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Abstract: Computing n! efficiently and accurately is notoriously difficult. Many have proposed 

approximations, varying in accuracy and in computational complexity. Interesting and useful approxi-

mations are both accurate and computationally inexpensive, and, if possible, exact up to machine-precision 

floating-point numbers. In this paper, we exploit an observation on a previous approximation by Hodgman 

to obtain a new class of correction terms using simple, but optimal given their degree, rational functions. 

We show that the proposed approximations are more accurate than some of the best-known 

approximations while remaining computationally inexpensive. 
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1. An approximation by Hodgman 

The best-known series to compute n! is most certainly Stirling’s [1] series 

𝑛! = √2𝜋𝑛 (
𝑛

𝑒
)

𝑛
(1 +

1

12𝑛
+

1

288𝑛2 −
139

51840𝑛3 −
571

2488320𝑛4 + ⋯ ),     (1) 

where the numerators and denominators are given by sequences A001163 and A001164 from the OEIS [2], 

[3]. We may truncate the series to 

𝑛! ≈ √2𝜋𝑛 (
𝑛

𝑒
)

𝑛
(1 +

1

12𝑛
)   (2) 

As a trade-off between accuracy and speed of computation. However, using only 1 +
1

12𝑛
 as a correction 

term makes eq. (2) underestimate 𝑛!. To counter this effect, a proposition, likely by Hodgman [4], p. 326, is 

to use 

𝑛! ≈ √2𝜋𝑛 (
𝑛

𝑒
)

𝑛
(1 +

1

12𝑛−1
)   (3) 

But it now overestimates n!—while yielding a larger error than eq. (2), which may explain why this 

approximation disappeared from ulterior editions. But if eq. (2) underestimates 𝑛!, eq. (3) overestimates 

𝑛!, and 
1

12𝑛−α
 is a continuous function, then, by the intermediate value theorem, there must be a value or a 

function 𝛼, with −1 < 𝛼 < 0, such that the error is zero. However, to obtain a computationally simple 

formula, we must limit the form α can take. For this work, we will limit ourselves to rational functions of 

small degree 𝑑 in 𝑛, noted 𝛼(𝑑, 𝑛). Let then 

𝑃𝛼,𝑑(𝑛) = √2𝜋𝑛 (
𝑛

𝑒
)

𝑛
(1 +

1

12𝑛+𝛼(𝑑,𝑛)
)   (4) 
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be the approximation to 𝑛! in which α(𝑑, 𝑛) is used. 

We will find the optimal rational function 𝛼(𝑑, 𝑛), where the degree 𝑑 is chosen to satisfy one’s 

trade-off between accuracy and computational cost. For 𝑑 = 0, 𝛼(𝑑, 𝑛) will be a constant, while for 𝑑 > 0, 

𝛼(𝑑, 𝑛) will be a non-constant rational function of degree 𝑑. In either case, it will yield a correction term of 

degree 𝑑 + 1, as we will show. In this paper, we will present a new method to find the optimal rational 

function 𝛼(𝑑, 𝑛) for any desired degree 𝑑, starting, in Section 2, with the special case 𝑑 = 0, then, in 

Section 3, for arbitrary degree 𝑑. In Section 4, we will compare our results with some of the previously 

known approximations. Section 5 discusses the implementation and computational complexity of our 

proposed approximations. We conclude in Section 6. 

2. Optimal Constant α 

To find the optimal expression for 𝛼(𝑑, 𝑛), we first notice that the squared error 

