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Abstract: The paper collects 42 frequently-used properties of the floor function, including 35 ones from other 

literatures and 7 newly added-and-proved ones. The collected properties cover basic inequalities, basic 

identities, conditional inequalities, conditional equalities and practical formulas. The paper is helpful for 

scholars of mathematics and computer science and technology in reading and writing scientific works, 

reasoning and designing algorithms. 
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1. Introduction 

The floor function, which is also called the greatest integer function (see in [1]), is a function that takes an 

integer value. For arbitrary real number x, the floor function of x, denoted by ⌊𝑥⌋, is defined by an inequality 

of 𝑥 − 1 < ⌊𝑥⌋ ≤ 𝑥 or equivalently ⌊𝑥⌋ ≤ 𝑥 < ⌊𝑥⌋ + 1. The floor function frequently occurs in many aspects 

of mathematics and computer science. However, as I stated in article [2], except the Graham's book [3], it is 

hard to find another book or a literature that introduces in general the know-of of the function although 

people can find something via the Internet, e.g., the wikipedia [4]. Since Graham's book was first published 

30 year’s ago and its following-up editions made few modifications on the part of the floor function, it is 

necessary to sort out the properties of the function as a reference for researchers.  

In 2017 and 2019, I proved respectively several formulas for the function and made brief summaries on 

the frequently-used properties by my work together with certain formulas collected from previous literatures, 

as seen in [5] and [6]. In the past two years, I proved several new results and thus I put them together with 

the 2019 summary to form this literature.  

2. Definition and Notation  

The floor function of real number x is denoted by symbol ⌊𝑥⌋ that satisfies ⌊𝑥⌋ ≤ 𝑥 < ⌊𝑥⌋ + 1; the fraction 

part of x is denoted by symbol { }x that satisfies𝑥 = ⌊𝑥⌋ + {𝑥}; the ceiling function of x is denoted by symbol 

⌈𝑥⌉that fits𝑥 ≤ ⌈𝑥⌉ < 𝑥 + 1. In this whole article, 𝐴 ⇒ 𝐵means conclusion B can be derived from condition A; 

𝐴 ⇔ 𝐵means B holds if and only if A holds. Symbol Z means the integer set,𝑥 ∈ 𝑍means x is an integer and 

𝑥 ∉ 𝑍indicates x is not an integer. 

3. Frequently Used Properties of the Floor Function 

The following properties of the floor functions are sorted by basic inequalities, conditional inequalities and 

International Journal of Applied Physics and Mathematics

135 Volume 10, Number 4, October 2020

mailto:xbwang@fosu.edu.cn
mailto:153668@qq.com


  

basic equalities. 

3.1. Basic Inequalities 

In the following inequalities, x and y are real numbers by default.  

(P1) [1] +  +  + +                   1x y x y x y   

(P2) [7] − −  −  −  − +                          1 1x y x y x y x y  

(P3) [1], [3] +  + + +                  2 2x y x y x y  

(P4) [7] + + +  + + +                  ( ) ( )m n x m n y mx my nx ny  with m and n being positive integers 

(P5) [7] +  − + + +                  ( 1)nx ny n x y x y  with n being a positive integer 

(P6) [1], [7]           xy x y  with , 0x y . 

(P7) [8] 
     
    

yy

x x
 with 1x and 0y . 

(P8) [3]       n x nx ; =         { } 1n x nx n x , where n is a positive integer. 

(P9) [9] 
  +

 − 
 

1
1

q q

p p
 for arbitrary positive integers p and q; 

3.2. Conditional Inequalities 

In the following inequalities, x and y are real numbers, and n is an integer. 

(P10) [3]     x n x n ,      n x n x  

(P11) [3] x n y x n y            

(P12) [2]         x y x y  

(P13) [2], [7]         x y x y  

3.3. Basic Equalities 

In the following equalities, x and y are real numbers, m and n are integers. 

(P14) [3], [7] + = +      n x n x . 

(P15) [7] 
      =   

  

x x

m m
with 1m . 

(P16) [7] 
−    

− =   
− −    

,

1,

x x
x

x x

Z

Z
 

(P17) [3], [7] ⌊𝑛𝑥⌋ = ⌊𝑥⌋ + ⌊𝑥 +
1

𝑛
⌋ +. . . + ⌊𝑥 +

𝑛−1

𝑛
⌋ with n>0, particularly, ⌊𝑥⌋ + ⌊𝑥 +

1

2
⌋ = ⌊2𝑥⌋ and ⌊

𝑥

2
⌋ +

⌊
𝑥+1

2
⌋ = ⌊𝑥⌋. 

(P18) [3] ⌊𝑥⌋ = ⌊
𝑥

𝑛
⌋ + ⌊

1+𝑥

𝑛
⌋ +. . . + ⌊

𝑛−1+𝑥

𝑛
⌋, particularly,⌊

𝑥

2
⌋ + ⌊

𝑥+1

2
⌋ = ⌊𝑥⌋ 

(P19) [3] 
−   

= +   
   

1
1

n n

m m
with 1m . 

(P20) [1], [3]    =      
x x  with 0x  

(P21) [3]  =       log logb bx x  with 0x  

(P22) [3] + = +      log 1 log ( 1)b bm m  with 1m . 

