a result of the integration by parts, the Left Hand Side (LHS) in Eq. (5) is bounded as long as u 

and v are in H1,0(Ω⋃Ωpml). At this point, we encounter two difficulties. First, the variational formulation of 

Eq.  (5) is written as the difference of two positive-definite bilinear operators. It thus becomes indefinite as 

|𝜔/𝑐|  increases. Second, the operator ∇̃  introduces complex values into the bilinear operator, which 

remains symmetric but is no longer self-adjoint. These difficulties make it impossible to solve the linear 

system using the usual Conjugate Gradient (CG) method, as CG requires the linear operator to be both 

positive-definite and self-adjoint.  

In the following sections we describe how Eq. (5) is discretized and how the resulting system of linear 

equations is solved. 

 The Spectral Element Method 

In this work, we discretize Eq. (5) with two different methods: first, we apply the Finite Element Method 

(FEM), which is a standard method for solving Partial Differential Equations (PDEs). Second, we apply the 

Spectral Element Method (SEM), which is commonly used for solving the wave equation in the time domain. 

The first step of both FEM and SEM is to partition the computational domain into non-overlapping elements: 

Ω⋃Ωpml =  ⋃ Ω𝑒
𝑁𝑐

𝑒=0
 

Ωi⋃Ωj =  ∅  𝑖 ≠ 𝑗           (7) 

SEM is typically formulated for quadrangular elements (although a formulation for triangular elements 

exists [12]. We thus limit the shape of our elements to quadrangles and curved quadrangles. 

We then compute the integrals over Ω⋃Ωpml as a sum of integrals over the small elements Ω𝑒 . The general 

method for computing such integrals is to map each element to a reference element Ω𝑟𝑒𝑓, which is typically 

[−1,1]×[−1,1]. We then define a mapping function 𝑇𝑒: Ω𝑟𝑒𝑓 → Ω𝑒 , which allows us to compute the integral 

over all our elements Ω𝑒  with a single quadrature defined on Ω𝑟𝑒𝑓 . For additional details, the reader is 

referred to [13, 14]. 

The mapping from the reference element to an arbitrary element is sketched in Fig. 2. 

 

 
Fig. 2. Left, reference element Ωref. Right, an arbitrary element Ωe. We use the coordinate system (ξ,η) for the 

reference element and (x, y) for the elements of our mesh. A transformation Te maps Ωref to Ωe. 
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Both FEM and SEM then project u and v onto a subspace of 𝐻0
1(Ω)  spanned by a set of interpolating 

functions (𝜙𝑛)𝑛=1…𝑁𝑑𝑜𝑓
, which are constructed by composing a set of interpolating functions (𝑙𝑖)𝑖=1,𝑃+1 , 

defined on Ωref, with the inverse of 𝑇𝑒. Assuming we have a mapping 𝑔𝑙𝑜𝑏𝐼𝑑, between the local index (e,i) 

and the global index n, our interpolating function can be written as: 

𝜙𝑔𝑙𝑜𝑏𝐼𝑑(𝑒,𝑖)(𝑥) = 𝑙𝑖
𝑒(𝑥) ≔ (𝑙𝑖 ∘ (𝑇𝑒)−1)(𝑥)        (8) 

The reader may refer to [13, 14] for a more in-depth description of how this operation affects the 

differential operators. Fig. 3 illustrates how FEM and SEM differ in the way they define their interpolating 

functions. While FEM usually uses linear interpolating functions over Ωref, SEM uses higher degree Lagrange 

interpolating functions. 

 

 
Fig. 3. Comparison of the interpolating functions used by a) FEM, b) SEM with fifth order polynomials, c) 

SEM with tenth order polynomials. 

 

The interpolation nodes are typically computed using Gauss Lobatto-Legendre (GLL) quadrature points. 

The accuracy of SEM is controlled by both the size of an element, Δx, and by the degree, P, of the 

interpolating polynomials, 𝑙𝑖
𝑒 . As an example, when dealing with the wave equation, if P is too small, SEM is 

not significantly more precise than FEM [15]. On the other hand, if P is too large, the discretized operators 

become denser and their condition number increases [16]. Optimal values for P range from 5 to 10 [17]. We 

study three values of P for the SEM interpolating polynomials: P = 1 (which is equivalent to the FEM 

interpolating function), P = 5, and P = 10. In theory, the wave equation should become increasingly hard to 

solve as P increases. We discuss this assumption in the experimental section, as well as the impact of precision 

on this computation. 