𝐸 = (𝑛! − 𝑃α,𝑑(𝑛))
2
 

is convex in 𝛼(𝑑, 𝑛). We can therefore find 𝛼(𝑑, 𝑛) by solving 
∂𝐸

∂α(𝑑,𝑛)
= 0 for 𝛼(𝑑, 𝑛). This is equivalent to 

solving 

1 +
1

12𝑛+α(𝑑,𝑛)
= 1 +

1

12𝑛
+

1

288𝑛2 −
139

51840𝑛3 −
571

2488320𝑛4 + ⋯    (5) 

for 𝛼(𝑑, 𝑛). Using 𝛼 as a shorthand for 𝛼(𝑑, 𝑛), we rework eq. (5) to obtain 

𝛼 = −
1

2
−

𝛼

24𝑛
+

139

360𝑛
+

139𝛼

4320𝑛2 +
571

17280𝑛2 +
571𝛼

207360𝑛3 −
163879

1451520𝑛3 + ⋯    (6) 

If we want 𝛼 to be a constant, that is, use 𝛼(0, 𝑛), we keep only the constant terms from eq. (6), and we 

find 𝛼 = −
1

2
 . Substituting 𝛼 = −

1

2
 back into eq. (4), we obtain the optimal asymptotic approximation (for 

𝛼 constant) 

𝑛! ∼ 𝑃𝛼,0(𝑛) = √2𝜋𝑛 (
𝑛

𝑒
)

𝑛
(1 +

1

12𝑛−
1

2

)    (7) 

Resulting in a first degree rational function for the correction term, 

𝑛! ∼ 𝑃𝛼,0(𝑛) = √2𝜋𝑛 (
𝑛

𝑒
)

𝑛

(
24𝑛 + 1

24𝑛 − 1
). 

3. Optimal Degree-Limited Solutions 

To solve for 𝛼(𝑑, 𝑛) for a given degree 𝑑, we must retain from eq. (6) only terms which are of degree 𝑑 

or less. If we chose 𝑑 = 1, we retain the terms of degree 0 (constants) and 1, that is, 

𝛼 = −
1

2
−

𝛼

24𝑛
+

139

360𝑛
, 

from which we get, by isolating 𝛼 , 𝛼(1, 𝑛) = −
1

2
+

293

720𝑛+30
. This yields the much better asymptotic 

approximation 

𝑛! ∼ 𝑃𝛼,1(𝑛) = √2𝜋𝑛 (
𝑛

𝑒
)

𝑛
(1 +

1

12𝑛−
1

2
+

293

720𝑛+30

)       (8a) 

= √2𝜋𝑛 (
𝑛

𝑒
)

𝑛
(1 +

360𝑛+15

4320𝑛2+139
),   (8b) 

Resulting in a second degree rational function for the correction term. Solving eq. (6) for a second degree 
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rational function 𝛼(2, 𝑛), we retain 

𝛼 = −
1

2
−

𝛼

24𝑛
+

139

360𝑛
+

139𝛼

4320𝑛2
+

571

17280𝑛2
, 

Giving us 𝛼(2, 𝑛) = −
1

2
+

7032𝑛+293

17280𝑛2+720𝑛−556
. The approximation becomes 

𝑛! ∼ 𝑃α,2(𝑛) = √2π𝑛 (
𝑛

𝑒
)

𝑛
(1 +

1

12𝑛−
1

2
+

7032𝑛+293

17280𝑛2+720𝑛−556

)       (9a) 

= √2π𝑛 (
𝑛

𝑒
)

𝑛
(1 +

17280𝑛2+720𝑛−556

207360𝑛3+571
),   (9b) 

Which has now a third degree correction term. Solving eq. (6) for a third degree rational function 𝛼(3, 𝑛), 

we retain 

𝛼 = −
1

2
−

𝛼

24𝑛
+

139

360𝑛
+

139𝛼

4320𝑛2
+

571

17280𝑛2
+

571𝛼

207360𝑛3
−

163879

1451520𝑛3
, 

Yielding 𝛼(3, 𝑛) = −
1

2
+

1181376𝑛2+49224𝑛−331755

2903040𝑛3+120960𝑛2−93408𝑛−7994
, and therefore 

𝑛! ∼ 𝑃𝛼,3(𝑛) = √2π𝑛 (
𝑛

𝑒
)

𝑛
(1 +

1

12𝑛−
1

2
+

1181376𝑛2+49224𝑛−331755

2903040𝑛3+120960𝑛2−93408𝑛−7994

)     (10a) 

= √2π𝑛 (
𝑛

𝑒
)

𝑛
(1 +

1451520𝑛3+60480𝑛2−46704𝑛−3997

17418240𝑛4−163879
)    (10b) 

Resulting in a fourth degree rational function for the correction term. 

