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Abstract: Given an undirected graph G = (V,E), with |V| = n, we consider an integer linear description of the 

polytope PT(G) of p−vertex spanning subtrees. A p−vertex spanning subtree is a subtree that spans p < n 

vertices of G. The linear description of the polytope PT(G) is mainly based on well known partition 

inequalities. The purpose of this paper is to study the facetness of partition inequalities of the polytope 

PT(G). In a different approach as what is usually done, we first address constructive algorithms generating 

p−vertex spanning subtrees that incidence vectors are affinely independent. After, we apply such algorithms 

to show the facetness of these partition inequalities of PT(G). 
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1. Introduction 

Given the undirected graph G = (V,E), where V is the set of vertices, E the set of edges and such that |V| = n. 

A p−vertex spanning subtree of G is a tree of G that spans p < n vertices. Consider the collection θ of all 

p−vertex spanning subtrees of G. For some T ∈ θ, the incidence vector x of the p−vertex spanning subtree is 

defined as follow: 

For all e ∈ E, xe = {
1,   𝑒 ∈ 𝑇
0,    𝑒 ∉ 𝑇

, for some T in θ. 

Assume that each edge, e ∈ E, has a weight w(e) ∈ ℝ+, the p−vertex spanning subtree problem (p−VSSP for 

short) consists, given p, to find a p−vertex spanning subtree T* with minimum total weight. The total weight 

of a tree is the sum of the weight of its edges. We denote by p−VSSP(G), the convex hull of incidence vectors 

of p−vertex spanning subtrees of G. Formally, we have: 

 
p−VSSP(G) = conv{x ϵ {0,1}E: for all T ϵ θ} 

 
 

That is p−VSSP can be defined as: 

minimize{wx: x ∈ p−VSSP(G)} 
 

p−VSSP is NP-hard. Indeed, Fischetti and Hamacher et al. [1] show that the Steiner tree, known to be 

strongly NP-hard [2], can be reduced to p−VSSP. 

In literature, the p−vertex spanning subtree problem is also called the k−cardinality tree problem. Several 

studies have been conducted in the literature on the subject. The first Integer Linear Program (ILP) 

formulation of the p−vertex spanning subtree problem is due to Fischetti and Hamacher et al. [1]. To define 
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the model, authors consider two types of binary variables, say xe and yv, associated to the edge e and the 

vertex v of the graph, respectively. They also discuss the facial structure of the problem polytope. Maculan 

and Plateau et al. [3] present a flow based linear formulation of the p−vertex spanning subtree problem. In 

their formulation, they first transform the undirected graph into a digraph and add an artificial vertex 

which may play the role of a root vertex. A vertex in a digraph, say r, is called a root vertex if there exists at 

least a simple path between the root vertex r and all other vertices of the digraph. After, in addition to 

binary variables associated to vertices and edges of the graph, they also consider flow continuous positive 

variables 𝑓𝑢,𝑣
𝑤  ≥ 0 that define the flow that passes by the arc (u, v) and is destined to the sink vertex w. To 

efficiently solve the problem using a Branch and Cut algorithm, Chimani and Kandyba et al. [4] consider 

what they call the k−cardinality arborescence problem. Indeed, as in Maculan and Plateau et al. [3], they also 

transform the undirected graph that represents an instance of the p−vertex spanning subtree problem into 

a directed instance and create an artificial root vertex. Chimani and Kandyba et al. [4] show that their 

formulation is equivalent to the one introduced by Fischetti and Hamacher et al. [1] from a polyhedral point 

of view. 

A partition π = (V1, V2, ..., Vr) of V is such that V1 ∪ V2 ∪  ... ∪ Vr = V and Vj ∩ Vj’ = ∅, ∀ j, j′ ∈ {1, ..., r}. Given a 

partition π = (V1, V2, ..., Vr), we denote by δ(V1, V2, ..., Vr) the set of edges with endpoints in two different 

components. 

Consider the following linear description of p−VSSP [5]. Given a p−vertex spanning subtree T of the con-

vex hull p−VSSP(G), its incidence vector x satisfies the following inequalities: 

 x(E) = p − 1,           (1) 

 x(δ(π)) ≥ 1, ∀ π,          (2) 

 xe ∈ {0, 1}, e ∈ E.          (3) 

where π is a partition of the vertex set V, with 1 ≤ |Vj | ≤ p − 1, j = 1, ..., r. 