 

 
Fig. 4. Spatial representation of the real part of u obtained with a dirac impulse as our source, and discretized 

with: a) polynomials of order 1, b) polynomials of order 5, c) polynomials of order 10. The solutions have 

been interpolated on a 1000×1000 regular grid for comparison. We observe that, near the center of the 

domain, the wavefronts are better approximated by the higher order method c), even though the solution was 

obtained with the same number of DoFs per wavelength. 

 

In order to ensure the accuracy of our method, we need at least 5 GLL points per wavelength [17–19]. Thus, 
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a mesh for Ω designed for interpolating functions of degree one is comprised of 10 times more elements than 

a mesh designed for interpolating functions of degree 10. Fig. 4 shows the solution to the wave equation 

discretized with the three sets of polynomials mentioned above. We observe that, near the center of the 

domain, the solution obtained with higher order polynomials has a better approximation of the wavefronts, 

even-though it uses the same number of Degrees of Freedom (DoFs) per wavelength. 

The PML is meshed with three elements in each direction regardless of the degree of the interpolating 
functions.  
Table 1 shows the number of elements used in both directions within Ω as well as the total number of DoFs 

used in Ω and in Ω∪Ωpml. 

 
Table 1. Number of elements along the x and y axes and the resulting number of DoFs for the domain of 

interest (Ω), the absorbing layer (Ωpml ), and the whole computational domain (Ω∪Ωpml ). The number of 
elements and DoFs are given for interpolating functions of degree P = 1, P = 5, and P = 10. Note that the 
number of DoFs for the whole domain grows as the polynomial degree increases, because there are more 
DoFs in the absorbing layer 

P 
Ω Ωpml ΩΩpml 

Ne for x Ne for y Ndof Ne for x Ne for y Ndof 

1 100 100 10,201 3 3 11,449 
5 20 20 10,201 3 3 17,161 
10 10 10 10,201 3 3 25,921 

 

Note that, because the number of elements used to produce the mesh for our PML is independent of P, we 

have significantly more DoFs for interpolating functions of degree 10 than for interpolating functions of 

degree 1. We could scale the number of elements in the PML with the polynomial degree (P), but such scaling 

is not required because three elements are sufficient to fully absorb the incoming wave. 

3. Materials and Methods / Arbitrary Precision 

 Krylov Solvers 

Discretizing the weak form of our wave Eq. (5) results in a linear system of equations:  

Ax = b,          (9) 

where A and b correspond to the discretized operators of Eq. (5) and where x is a vector that stores the value 

of the solution at the interpolating nodes. For more details concerning the construction of A and b, see 

Algorithm 1. 

Note that our discretized operator is symmetric but non-Hermitian. While some attempts have been made 

to use sophisticated massively parallel direct solvers for Eq. (9) [20, 21], their memory requirements, as well 

as their lower scalability compared to iterative solvers and time-domain solvers, make them unfit for large-

scale 3D problems. This is especially true for inverse problems such as Full Waveform Inversion 

(FWI)  [22,  23], where the wave equation needs to be solved for various parameters and for, potentially, 

several thousands of Right Hand Sides (RHS). For such problems, solver efficiency is highly important. 

Methods such as BiConjugate Gradient (BiCG) [24] and Quasi Minimal Residual (QMR) [25] address both 

the memory and scalability issues of direct solvers. Indeed, both BiCG and QMR are based on short 

recurrences, and thus only require the storage of a small number of vectors. Moreover, they only perform 

Matrix-vector products using the unchanged, sparse, source matrices (see Algorithms 2 and 3 for more 

details). Additionally, if the same equation needs to be solved for different RHSs, several solvers can be run in 

parallel with no additional communication cost. It is worth mentioning that BiCG typically exhibits a very 

erratic convergence behavior and that there is no formal guarantee on its convergence. However, in this study, 
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we observe that both BiCG and QMR converge to a solution after a similar number of iterations. 
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Both BiCG and QMR are based on Lanczos iteration. More precisely, after k iterations, both methods 

construct a set of bi-orthogonal vectors W
k
 and V

k
. Then, at the kth iteration, the kth iterate satisfies the 

following relation:  