We could find α(4, 𝑛), α(5, 𝑛), etc., to yield increasingly more accurate approximations, but each new 

solution would be also increasingly computationally demanding. For a good trade-off between accuracy and 

computation, we are likely to retain only low-degree approximations, such as eqs. (7) to (10). Complexity of 

evaluation is discussed in Section 5. 

4. Compared Accuracy 

To compare the accuracy of the proposed approximations, we will use the absolute relative error 

𝐸(𝑛!, 𝑎) = |
𝑛! − 𝑎

𝑛!
|, 

where 𝑎 is the approximation to 𝑛! being evaluated. Since we are interested in simple approximations, we 

will exclude from this study costly approximations involving trigonometric functions, infinite series, 

(infinite) continued fractions, or Bernoulli numbers [5]-[7]. We will, however, compare our solutions to 

Mohanty's and Rummens' formula [8], which is a response to Weissman's [9] comment on Feller's and 

Kasper's approximation [10], itself derived from an identity by Burnside [11]. We will also compare our 

solutions to Nemes' [12], Mortici's [13], and Gosper's approximations [14]. 

In Fig. 1 and Table 1, we compare the relative error of eqs. (2), (3), and (7) to 𝑛! computed exactly using 

arbitrary-precision arithmetic. While Hodgman's correction, eq. (3), does worse than eq. (2), the Stirling 

series truncated to its first two terms, the added error is asymptotically negligible. However, the correction 

with α = −
1

2
 does much better than either preceding approximations. We notice, in the lower-right corner 

of Fig. 1, the effects of the approximation reaching machine-precision floating point accuracy. We will use 

arbitrary-precision arithmetic in subsequent figures. 

We show the absolute relative errors of eqs. (7) to (10) in Fig. 2 and Table 1, using arbitrary-precision 

arithmetic. In Fig. 2, one notices immediately “dips” in the absolute relative errors of eqs. (8) and (10). 

These correspond to values of 𝑛 where the approximation is equal to 𝑛!. Solving explicitly, one finds 𝑛 ≈
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5.88037 for eq. (8), and 𝑛 ≈ 0.311977, 𝑛 ≈ 1.21606, and 𝑛 ≈ 15.2894 for eq. (10). 
 

 
Fig. 1. Comparison of correction terms of degree 1. 

 
Table 1. Numerically Compared Absolute Relative Errors for Constant Corrections, eq. (2), eq. (3), and eq. 

(7) 
𝑛  

1 +
1

12𝑛
 1 +

1

12𝑛 − 1
 1 +

1

12𝑛 −
1
2

 

1  0.00102  0.00597  0.00232 
10  0.00003  0.00004  2.81813 × 10−6 
20  8.30951 × 10−6 9.05176 × 10−6 3.53003 × 10−7 
30  3.74804 × 10−6 3.96804 × 10−6 1.04634 × 10−7 
40  2.12373 × 10−6  2.21656 × 10−6 4.41486 × 10−8 
50  1.36513 × 10−6  1.41265 × 10−6 2.26055 × 10−8 
60  9.50755 × 10−7 9.78260 × 10−7 1.30823 × 10−8 
70  6.99957 × 10−7 7.17278 × 10−7 8.23860 × 10−9 
80  5.36733 × 10−7 5.48337 × 10−7 5.51930 × 10−9 
90  4.24595 × 10−7 4.32745 × 10−7 3.87641 × 10−9 

100  3.44252 × 10−7 3.50193 × 10−7 2.82592 × 10−9 
500  1.38651 × 10−8 1.39127 × 10−8 2.26080 × 10−11 

