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Abstract: Typically, a supervised learning model is trained using passive learning by randomly selecting 

unlabelled instances to annotate. This approach is effective for learning a model, but can be costly in cases 

where acquiring labelled instances is expensive. For example, it can be time-consuming to manually identify 

spam mails (labelled instances) from thousands of emails (unlabelled instances) flooding an inbox during 

initial data collection. Generally, we answer the above scenario with uncertainty sampling, an active 

learning method that improves the efficiency of supervised learning by using fewer labelled instances than 

passive learning. Given an unlabelled data pool, uncertainty sampling queries the labels of instances where 

the predicted probabilities, 𝑝, fall into the uncertainty region, i.e., 𝑝 ≈ 0.5. The newly acquired labels are 

then added to the existing labelled data pool to learn a new model. Nonetheless, the performance of 

uncertainty sampling is susceptible to the Area of Unpredictable Responses (AUR) and the nature of the 

dataset. It is difficult to determine whether to use passive learning or uncertainty sampling without prior 

knowledge of a new dataset. To address this issue, we propose bell curve sampling, which employs a bell 

curve weight function to acquire new labels. With the bell curve centred at 𝑝 = 0.5, bell curve sampling 

selects instances whose predicted values are in the uncertainty area most of the time without neglecting the 

rest. Simulation results show that, most of the time bell curve sampling outperforms uncertainty sampling 

and passive learning in datasets of different natures and with AUR. 
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1. Introduction 

Supervised learning is a sub-field of machine learning, and it trains a model to learn the relationship 

between input and output sets through labelled instances [1]. With the quick expanding of digital era, 

supervised learning has been widely applied in many practical applications that amass large datasets such 

as spam detection, face detection, voice recognition, etc. [2]. 

In some cases, it may take little effort to acquire a large number of unlabelled instances, but labelling 

them turns out to be laborious and costly. For example, credit scoring models for microfinance businesses 

are normally trained with loan repayment behaviour datasets and it may take a few months to conclude a 

borrower as a bad payer. In particular, a finance institute may receive thousands of loan applications 

(unlabelled instances) regularly, but it takes substantial risk to approve loans [3, 4] and a lengthy 

observation to identify bad payers (labelled instances). 
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Cohn and Atlas et al. [5] have long been aware of the potential of active learning in addressing expensive 

acquisition cost of labelled samples in passive learning. The process to select instances to label is named as 

“query” in active learning and it enables a model to learn with a lesser number of labelled instances 

efficiently as compared to passive learning. We consider a popular pool-based active learning, namely 

uncertainty sampling [6, 7] in this paper. Given a data set of balanced dichotomous responses, uncertainty 

sampling queries the labels of instances in the unlabelled data pool, in which their predicted probabilities 

fall into the uncertainty region ( 𝑝 ≈ 0.5) [8]. 

Uncertainty sampling has gained decent attention in the research community [6, 9] with some reported 

negative results [10–12]. They explain the results are due to the sampling bias causing the disparity in 

between the known feature distribution and the actual one [13]. Additionally, the inaccurate initial model 

also drives subsequent the improper instances selection that further drifting the intended sampling 

strategy [10]. 

In this paper, we assume the presence of an Area of Unpredictable Responses (AUR), i.e., a subset of 

dataset, where all predictions here yield random responses grievously due to unavoidable noises or weak 

predictive features as shown in the overlapped area of Fig. 1. The simulation results in Section 4 show that 

the performance of uncertainty sampling is precarious in datasets of different nature and AUR. It is 

indeterminate to determine the best sampling method without the prior knowledge about a new dataset. 

 

 
Fig. 1. The circles on the left and right contain instances of labels “0” and “1”, respectively. The overlapped 

area in the middle is filled with instances of indeterminate responses. 