𝑥𝑘 = 𝑥0 + 𝑉𝑘𝑧𝑘         (10) 

and the corresponding residual can be expressed as: 

𝑟𝑘 = 𝑉𝑘+1(‖𝑟0‖𝑒1 − �̅�𝑘𝑧𝑘)         (11) 

where 𝑒1 ∈ ℂ𝑘+1  is the unit vector whose first component is one and �̅�𝑘 ∈ ℂ(𝑘+1)×𝑘  is tridiagonal. Both 

BiCG and QMR attempt to find z
k
 as an approximate solution to the overdetermined system: 
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�̅�𝑘𝑧 = ‖𝑟0‖𝑒1.           (12) 

BiCG chooses z
k
 as the solution of the k first rows of Eq. (12), neglecting the last one, while QMR chooses 

z
k
  as the least-square solution to Eq. (12) [26]. QMR typically exhibits a much smoother convergence 

behavior than BiCG [25]. This characteristic motivates us to repeat our experiments with both methods, to 

compare the impact of precision in each case. 

 Stability Issues, and the Impact of Precision for BiCG and QMR 

The Lanczos process underlying both BiCG and QMR allows for a lower memory requirement of 𝒪(𝑛) 

scalars versus the 𝒪(𝑛2)  needed by direct solvers and by the Generalized Minimal RESidual (GMRES) 

method. However, it may introduce a number of numerical instabilities, which may affect the convergence 

behavior of both methods. Both BiCG and QMR can encounter so called near-breakdowns, which happen when 

some quantities are inappropriately evaluated as null. The first near-breakdown happens when the 

underlying Lanczos iteration suffers from a near-breakdown. It happens when:  

(�̃�𝑘 , 𝑀−1𝑟𝑘) ≈ 0 in Algorithm 2 
𝜎𝑘 ≈ 0 in Algorithm 3         (13) 

The second case of near-breakdown happens when a diagonal element of �̅�𝑘 becomes very small, or when 

roundoff creates a huge error on ‖𝑥𝑘‖, making it impossible for both methods to approximately solve [27]. 

This corresponds to: 

(�̃�𝑘 , 𝐴𝑝𝑘) ≈ 0 in Algorithm 2 
                                 𝜇𝑘  ≈ 0  in Algorithm 3         (14) 

Increasing the working precision (i.e. reducing the epsilon machine ε
m
 ) makes it possible to represent 

these values, and to accurately perform operations involving them, even when they become extremely small, 

and thus it avoids these cases of near-breakdown.  

Additionally, round-off errors degrade the bi-orthogonality of the set of vectors W
k
 and V

k
 computed by 

the Lanczos process underlying both BiCG and QMR. This phenomenon is exacerbated when dealing with a 

linear operator A with clustered eigenvalues [28, 29]. Eq. (10) illustrates how a loss of bi-orthogonality 

between W
k
 and V

k
 can affect the convergence behavior of both BiCG and QMR as it introduces errors in 

V
k
 . This in turn affects how well we can represent our estimated solution x

k
 . This can be explained by 

considering the equivalent asymmetric Lanczos process, using the correspondence explicitly pointed out 

in  [30]. The analysis of Bai [31] establishes the reciprocal relation between the convergence of the Lanczos 

process and the loss of bi-orthogonality. Moreover, the bounds given by Bai suggests that, when dealing with 

an operator A with clustered eigenvalues, increasing the numerical precision can facilitate the convergence 

of the considered solvers [32]. 

Previous SEM studies have shown, on a small example, that the eigenvalues of operators tend to become 

clustered when discretized with higher order SEMs [14]. Computing the eigenvalues of our operators 

confirms this phenomenon (Fig. 5). We can thus expect a substantial improvement in the rate and quality of 

convergence when using extended precision, in our particular case. 
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Fig. 5. Comparison of the eigenvalues of the wave equation discretized with a) FEM , b) SEM with fifth order 

polynomials, c) SEM with tenth order polynomials. The eigenvalues are displayed in the complex plane, with 

their real parts given by the x-coordinate and their imaginary parts by their y-coordinates. 

 

 Software Realization 

Our software stack consists of four layers, as represented in Fig. 6, which mainly rely on three libraries. The 

two uppermost layers are problem specific and are written in C++.  