1000  3.46925 × 10−9 3.47519 × 10−9 2.82600 × 10−12 
5000  1.38865 × 10−10  1.38913 × 10−10  2.26080 × 10−14 

10000  3.47193 × 10−11  3.47252 × 10−11  2.82600 × 10−16 

 

 

Fig. 2. Proposed approximations and their absolute relative error to 𝑛!. 
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Table 2. Numerically Compared Absolute Relative Errors for the Proposed Approximations 
𝑛  eq. (7) eq. (8) eq. (9) eq. (10) 

1  0.00232  0.00031  0.00050  0.00023 

10  2.81813 × 10−6 4.75012 × 10−9  7.87352 × 10−9  1.91489 × 10−11 

20  3.53003 × 10−7  5.15163 × 10−10  2.47478 × 10−10  1.35261 × 10−13 

30  1.04634 × 10−7  1.16269 × 10−10  3.26261 × 10−11  2.48111 × 10−14 

40  4.41486 × 10−8 3.90880 × 10−11  7.74545 × 10−12  5.57148 × 10−15 

50  2.26055 × 10−8  1.65760 × 10−11  2.53852 × 10−12  1.64257 × 10−15 

60  1.30823 × 10−8  8.17576 × 10−12  1.02028 × 10−12  5.90763 × 10−16 

70  8.23860 × 10−9  4.48322 × 10−12  4.72080 × 10−13  2.45804 × 10−16 

80  5.51930 × 10−9  2.65882 × 10−12  2.42145 × 10−13  1.14196 × 10−16 

90  3.87641 × 10−9  1.67487 × 10−12  1.34377 × 10−13  5.78184 × 10−17 

100  2.82592 × 10−9  1.10674 × 10−12  7.93503 × 10−14  3.13602 × 10−17 

500  2.26080 × 10−11  1.86136 × 10−15  2.53949 × 10−17  2.29887 × 10−21 

1000  2.82600 × 10−12  1.17043 × 10−16  7.93596 × 10−19  3.64898 × 10−23 

5000  2.26080 × 10−14  1.88174 × 10−19  2.53952 × 10−22  2.36453 × 10−27 

10000  2.82600 × 10−15  1.17679 × 10−20  7.93600 × 10−24  3.70028 × 10−29 

 

While Fig. 2 and Table 2 show encouraging results, we will now compare our proposed approximations to 

known, and oft-cited, approximations. The approximation retained are of comparable computational 

complexity. We will compare: 

• The truncated Stirling series (often ambiguously referred to as ``Stirling's Approximation''), 

𝑛! ∼ √2π𝑛 (
𝑛

𝑒
)

𝑛
  (11) 

• Burnside’s approximation [11], 

𝑛! ∼ √2π (
𝑛+

1

2

𝑒
)

𝑛+
1

2

  (12) 

• Gosper’s [14], 

𝑛! ∼ √π√2𝑛 +
1

3
(

𝑛

𝑒
)

𝑛
  (13) 

• Mohanty’s and Rummens’ [8], 

𝑛! ∼ √2π(𝑛 + 1)𝑛+
1

2𝑒
1

12(𝑛+1)
−(𝑛+1)

   (14) 

• Mortici’s [13], 

𝑛! ∼ √
2π

𝑒
(

𝑛+1

𝑒
)

𝑛+
1

2
  (15) 

• and Nemes’ [12], 

𝑛! ∼ √2𝜋𝑛 (
𝑛

𝑒
)

𝑛
(1 +

1

12𝑛2−
1

10

)

𝑛

   (16) 

Fig. 3 and Table 3 present the relative errors of our proposed approximation, eq. (7), against those from 

Burnside, Mortici, and Gosper. From Table 3, we see that Mortici's approximation, eq. (15), does marginally 

better than Stirling’s truncated series, eq. (11). Burnside's approximation has a relative error approximately 

half of the truncated Stirling series, eq. (11). Compared to the other results, one can see that Burnside's 

approximation is of historical interest at best. Gosper's approximation fares much better, but still worse 

than Mohanty's and Rummens'. Mohanty's and Rummens' approximation does better than eq. (7), but just 

so. 
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Fig. 3. Absolute relative error of proposed approximation compared to other approximations to 𝑛! 