 

We adduce the idea of heuristic optimization technique [14] that both intensification and diversification 

are necessary to search for a solution. Accordingly, we propose a sampling that applies a bell curve weight 

acquisition function, where instances are selected from the uncertainty region most of the time without 

neglecting the instances from other regions. Comparing with uncertainty sampling and passive learning, 

simulation results reported that bell curve learning aces the performance in the datasets of diversified AUR 

in general. 

This paper is organised as following: We discuss the algorithm of uncertainty sampling with bare 

mathematical notations in Section 2. Section 3 presents the proposed bell curve sampling and its 

assumptions. Next, the simulation setup and performance of passive learning, uncertainty sampling and bell 

curve sampling are presented in Section 4. With that, we draw the conclusion in Section 5. 

2. Uncertainty Sampling 

Assume that we have a large finite set of tuples 𝐷(all) = {(𝑥,  𝑦): 𝑥 ∈ ℜ𝑑 ,  𝑦 ∈ {0,1}} that describes the 

population of our interest with 𝑥 and 𝑦 represent 𝑑-dimensions feature vectors and dichotomous responses 

respectively. A relatively small and large numbers of tuples are taken from 𝐷(all) and they are denoted as 

known data pool and unknown data pool, i.e., 𝐷(known) = {(𝑥, 𝑦)} and 𝐷(unknown) = {(𝑥, ∅)}, where ∅ 
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symbolises the masked responses, and |𝐷(unknown)| > |𝐷(known)|. In practical, we do not have test data to 

learn the model performance. However, in the simulation a test data pool, 𝐷(test) = {(𝑥, 𝑦)} from 𝐷(all) will 

be given to evaluate the impact of the learning algorithms. For convenience, we use subscripts, e.g., 𝐷𝑞
(⋅) to 

denote the corresponding data pool at 𝑞-th query. 

Referring an efficient machine learning algorithm as MLA, at the beginning of the query, we have a prior 

model that is trained from 𝐷1
(known), i.e., 𝐷1

(known) MLA
→  model1. The rest of steps go as follows. 

• Step 1. With  model1, we make inference to all the instances in current 𝐷1
(unknown) to yield the 

predicted outputs 𝑦1̃ , and the corresponding predicted probabilities 𝑝1̃ , i.e., 

𝐷1
(unknown) model1→    𝐷1̃ 

(unknown) and 𝐷1̃ 
(unknown) = {(𝑥𝑖 , ∅, 𝑦1̃, 𝑝1̃)}. 

• Step 2. Uncertainty sampling selects 𝑛  instances from 𝐷1̃ 
(unknown) , in which the values of 

corresponding �̃� in the uncertainty region. With ∅ be revealed during the annotation, 𝐷1
(query)

=

{(𝑥, 𝑦): ∅ → 𝑦}, 𝐷 ⊂ �̃� 1
(unknown), |𝐷1

(query)
| = 𝑛 and the selected instances will be removed from 

𝐷1
(unknown) i.e., 𝐷1

(unknown) ∖   𝐷1
(query)

→ 𝐷1
(unknown) . 

• Step 3. We merge the new labelled instances into the known data pool, i.e., 𝐷1
(query)

∪ 𝐷1
(known) →

𝐷1
(known)   . 

• Step 4. Renaming the indices 𝐷1
(unknown) to 𝐷2

(unknown) and 𝐷1
(known) to 𝐷2

(known), we train a new model 

with 𝐷2
(known) MLA

→  model2 . Then, the next query will be repeated from Step 1 with all the indices to 
be renamed correctly. The process is ended when the stopping criteria are met. 

3. Bell Curve Sampling 

This section elaborates the assumptions and the principle of bell curve sampling. 

 Assumptions 

We assume datasets with balanced dichotomous responses (i.e., about the same amount of 0's and 1's in 

responses) with the presence of AUR. An observer has access to the feature vectors of each instance in an 

unknown data pool, but it has no knowledge about the true responses. 