 

 
Fig. 6. Software layers involved in the C++ implementation. 

 

The SEM part was handled by the LightFEM software library [33] which supports Two Dimensional (2D) 

SEM for arbitrary degree polynomials. 

We implemented our own version of both BiCG and QMR. The linear algebra part was handled by the Eigen 

software library [34], which is a fully templated linear algebra software with support for dense and sparse 

linear algebra. The bottom layer relies on the GNU Multiple Precision Floating-Point Reliable (MPFR) 

software library [35] for the representation of arbitrary precision real numbers, and for the associated 

arithmetics. A wrapper for MPFR [36] was used in conjunction with Eigen, allowing us to perform all the 

linear algebra operations required by our solver at the desired precision. 

MPFR is a widespread library written in C and based on the GNU Multi-precision Library. However, its 

execution speed is slow, like any other software emulation of extended precision, and this is the limiting factor 

in the size of our experiments. There exist very few emerging hardware accelerators that support variable 

width high-precision arithmetic, one example is our previous realization [37]. We expect to deal with this 

issue with our upcoming hardware accelerator Variable eXtended Precision (VXP) (formerly VRP) [32] when 

the next silicon prototype is available. 

4. Experimental Results 

In this section, we demonstrate the impact of increased numerical precision on both BiCG and QMR 

methods. We evaluate two aspects of the question:  
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1. The impact of numerical precision on the convergence behavior of both methods.  
2. The impact on the accuracy of the estimated residual r

k
 (Algorithms 2 and 3) compared to the actual 

residuals 𝑏 − 𝐴𝑥𝑘.  
We modelled the propagation of a wave with a speed of 1 m/s, and a frequency of 20 Hz (40π rad/s) within 

a (−0.5 m, 0.5 m) box. We used a Dirac impulse as our source term. We discretized the wave equation with 

FEM and with SEM with polynomials of order 5 (referred to as P5) and 10 (referred to as P10). We then solved 

the resulting systems with both BiCG and QMR with a numerical precision for the mantissa of 53 bits 

(equivalent to double precision), 203, 353 and 503 bits. A simple Jacobi left-preconditioner was used for both 

BiCG and QMR.  

Fig. 7 illustrates the impact of increased numerical precision on the convergence behavior of BiCG.  
 

 
Fig. 7. Comparison of the convergence behavior of BiCG with precisions 53, 203, 353 and 503 bits. The 

system solved is the wave equation discretized with: a) FEM b) P5 SEM c) P10 SEM. 
 

For each of the discretization schemes, we observe an improvement in the convergence rate of BiCG as the 

numerical precision increases. Additionally, we notice the effectiveness of increasing the precision increases 

with the order of the method. More precisely, for FEM, we observe a 1.56× improvement of convergence with 

a precision 503 bits, a 1.99× improvement with P5 SEM and a 2.36× improvement with P10 SEM (Table 2 for 

the exact number of iterations). 

 
Table 2. Number of iterations of both BiCG and QMR required for convergence when solving the wave 
equation discretized with FEM, P5 SEM and P10 SEM with different numerical precision. The norm of the 

residual produced by QMR with precision 53 bits stagnates around 1e−14  and does not satisfy its 
convergence conditions within the 2N

dof
  iterations, which is set as the maximum number of iterations 

permitted. N/C indicates the algorithm has not converged 

Prec (bits) 
FEM P5 SEM P10 SEM 

BiCG QMR BiCG QMR BiCG QMR 
53 2,467 N/C 9,006 N/C 23,437 N/C 
203 1,876 1,843 5,868 5,867 13,968 13,944 
353 1,671 1,666 4,982 4,999 11,341 11,137 
503 1,575 1,569 4,535 4,536 9,928 9,860 

 
We then carry out the same experiment with QMR. The results are shown in Fig. 8. 

First, we see that, with a precision of 53 bits, and for all discretization schemes, the residual computed by 

QMR stagnates around 1e−14 , which is consistent with the convergence behavior found by Freund   

Nachtigal [25]. We do not see such stagnation with higher precision. However, it is likely that increasing 

numerical precision delays the stagnation rather than suppresses it. The stagnation of the residual for a 

precision of 53 bits makes it hard to properly evaluate the speed-up obtained by increasing the numerical 

precision. However, for all other levels of precision, QMR converges roughly as fast as BiCG (Table 2). We can 

thus expect the same order of speed-up for the two methods, as long as the residual computed by QMR does 

not stagnate. 
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Fig. 8. Comparison of the convergence behavior of QMR with precision 53, 203, 353, or 503 bits. The system 

solved is the wave equation discretized with: a) FEM b) P5 SEM c) P10 SEM. 