 
Table 3. All Approximation Compared, Absolute Relative Error, First Part 

 Stirling  Mortici  Burnside  Gosper  M & R   
𝑛  eq. (11)  eq. (15)  eq. (12)  eq. (13)  eq. (14)  eq. (7) 

1  0.07786  0.04050  0.02751  0.00398  0.00033  0.00232284 
10  0.00830  0.00755  0.00397  0.00007  2.08209 × 10−6  2.81813 × 10−6 
20  0.00416  0.00396  0.00203  0.00002  2.99750 × 10−7  3.53003 × 10−7 
30  0.00277  0.00268  0.00137  7.58471 × 10−6  9.32145 × 10−8  1.04634 × 10−7 
40  0.00208  0.00203  0.00103  4.28485 × 10−6  4.02969 × 10−8  4.41486 × 10−8 
50  0.00167  0.00163  0.00083  2.74940 × 10−6  2.09382 × 10−8  2.26055 × 10−8 
60  0.00139  0.00137  0.00069  1.91259 × 10−6  1.22370 × 10−8  1.30823 × 10−8 
70  0.00119  0.00117  0.00059  1.40689 × 10−6  7.76065 × 10−9  8.23860 × 10−9 
80  0.00104  0.00103  0.00052  1.07814 × 10−6  5.22665 × 10−9  5.51930 × 10−9 
90  0.00093  0.00092  0.00046  8.52471 × 10−7  3.68603 × 10−9  3.87641 × 10−9 

100  0.00083  0.00082  0.00041  6.90896 × 10−7  2.69601 × 10−9  2.82592 × 10−9 
500  0.00017  0.00017  0.00008  2.77494 × 10−8  2.20894 × 10−11  2.26080 × 10−11 

1000  0.00008  0.00008  0.00004  6.94090 × 10−9  2.76946 × 10−12  2.82600 × 10−12 
5000  0.00002  0.00002  8.33253 × 10−6 2.77749 × 10−10  2.22089 × 10−14  2.26080 × 10−14 

10000  8.33330 × 10−6  8.33247 × 10−6  4.16647 × 10−6  6.94409 × 10−11  2.77694 × 10−15  2.82600 × 10−15 

 

 
Fig. 4. Absolute relative error of proposed approximations compared to other approximations to 𝑛! 

 
Fig. 4 presents the relative absolute errors of our proposed approximations against Nemes', eq. (16), and 

Mohanty's and Rummens', eq. (14). Note that Nemes' approximation and eq. (9) overlap on the figure, but 

Nemes' does better as detailed in Table 4. Table 4 presents the same results, but this time including 
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Stirling's series, eq. (1), with its first ten terms. Nemes' approximation does better than eq. (9), but eq. (10) 

does much better than either, while the ten term Stirling series shows errors tens of orders of magnitude 

smaller. 

 
Table 4. All Approximations Compared, Absolute Relative Error, Second Part. * With the Fi rst then Terms 