 Weight-Probabilities Distribution 

Fig. 2 (a) and (b) illustrate the weight-probabilities distributions for passive learning and uncertainty 

sampling to select the instances to annotate. The former selects instances randomly, i.e., all instances have 

equal weight to be selected regardless of their predicted probabilities. Meanwhile, the latter only selects the 

instances near to 𝑝  ≈ 0.5. As mentioned in Section 1, it is precarious to determine the best sampling 

method without the prior knowledge about the data set. With that, we propose bell curve sampling and it 

employs a bell curve weight distribution to marry the strength of both passive learning and uncertain 

sampling in coping datasets of diversified nature and AUR. As the name suggests, bell curve sampling 

contains a bell-curve-like weight distribution with peak at 𝑝  = 0.5 as shown in Fig. 2 (c). Instances near to 

𝑝  = 0.5 will be chosen frequently without neglecting the instances from other regions. Such selection 

strategy follows the idea of intensification and diversification approaches in heuristic search. 

To derive the bell curve weight-probabilities distribution, let Beta(𝑝, 𝛼, 𝛽) be the probability density 

function of beta distribution for 0 ≤ 𝑝 ≤ 1 , the shape parameters 𝛼, 𝛽 > 0 and 𝛼, 𝛽, 𝑝 ∈ ℜ. As demonstrated 

in Fig. 3, having 𝛼 = 𝛽 moves the centre of bell curve to 𝑝 = 0.5, and higher values of 𝛼 and 𝛽 transform the 

bell curve to be steeper with shorter width. For example, with 𝛼 = 𝛽 = 5, 95% of area are covered in the 

probabilities range of (0.3920, 0.6080) as shown in Table 1. Meanwhile, the probabilities range shrinks to 

(0.4241, 0.5759) for 𝛼 = 𝛽 = 10. In general, the performance of bell curve sampling is identical to passive 

learning with 𝛼 = 𝛽 = 1 as the weights are distributed uniformly. Moreover, it acts as the uncertainty 
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sampling with a high value of 𝛼 and 𝛽 due to shorter probabilities range. We look for the reasonable values 

of 𝛼 and 𝛽 that synergize both passive learning and uncertainty sampling in Section 4. 

 

(a) Passive learning (b) Uncertainty sampling (c) Bell curve sampling 

Fig. 2. Weight-probabilities distributions of various sampling methods.  

 

 
Fig. 3. Beta distribution of various pair of 𝛼 = 𝛽. 

 

Table 1. Lower and Upper Bound of 95% Area under Curve for Various Set of 𝛼 and 𝛽 in Beta Distribution 

𝜶 𝜷 Lower Upper 

2 2 0.3264 0.6736 

5 5 0.3920 0.6080 

10 10 0.4241 0.5759 

20 20 0.4465 0.5535   

50 50 0.4662 0.5338 

100 100 0.4761 0.5239 

 

4. Simulation 

We study the performance of bell curve sampling with simulation. This section illustrates the simulation 

setup, the artificial datasets and the simulation results. 

 Simulation Setup 

We generate four types of artificial datasets, i.e., classification, blobs, circles and moons in various degrees 

of AUR using Scikit-learn [15]. Examples of the corresponding pairwise bivariate distributions are shown in 

Fig. 4. Classification and blobs datasets consist of four feature columns, whereas circles and moons datasets 
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have two feature columns only. All datasets employ balanced dichotomous responses. 

Generally, a sufficient large population of data set will first be generated and further segregated into three 

chunks randomly, i.e., known data pool, 𝐷 (known) of 10 instances, an unknown data pool, 𝐷 (unknown) of 1000 

instances and a test data pool, 𝐷 (test) of 1000 instances. Note that 𝐷 (test) will be used to assess the model 

performance in the last step of each query. 

We follow the query process that is described in Section 2. We change the sampling function in Step 2 to 

passive learning (random sampling) and bell curve sampling according to the simulation objective. Each 

query will select 𝑛 = 5  instances from 𝐷 (unknown)  to annotate (unmask the true responses) and a 

simulation will make a total of 20 queries, and 20 × 𝑛 = 100  or 10% of the instances from 𝐷 (unknown) will 

be added to 𝐷 (known) eventually. All the models are built with AutoML [16] using optimal parameters. No 

further feature engineering is conducted on the datasets. 