Constraint (1) guarantees the cardinality condition. Indeed, p−vertex spanning subtrees may contain (p−1) 

edges. Constraints (2) are partition inequalities that permit simultaneously to eliminate cycles in any 

solution of p−VSSP(G) and to make such a solution connected. Constraints of type (3) are integrality 

constraints. We denote by PT(G) the p − vertex spanning subtree polytope defined by constraints (1), (2) 

and trivial constraints xe ≥ 0, ∀ e ∈ E and xe ≤ 1, ∀ e ∈ E. 

Grotschel and Monma [6] showed that inequalities (1), (2) and trivial inequalities xe ≥ 0 and xe ≤ 1 suffice 

to describe the spanning tree polytope. Note that in this case p = n and the subsets Vi, i = 1, ..., r that form the 

partition are such that 1 ≤ |Vi| ≤ n − 1. 

Partition inequalities appear in the linear description of survivable network problem. Its facetness has 

been extensively studied. Partition inequalities have been firstly introduced by Grotschel and Monma et 

al. [7] for the link survivable network problem with all vertex types equal to 2. These valid inequalities 

generalize the so-called cut inequalities. Partition inequalities are defined as follows:  

Let π = (V1, V2, ..., Vp), p ≥ 3 be a partition of V. 

 

x(δ(π)) ≥ {
𝑝 − 1 𝑖𝑓 𝐼2 =  ∅
𝑝      otherwise

 

 
where I2 = {i: con(Vi= 2, i = 1, ... , p)}, con(Vi) = min(r(Vi), r(V \ Vi)) and r(Vi) = max(r(u) : u ∈ Vi). r(u) is the 

vertex u connectivity type. 

In the case of the k edge connectivity subgraph problem, partition inequalities are as follows: 
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x(δ(π)) ≥ ⌈
𝑘𝑝

2
⌉ 

 
Grotschel and Monma et al. [8] gave sufficient conditions for the partition inequalities to be facet defining 

for the link survivable network problem. For other cases of linear description of the survivable network 

problem with partition inequalities, one can refer to [9–12]. 

Note also the importance of valid inequalities (facets) to solve combinatorial optimization problems, as 

the p−vertex subtree problem, formulated as linear programs. For an exact resolution or in view to 

strengthen the relaxations of such linear programs, branch and cut and cutting plane algorithms are usually 

used. Chimani and Chimani et al. [4] present a branch and cut algorithm for an exact resolution of the 

p−vertex subtree problem. The linear formulation of the p−vertex subtree problem considered in [4] is 

defined on the space of variables associated both to vertices and edges of the graph. Ibrahim and Maculan 

et al. [13, 14] consider some family of valid inequalities of the s−t shortest path problem. Using lifting 

procedures, they show that these lifted valid inequalities contribute significantly to strengthen the linear 

relaxation of a flow based formulation of the shortest path problem. Ibrahim and Maculan et al. [15] 

address an efficient cutting plane algorithm to solve the minimum weighted dicycle problem in planar 

digraphs. 

In this paper, we study the facetness of the well known partition inequalities of a new linear description 

of the p−vertex spanning subtree polytope PT (G) [5]. Such a polytope is mainly based on partition 

inequalities. In the case of the p−vertex spanning subtree problem, these partition inequalities are as 

follows: 

 
x(δ(π)) ≥ 1 

 
For this, in a different approach as what is usually done, we first address constructive algorithms 

generating p−vertex spanning subtrees that incidence vectors are affinely independent and satisfied 

partition inequalities with equality. After, resorting to these constructive algorithms, we discuss the 

facetness of inequalities that define the subtree polytope. 

The paper is organized as follows. In Section 2, we present some theoretical results that are useful in the 

sequel. That are some technical lemmas. We also consider the new integer linear program of p−VSSP 

introduced in [5]. Such an ILP-program is defined on the space of variables associated with the edges of the 

graph. In Section 3, we discuss the facetness of partition inequalities of the polytope PT(G). For this purpose, 

we first devise a constructive algorithm to generate p−subtrees with affinely independent incidence vectors. 

Moreover, these incidence vectors satisfied a given valid inequality with equality. After, applying these 

algorithms, we prove the facetness of partition inequalities of the p−vertex spanning subtree polytope PT (G) 

defined by constrainst (1), (2) and trivial constraints xe ≥ 0, ∀ e ∈ E and xe ≤ 1, ∀ e ∈ E. 