     Nemes  Stirling 
n  eq. (7)  eq. (8)  eq. (9)  eq. (10)  eq. (16)  eq. (1)* 

1  0.00232284  0.000311662  0.000501953  0.000234244  0.000372486  0.000467142 
10  2.81813 × 10−6  4.75012 × 10−9  7.87352 × 10−9  1.91489 × 10−11  6.47042 × 10−9  1.13891 × 10−14 
20  3.53003 × 10−7  5.15163 × 10−10  2.47478 × 10−10  1.35261 × 10−13  2.03553 × 10−10  2.26443 × 10−18 
30  1.04634 × 10−7  1.16269 × 10−10  3.26261 × 10−11  2.48111 × 10−14  2.68387 × 10−11  1.40009 × 10−20 
40  4.41486 × 10−8  3.90880 × 10−11  7.74545 × 10−12  5.57148 × 10−15  6.37174 × 10−12  2.30179 × 10−21 
50  2.26055 × 10−8  1.65760 × 10−11  2.53852 × 10−12  1.64257 × 10−15  2.08831 × 10−12  3.44988 × 10−22 
60  1.30823 × 10−8  8.17576 × 10−12  1.02028 × 10−12  5.90763 × 10−16  8.39339 × 10−13  6.62692 × 10−23 
70  8.23860 × 10−9  4.48322 × 10−12  4.72080 × 10−13  2.45804 × 10−16  3.88358 × 10−13  1.58004 × 10−23 
80  5.51930 × 10−9  2.65882 × 10−12  2.42145 × 10−13  1.14196 × 10−16  1.99201 × 10−13  4.47552 × 10−24 
90  3.87641 × 10−9  1.67487 × 10−12  1.34377 × 10−13  5.78184 × 10−17  1.10546 × 10−13  1.45461 × 10−24 
100  2.82592 × 10−9  1.10674 × 10−12  7.93503 × 10−14  3.13602 × 10−17  6.52774 × 10−14  5.28507 × 10−25 
500  2.26080 × 10−11  1.86136 × 10−15  2.53949 × 10−17  2.29887 × 10−21  2.08906 × 10−17  6.98451 × 10−32 
1000  2.82600 × 10−12  1.17043 × 10−16  7.93596 × 10−19  3.64898 × 10−23  6.52832 × 10−19  7.01285 × 10−35 
5000  2.26080 × 10−14  1.88174 × 10−19 2.53952 × 10−22  2.36453 × 10−27  2.08907 × 10−22  7.33848 × 10−42 
10000  2.82600 × 10−15  1.17679 × 10−20  7.93600 × 10−24  3.70028 × 10−29  6.52833 × 10−24  7.18569 × 10−45 

 

Another interesting measure of accuracy is the number of correct leading digits, shown in Table 5. Indeed, 

an approximation is “perfect” if it gives as many correct digits as the number representation can store, since 

any additional correct digits will be lost to quantization. If one uses single-precision IEEE 754 floating point 

numbers, one expects about 7 significant digits, because its mantissa is 24 bits long (of which only 23 are 

explicitly stored [15]), and we have log10 224 ≈ 7.22. With double-precision floating point, the mantissa is 

53 bits long, and we expect log10 253 ≈ 15.95, or about 16, significant digits. At 7 significant digits, eqs. 

(8) to (10), as well as eq. (16), are basically equivalent in terms of accuracy. With 16 digits, only eq. (10) is 

cromulent. 

 
Table 5. Number of Correct Digits for the Different Approximations. *With the First then Terms 

  Stirling  Gosper  M & R      Nemes  Stirling 
n  n!  eq. (11)  eq. (13)  eq. (14)  eq. (7) eq. (8) eq. (9) eq. (10) eq. (16) eq. (1)* 

1  1  0  0  0  0  0  0  0  0  0 
10  7  1  4  6  5  6  6  6  6  6 
20  19  2  4  7  7  9  9  13  9  18 
30  33  2  5  7  7  10  10  13  10  20 
40  48  2  5  6  6  10  11  14  11  20 
50  65  2  6  8  8  10  11  15  11  21 
60  82  2  5  7  7  10  11  14  11  21 
70  101  3  6  8  8  9  13  15  13  23 
80  119  2  5  8  8  11  12  14  12  23 
90  139  3  6  9  8  12  13  17  13  24 

100  158  2  5  8  8  10  12  15  12  23 
500  1135  2  7  9  9  15  17  19  17  30 

1000  2568  4  7  11  11  15  18  21  18  34 
5000  16326  5  9  13  13  19  19  25  21  41 