 

(a) Classification dataset (b) Blobs dataset 
 

 
(c) Circles dataset 

 
(d) Moons dataset 

Fig. 4. Pairwise bivariate distributions of Scikit-learn's artificial datasets. 

 

 Results 

Figs. 5–8 depict the performance of passive learning, uncertainty sampling and bell curve sampling in the 

classification, blobs, circles and moons datasets using 𝛼 = 𝛽 = 10. We generated datasets with varying 

levels of AUR, namely (a) low, (b) median, and (c) high, by adjusting their respective parameters. For 
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example, increasing the class separation factor facilitates the separation of responses in classification 

datasets. 

As discussed in Section 1, our observations indicate that the performance of uncertainty sampling is 

dependent on the nature of the datasets and their AUR. For instance, uncertainty sampling demonstrated 

superior performance over passive learning in the blobs datasets with median and high AUR (Fig. 6 (b) and 

(c)), while it exhibited similar performance to passive learning in the low AUR case (Fig. 6 (a)). Conversely, 

passive learning outperformed uncertainty sampling in the circles and moons datasets (Figs. 7 and 8). 

Nonetheless, bell curve sampling generally exhibited better performance across most datasets. This 

approach showcased competitive performance as demonstrated in the best learner cases, such as Figs. 7(c) 

and 8(c), where passive learning was the top learner, followed by bell curve sampling and uncertainty 

sampling. 

 

(a) Low AUR (b) Median AUR (c) High AUR 

Fig. 5. Performance of various learning methods in classification datasets of class separation factors (a) 2.0, 

(b) 0.8 and (c) 0.3. 

 

(a) Low AUR (b) Median AUR (c) High AUR 
Fig. 6. Performance of various learning functions in blobs datasets of standard deviation (a) 1, (b) 3 and (c) 

5. 

 

(a) Low AUR (b) Median AUR (c) High AUR 
Fig. 7. Performance of various learning functions in circles datasets of circle factors (a) 0.5, (b) 0.8 and 

(c)  0.9. 
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Fig. 9 illustrates the impact of the parameters 𝛼 and 𝛽 on the performance of bell curve sampling. As 

depicted in Fig. 3, increasing the values of 𝛼 and 𝛽 will result in a steeper bell curve with a narrower width, 

implying that more weight will be given to instances closer to �̃� = 0.5. In general, setting moderate to high 

values of 𝛼 and 𝛽 can enhance the model's performance, while extremely high values will cause bell curve 

sampling to behave like uncertainty sampling. 

 

(a) Low AUR (b) Median AUR (c) High AUR 

Fig. 8. Performance of various learning functions in moons datasets of Gaussian noise's standard deviation 

(a) 0.1, (b) 0.2 and (c) 0.3. 

 

 
(a) Classification dataset 

 
(b) Blobs dataset 

 
(c) Circles dataset 

 
(d) Moons dataset 

Fig. 9. The effect of the parameters 𝛼 and 𝛽 to the performance of bell curve sampling. 

 

5. Conclusion 

Passive learning in typical machine learning is generally inefficient when the cost of acquiring labelled 

and unlabelled instances is different. To address this issue, active learning, especially uncertainty sampling, 

has been proposed. In principle, passive learning selects instances uniformly, while uncertainty sampling 
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selects instances from the uncertainty region. Both sampling methods outperform each other in datasets of 

varying nature and AUR. Since selecting the best sampling method without prior knowledge about the 

datasets is difficult, we propose the use of bell curve sampling, which employs a bell curve weight function 

in selecting instances. Simulation results show that bell curve sampling performs better than passive 

learning and uncertainty learning for most datasets with diversified AUR values. 
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