In the rest of this section, we give further definitions and notations. Throughout the paper, we deal with 

the complete undirected graph G = (V,E), with V = {1, 2, ..., n}, E = {ek,l = (k, l), 1 ≤ k ≤ n − 1, 2 ≤ l ≤ n}. That is, 

we have |E| = m = 
𝑛(𝑛−1)

2
. We denote an edge as a pair of vertices. Let τi be the incidence vector of the 

p−vertex spanning subtree Ti. E(Ti) is the edge set of the subtree Ti and |E(Ti)| is the number of edges of 

E(Ti). Recall that vectors τ1, τ2, …, τq are said to be affinely independent, if there exists some coefficients λi, 1 

≤ i ≤ q such that the unique solution of systems ∑ 𝜆𝑖𝜏𝑖 = 0
𝑞
𝑖=0  and ∑ 𝜆𝑖 = 0

𝑞
𝑖=0  is λi = 0, i = 1, …, q. By δ ([Vj: 

Vj’]), we mean the edge set having one of its endpoint in Vj and the other in Vj’. Given two components, Vj and 

Vj’ of a partition π, by 𝑒𝑘,𝑙
𝑗,𝑗′

 or 𝑓𝑘,𝑙
𝑗,𝑗′

, we define the edge (k, l) such that vertices k and l belong to components 

Vj and Vj’, respectively. 𝑒𝑘,𝑙
𝑗

 or 𝑓𝑘,𝑙
𝑗

 denotes the edge (k, l) with both vertices k and l belonging to the 

component Vj. We denote by E(Vi) the set of edge having both its endpoints in Vi and G[Vi] = (Vi,E(Vi)) the 
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subgraph induced by Vi. The degree dG(u) of a given vertex u of G is the number of edges having the vertex u 

as endpoint. We call all leaf vertices u−rooted p−vertex subtree T in G, a p−vertex subtree having the vertex 

u as a root such that dG(u) = p − 1 and dG(v) = 1, for all others vertices v of T. As an example, subtrees T1,1, T1,2 

and T1,3 depicted in Fig. 1 are all leaf vertices 1−rooted p−vertex spanning subtrees, with the vertex 1 as a 

root and p = 4. 

2. Some Theoretical Results 

In what follows, we give some technical lemmas which will be useful in the proof of results of the next 

section. 

Lemma 1: From the set Qτ = {τ1}, where τ1 is the incidence vector of a p−vertex spanning subtree T1, by 

sequentially setting Qτ: = Qτ ∪ {τi} such that the p−vertex spanning subtree Ti contains an edge e that is not 

contained by any subtree Ti’  having its corresponding incidence vector in Qτ (τi’ ∈ Qτ ), then we construct a set 

Qτ that elements are affinely independent. 

Proof. Assume that Qτ = {τ1, τ2, ..., τq} is a set of affinely independent subtree incidence vectors and 

consider the subtree Tq+1, (with τq+1 as incidence vector), that contains the edge e with the condition that e 

∉ E(Ti), i = 1, ..., q. By applying the definition of affine independence with respect to the set Qτ ∪ {τq+1}, one 

can write ∑ 𝜆𝑖 +  𝜆𝑞+1 =  0
𝑞
𝑖=1 . As ∑ 𝜆𝑖 =  0

𝑞
𝑖=1 , we deduce that λq+1 = 0. On the other hand, the vectors τ1, 

τ2, ..., τq representing the subtrees T1, T2, ..., Tq are affinely independent, this proves that the incidences 

vectors τ1, τ2, ..., τq, τq+1 are affinely independent. 

Lemma 2: Consider a set {τ1, τ2, ..., τq} of affinely independent incidence vectors of p−vertex spanning 

subtrees Ti, i = 1, ..., q, constructed according to Lemma 1, that all pass through an edge, say e1,2 = (1, 2). If the 

p−vertex spanning subtrees Tq+1, ..., Tq+l, (with incidence vectors τq+1, ..., τq+l) contain the edge e1,2 and (p−3) 

other edges e1,k = (1, k), k ∈ {3, ..., p − 1} such that for each subtree Tq+j , j ∈ {1, ..., l}, there exists an edge e1,k = (1, 

k), 3 ≤ k ≤ p−1 with e1,k ∉ E(Tq+j) and e1,k ∈ E(Tq+j′), j′ ∈ {1, ..., l}\{j}. Then incidence vectors τ1, τ2, ..., τq, τq+1, ..., 

τq+l are affinely independent. 