 

As mentioned in the previous section, having found similar convergence behavior for QMR and BiCG, we 

conclude, with a reasonable degree of certainty, that the speed-up obtained on BiCG was not accidental and 

was solely due to VP. 

These experiments reinforce our hypotheses that: 1) clustered eigenvalues tend to slow the Lanczos 

process underlying both BiCG and QMR, thus slowing down the convergence of the methods and 2) increasing 

the numerical precision helps mitigate this phenomenon.  

Let us now study how increasing the numerical precision impacts the accuracy of the estimated residual. 

An accurate estimation of the residual is essential to ensure the accuracy of the Krylov methods, as the norm 

of the estimated residual is used in their convergence criterion. Overestimating the norm of the residual may 

delay the convergence of the Krylov method. Underestimating the norm of the residual may lead to the 

algorithm stopping before the approximate solution x
k
 has attained the desired precision. We show in Table 

3 the ratio between the actual residual and the estimated residual for all discretizations, iterative solvers, and 

values of precision.  

 

Table 3. Ratio between the norm of the actual residual, b−Ax
k
, and the estimated residual r

k
 for both BiCG 

and QMR. Both BiCG and QMR were applied on the wave equation discretized with FEM, P5 SEM, and P10 
SEM with different numerical precision 

Prec (bits) 
FEM P5 SEM P10 SEM 

BiCG QMR BiCG QMR BiCG QMR 
53 19.41 6.16 10.46 5.01 66.00 10.80 
203 1.00 1.00 1.00 1.00 1.00 1.00 
353 1.00 1.00 1.00 1.00 1.00 1.00 
503 1.00 1.00 1.00 1.00 1.00 1.00 

 

We note that, at precisions of 203 bits and higher, the estimated residual becomes indistinguishable from 

the actual residual. This means that, at least for this problem, a drastic increase in the numerical precision is 

not needed in order to ensure an accurate estimated solution. Secondly, we note that, at a precision of 53 bits, 

QMR tends to have a much better estimation of the actual residual than BiCG. This might be due to the coupled 

two term recurrence in Algorithm 3, which has been noted to improve the numerical stability of the algorithm 

14. This better estimation of the actual residual by QMR might also explain why BiCG was able to reach the 

convergence criterion while QMR was not, since the norm of the residual estimated by BiCG is less than a 

tenth of the value of the norm of the actual residual.  

5. Conclusions and Perspectives 

This study demonstrates the benefit of increasing numerical precision for the resolution of a common yet 

problematic PDE. Our case study focuses on the harmonic wave equation combined with a PML which leads 
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to bilinear forms with multiple difficulties: complex-values, indefiniteness, and non-hermiticity. The equation 

was discretized using a high-order SEM, which is known to lead to linear systems that are difficult to solve 

because of the dense, poorly-conditioned operators with clustered eigenvalues. 

The effect of increasing the numerical precision has been studied in the case of real, positive, symmetric 

matrices. Our current work shows similar benefits for non-hermitian, indefinite matrices. More precisely, we 

obtain a reduction in the number of iterations required for the convergence of BiCG. We find the number of 

iterations is reduced by factors of 0.5 and 0.4 for the systems discretized with SEM, using fifth order and tenth 

order polynomials respectively; and by a factor of 0.6 for the system discretized with FEM (Table 2). 

Additionally, we observe a better approximation of the estimated error, especially when the system is 

discretized with high order SEM, where the actual residuals are 66 times larger than the estimated residual 

for BiCG and ∼11 times larger for QMR with 53 bit precision (Table 2). We note that the estimated residual 

quickly converges to the actual residual when we increase the numerical precision. This leads us to believe 

that increasing the numerical precision is essential to speed up the convergence of Krylov solvers and to 

ensure the correct error criterion has been met upon convergence. 

Our experiments have been run with software emulated high precision, which has limited run-time 

performance. We expect to use this example to validate our in-house developed hardware VXP accelerator as 

soon as it is available. 
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