10000  35660  5  10  14  14  20  22  28  22  43 

 

5. Implementation and Complexity 

To be interesting, an approximation formula must, in addition of being accurate, be easily and efficiently 

computed. Some of the approximations we used for comparison raise the correction term to the 𝑛-th (or 

(𝑛 +
1

2
)-th) power, possibly requiring both raising to the 𝑛-th power and extracting a square root. If we 

have 𝑛 ∈ ℕ, we can evaluate the exponentiation in 𝑂(log 𝑛) steps using the successive squaring method 

(an old idea, see [16], p. 76, and [17]), but this seems too restrictive, as we will want 𝑛 ∈ ℝ. Rational 
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functions of degree 𝑑, on the other hand, can be evaluated in 𝑂(𝑑) products, whether 𝑛 is a natural or a 

real number, and independently of its magnitude—although it will become costlier when 𝑛 grows if exact 

arithmetic is used. 

Eqs. (7) to (10) are best evaluated using reduced rational functions in order to minimize the number of 

multiplications and divisions required. The correction term of eq. (7) can be rewritten in many ways, 

1 +
1

12𝑛 −
1
2

=
12𝑛 +

1
2

12𝑛 −
1
2

=
24𝑛 + 1

24𝑛 − 1
= 1 +

2

24𝑛 − 1
. 

Eq. (8) is probably best expressed as eq. (8b), resulting in three products and one division, while eq. (8a) 

needs two products and two divisions, a gain if we consider the divisions to be much more expensive than 

products. For eq. (9), we find that, expressed as eq. (9a), the correction term requires five products and two 

divisions. Expressed as eq. (9b), we notice that if we let 𝑡 = 𝑛2, we can rewrite the correction term as 

17280𝑡 + 720𝑛 − 556

207360𝑡𝑛 + 571
, 

Which now requires the same number of products, but with only one division. If we apply the same type 

of simplification to eq. (10b), again with 𝑡 = 𝑛2, we find that 

1451520𝑛3 + 60480𝑛2 − 46704𝑛 − 3997

17418240𝑛4 − 163879
=

(1451520𝑛 + 60480)𝑡 − 46704𝑛 − 3997

17418240𝑡2 − 163879
 

Can now be evaluated with six products and one division instead of ten products and two divisions in its 

original form, eq. (10a). As the degree 𝑑 grows, the resulting rational functions may be subject to other 

optimization strategies [18], [19], but the evaluation will require, at worse, 𝑂(𝑑) multiplications, if only by 

using Horner's method for evaluating polynomials [20], [21]. 

6. Conclusion 

Hodgman's correction to eq. (2), eq. (3), lead us to the observation that since these functions can be seen 

as two special cases of a continuous function, by the intermediate value theorem, there must be a correction 

for which the error is zero, that is, there must exist a function 𝛼(𝑑, 𝑛) in eq. (4) that yields 𝑛! exactly. 

From this observation, we proposed a novel family of approximations, each approximation being the 

optimal rational function 𝛼(𝑑, 𝑛) of degree 𝑑 in 𝑛. We then solved exactly for a few special cases, first for 

𝛼(0, 𝑛), a constant, then for small degrees 1 ≤ 𝑑 ≤ 3. In doing so, we showed that 𝛼 = −
1

2
 is the optimal 

constant correction. We also showed the rational functions of small degrees fare quite well compared to 

oft-cited approximations for 𝑛!. We remarked that if the special case 𝛼(2, 𝑛) is quite comparable to 

Nemes' approximation, with the latter being a still better; 𝛼(3, 𝑛) is at least three orders of magnitude 

better than any of the approximation used for comparison. Lastly, we discussed computational complexity 

for the correction term, remarking that our solutions based on rational functions of (small) degree 𝑑 will 

require at most 𝑂(𝑑) products and one division, while many of the other approximations will require 

𝑂(log 𝑛) products, or require exponentiation by an arbitrary number, making our proposal also attractive 

computation-wise. 
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