Proof. As vectors τ1, τ2, ..., τq are affinely independent according to Lemma 1 and the fact that all p−vertex 

spanning subtrees pass through the edge e1,2 = (1, 2), applying the affine independence definition, we have 

∑ 𝜆𝑗
𝑞
𝑗=1 +  ∑ 𝜆𝑗

𝑙
𝑗=1 = 0. On the other hand, each subtree Tq+j is such that there exists an edge e1,k = (1, k), k ∈ 

{3, ..., p−1} contained by all subtrees Tq+j’, j′ ∈ {1, ..., l} \ {j} except the subtree Tq+j . So, we can write (p−3) 

equations of the form ∑ 𝜆𝑞+𝑗′ +  ∑ 𝜆𝑗 = 0.
𝑞
𝑗=1𝑗′≠𝑗  This finally implies that λq+j = 0, j = {1, ..., l} and shows that 

vectors τ1, τ2, ..., τq, τq+1, ..., τq+l are affinely independent. 

Lemma 3: Consider a set {τ1, τ2, ..., τq } of affinely independent incidence vectors of p−vertex spanning 

sutrees Ti, i = 1, ..., q, constructed according to Lemma 1, that all pass through an edge, say e1,2 = (1, 2). Let Tq+1 

(with τq+1 as incidence vector) be a p−vertex spanning subtree that do not pass by e1,2. Then the incidence 

vectors τ1, τ2, ..., τq, τq+1 are affinely independent. 

Proof. Applying the definition of affine independence, as ∑ 𝜆𝑗 = 0
𝑞+1
𝑗=1  and the fact that all subtrees pass 

by the edge e1,2, except the p−vertex spanning subtree Tq+1, we deduce that  ∑ 𝜆𝑗 = 0
𝑞
𝑗=1  implying that τq+1 = 

0. That shows that the incidence vectors τ1, τ2, ..., τq, τq+1 are affinely independent. 

Theorem 1: The dimension of PT (G) is equal to m – 1 [5]. 

In the following section, consider one right hand side partition constraints (2) of the ILP formulation of 

the p−VSSP presented the introduction, we present a constructive algorithm that constructs (m−1) p−vertex 

spanning subtrees that corresponding incidence vectors satisfy a constraint of type (2) with equality and 

are affinely independent. After, we resort to the algorithm to show that constraints (2) are facet defining of 

the polytope PT(G). 
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3. Facetness of Partition Inequalities of PT(G) 

3.1. A Constructive Algorithm 

Consider a partition π = (V1, ..., Vr) of V defined such that 

(a) G[Vj ], j = 1, . . . , r are connected and 

(b) |V1| = |V2| = . . . = |Vr-1| = p − 1 and 1 ≤ |Vr| ≤ p − 1. 

From the condition (b), w.l.o.g, let order vertices of each component Vj, j = 1, ..., r of π as follows: 

 
Vj = {(j − 1)(p − 1) + 1, . . . , j(p − 1)}, j = 1, . . . , r − 1 

 
and 

 
Vr = {(r − 1)(p − 1) + 1, . . . , n}, j = r. 

 
Saying that x(δ(π)) = 1 implies that there exists a pair of components (Vj, Vj’), j ∈ {1, ..., r − 1} and j′ ∈ {j + 

1, ..., r} such that x(δ([Vj : Vj’ ])) = 1. Let check solutions with incidence vectors satisfying equations x(δ([Vj : 

Vj’ ])) = 1, j ∈ {1, ..., r − 1}, j′ ∈ {j + 1, ..., r} that are affinely independent. Such solutions may be among 

p−vertex spanning subtrees that pass through a unique edge 𝑒𝑘,𝑙
𝑗,𝑗′

, with 

 

(j − 1)(p − 1) + 1 ≤ k ≤ j(p − 1) 
 

and  

 

(j′ − 1)(p − 1) + 1 ≤ l ≤ j′(p − 1), 
 

where j′ < r. 

If j′ = r, we have 

(j′ − 1)(p − 1) + 1 ≤ l ≤ n. 
 

As defined above, we recall that 𝑒𝑘,𝑙
𝑗,𝑗′

 is the edge (k, l) with k belonging to the component Vj and l to Vj’. 

Consider all leaf vertices [(j − 1)(p − 1) + 1]−rooted p−vertex spanning subtrees Tj,1, (with incidence vector 

τj,1 ), j = 1, ..., r − 1, such that 

 
E(Tj,1) = {((j−1)(p−1)+1, (j−1)(p−1)+2)), ((j−1)(p−1)+1, (j−1)(p−1)+3)), . . . , ((j − 1)(p − 1) + 1, j(p − 1)), ((j − 

1)(p − 1) + 1, j(p − 1) + 1))}. 
 

One can check that among all edges of Tj,1, only ((j − 1)(p − 1) + 1, j(p − 1) + 1)) belongs to [Vj : Vj+1]. The 

fact that |E(Tj,1)| = p − 1, j = 1, ..., r − 1, it remains (m − (r − 1)(p − 1)) edges of G that are not yet used. 

With respect to all leaf vertices [(j − 1)(p − 1) + 1]−rooted p−vertex spanning subtrees Tj,1, (with incidence 

vector τj,1, j = 1, . . . , r−1, and the component Vj, j = 1, . . . , r−1, unused edges having its endpoints in two 

different components Vj and Vj’ are in form 

 

𝑓𝑘,𝑙
𝑗,𝑗′

, k = (j − 1)(p − 1) + 1, l ∈ {j(p − 1) + 2, ..., n}. 

 

𝑓𝑘,𝑙
𝑗,𝑗′

, k ∈ {(j − 1)(p − 1) + 2, ..., j(p − 1)}, l ∈ {j(p − 1) + 1, ..., n}. 

 
And the unused edges having their both endpoints in a same component are 

 

𝑓𝑘,𝑙
𝑗,𝑗′

, k ∈ {(j−1)(p−1)+2, . . . , j(p−1)−1}, l ∈ {(j−1)(p−1)+3, . . . , j(p−1)} if j < r. 
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𝑓𝑘,𝑙
𝑗,𝑗′

, k ∈ {(r − 1)(p − 1) + 1, ..., n − 1}, l ∈ {(r − 1)(p − 1) + 2, ..., n} if j = r. 

 
In the following algorithm, from Tj,1, we contruct subtrees that corresponding incidence vectors are 

affinely independent. 
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Theorem 2: Algorithm 1 constructs (m−1) p−vertex spanning subtrees that incidence vectors satisfy a given 

partition inequality with equality and are affinely independent. 

Proof. Steps 1-40 of Algorithm 1 construct [(m−(r−1)(p−2)] p−vertex spanning subtrees, Tj,i , i = 1, ..., (p − 

1)[(n − 1) − j(p − 1)] +  
(𝑝−1)(𝑝−2)

2
 + 1 for j = 1, ..., r − 2. 

If j = r−1 and r > 2, i = 1, ..., [(n−1)−j(p−1)][(n−1)−(j−1)(p−1)]+ 
(𝑝−1)(𝑝−2)

2
  +1. 

In the case, r = 2, we have i = 1, ..., 
1

2
 [(n−1)−j(p−1)][n−(j−2)(p−1)]+ 

(𝑝−1)(𝑝−2)

2
  +1. 

All these subtrees contain the edge ((j −1)(p−1)+1, (j −1)(p−1)+2) and by Lemma 1, its corresponding 

incidence vectors are affinely independent. Indeed, at each step, the current subtree Tj,1 obtained from Tj,1, 

includes an edge that do not belong to any others previously generated subtrees, Tj,I’ , with i′ = 1, ..., i − 1. 

Such edges are the ones represented by dashed lines in Figs. 1 and 2 for n = 8, p = 4 and r = 3). We recall 

that subtrees Tj,1 are the all leaf vertices [(j − 1)(p − 1) + 1]−rooted subtrees with 

 
E(Tj,1) = {((j − 1)(p − 1) + 1, (j − 1)(p − 1) + 2), ((j − 1)(p − 1) + 1, (j − 1)(p −1) + 2), ..., ((j − 1)(p − 1) + 1, j(p − 

1)), ((j − 1)(p − 1) + 1, j(p − 1) + 1)}, with j = 1, ..., r − 1. 
 

After, by applying steps 41-66 of Algorithm 1, we add to the first [(m − (r − 1)(p − 2)] already constructed 

subtrees, ((r − 1)(p − 2) − 1) subtrees,  

 

Tj,i , i = (p−1)[(n−1)−j(p−1)]+ 
(𝑝−1)(𝑝−2)

2
  +2, ..., (p−1)[(n−1)−j(p−1)]+ 

𝑝(𝑝−1)

2
  , j = 1, ..., r − 2, 
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Tj,i, i = (p−1)[(n−1)−j(p−1)]+  
(𝑝−1)(𝑝−2)

2
  +2, ..., [(n−1)−j(p−1)][(n−1)−(j −1)(p − 1)] +  

(𝑝+1)(𝑝−2)

2
  , j = r − 1, r > 2 

 

and 

 

Tj,i, i =  
1

2
[(n − 1) − j(p − 1)][n − (j − 2)(p − 1)] +  

(𝑝−1)(𝑝−2)

2
  (p−1)(p−2) + 2, ...,  

1

2
 [(n − 1) − j(p − 1)][n − (j − 2)(p − 

1)] +  
(𝑝+1)(𝑝−2)

2
, j = r − 1, r = 2 

 

That incidence vectors are affinely independent according to Lemmas 2 and 3, (Fig. 3). Thus, incidence 

vectors of these corresponding p−vertex spanning subtrees are affinely independents. This completes the 

proof. 

Remark 1: Note that the incidence vectors of p−vertex spanning subtrees generated from Tj,1, Tj+1,1, ..., Tr-

1,1, by applying Algorithm 1, are affinely independent. Indeed, they do not have any edge in common. 

3.2. Application 

In this paragraph, we feature the fact that the proof of the facetness of partition inequalities is a direct 

application of Algorithm 1. 

Theorem 3 Let π be a partition of V satisfying conditions (a) and (b) defined above. The inequality x(δ(π)) 

≥ 1 define a facet of PT(G). 

Proof. By virtue of Theorem 2 and under conditions (a) and (b), it’s possible to create (m−1) p−vertex 

spanning subtrees that incidence vectors satisfy an inequality of type (2), x(δ(π)) ≥ 1, with equality and are 

affinely independent. 

On the other hand, consider the inequality 𝑥(𝛿(𝜋)) ≥ 1, there exists several subtrees that incidence 

vectors strictly satisfy 𝑥(𝛿(𝜋)) ≥ 1. As an example, all p−vertex spanning subtrees that cover (p−2) vertices 

of a component, say Vj , j ∈ {1, ..., r} may have two edges of type 𝑒𝑘,𝑙
𝑗,𝑗′

, k ∈ Vj , l ∈ Vj’. The incidence vectors of 

these subtrees are such that 𝑥(𝛿(𝜋)) = 2 > 1. This proves that an inequality of type (2) is not an equation 

and completes the proof. 

Example 1 Consider the graph G with V = {1, 2, ..., 8}, E = {(u, v): 1 ≤ u ≤ 7, 2 ≤ v ≤ 8, u < v}, n = 8, p = 4, r = 3 

and Tj,1 is such that E(Tj,1) = {((j − 1)(p − 1) +1, (j −1)(p−1)+2), ((j −1)(p−1)+1, (j −1)(p−1)+2), ..., ((j 

−1)(p−1)+1, j(p−1)), ((j −1)(p−1)+1, j(p−1)+1)}, j = 1, ..., r−1. Figs. 1–3 shows the p−vertex subtrees 

constructed by applying the above constructive procedure that incidence vectors are affinely independent. 

 

 
Fig. 1. Subtrees constructed by applying Steps 1–9 of Algorithm 3. 
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Fig. 2. Subtrees constructed by applying Steps 10–40 of Algorithm 3. 

 
Fig. 3. Subtrees constructed by applying Steps 41–66 of Algorithm 3. 

 

4. Conclusion 

We discuss the facetness of partition inequalities of a new linear formulation of the minimum weighted 

spanning subtree problem. We first address a constructive algorithm that generate a set of subtrees span-

ning with affinely independent corresponding incidence vectors. Moreover, these incidence vectors satisfy 

a given partition inequality of the spanning subtree polytope.  Consider the polytope associated to this line-

ar formulation and unlike the traditional approach that consists to look for the affine subspace of the sub-

tree polytope, to show the facetness of these partition inequalities, we resort to these algorithms.  
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