(P23) [3] ⌊
⌊

𝑎

𝑏
⌋

𝑐
⌋ = ⌊

𝑎

𝑏𝑐
⌋ for an arbitrary integer a and positive integers b and c. 
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(P24) [1], [7] ⌊
𝑚+1

𝑛
⌋ = {

⌊
𝑚

𝑛
⌋ , 𝑛 ∤ 𝑚 + 1

⌊
𝑚

𝑛
⌋ + 1, 𝑛|𝑚 + 1

 

(P25) [7] 
 

=   
1

1
n x

x  

(P26) [9]        + + = + = + = +
       

1 4 1 4 2 4 3n n n n n  

(P27) [1], [3] It needs +  2log 1N binary bits to express decimal integer N in its binary expression. A positive 

integer n with base b has +  log 1b n digits.  

(P28) [11] Let N be an integer; then  − 
 

2

0N N . 

(P29) [7] Let m and p be positive integers; then number of p’s multiples from 1 to m is calculated by 
 
 
 

m

p
. 

(P30) [10] Let ,m n and p be positive integers such that   1 p m n ; then number of p’s multiples from m 

to n is calculated by 

𝜈(𝑚, 𝑛, 𝑝) = {

⌊
𝑛

𝑝
⌋ − ⌊

𝑚

𝑝
⌋ , 𝑝 ∤ 𝑚

⌊
𝑛

𝑝
⌋ − ⌊

𝑚

𝑝
⌋ + 1, 𝑝|𝑚

 

(P31) [5] Arbitrary positive integer i yields 

 
−   

 
1 2

2

i
i i  

Arbitrary positive even integer e yields  

 
= 

 
2

2

e
e  

And arbitrary positive old integer o yields  

 
= − 

 
2 1

2

o
o  

(P32) [12] Let  and x be positive real numbers; then it holds 

  −   +          1 ( 1)x x x  

Particularly, if  is a positive integer, say  =n , then it yields 

  + −          ( 1) 1n x nx n x  

(P33) [12] For arbitrary positive real numbers  , x and y with x y , it holds 

 − + −       ( ) 0x y y x  

(P34) [12]. For arbitrary odd integer 7n , it holds  

−
+   2

1
1 log

2

n
n  

(P35) [13] For positive integer k and real number 0x , it holds 

 −         −      −          

2

2

1 2 ,0 log
0 2

, log2

k

k

k

k xx
x

x k x
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4. Some New Results 

Here lists some newly found and proved equalities and inequalities. 

(P36)                 min( , )x x x for positive numbers   and x . Particularly,  

   −             1x x x  

When  0 1 . 

Proof. See the following three steps: 

1).           x x  by definition; 

2).                  x x x x by (P13); 

3).         = − = −  − − = −                        ( { }) { }) { }) 1 1x x x x x x x x . 

(P37) For an arbitrary positive integer k and an arbitrary odd integer 1N , it holds 

−   
=   

   

1

2 2k k

N N
 

Proof. Consider the case 1k = and 2 1N s= + with integer 0s  . It yields 

−     
= + = = =     

     

1 1
( ) ( )

2 2 2

N N
s s s  

Now assume 1k    and = +2kN s r  with 0s  being an integer and   −0 2 1kr  being odd; without loss of 

generality, let 2 1r t= +  with integer 10 2 1kt −  −  ; then − = +1 2 2kN s t  and 
−

−   
= + =   

   
1

1

2 2k k

N t
s s  . 

Meanwhile, it knows  

+   
= + =   

   

2 1

2 2k k

N t
s s  

Because  = +  −0 2 1 2 1kr t . 

Remark on (P37). The condition that N is odd is mandatory because this property does not hold for an 

even integer N. A simple counterexample is 
−   

   
   

4 4 1

2 2
. Actually, when 1k =  taking 2N s= yields  

= 
 2

N
s

while 
−   

= + − = −   
   

1 1
1

2 2

N
s s  . When 1k   taking 2 2kN s t= +  with 0s   and 10 2 1kt −  −  being integers 

leads to 
−

   
= + =   

   
12 2k k

N t
s s and 

−

− −     
= + = + −     

     
1

1 2 1 1

2 2 2 2k k k k

N t t
s s , which results in by (P2)  

−   
− =     =    

0, 01

1, 02 2k k

tN N

t
 

(P38) For an arbitrary positive integer k and even integer 2N , it holds 

+   
=   

   

1

2 2k k

N N
 

Proof. Consider the case 1k =  and 2N s= with integer 0s  . Then  

+     
= = = + =     

     

1 1
( ) ( )

2 2 2

N N
s s s  

Now assume 1k  and + = + = + +1 2 2 2 1k kN s r s t with integers 0s  and −  −10 2 1kt ; then  
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+   
= + =   

   

1

2 2k k

N r
s s  

Because  = +  −0 2 1 2 1kr t . 

Meanwhile by = +2 2kN s t with −  −10 2 1kt , it holds  

−

   
= + =   

   
12 2k k

N t
s s  

Thus it knows 
+   

=   
   

1

2 2k k

N N
 when N is even. 

Remark on (P38). The condition that N is even is mandatory because this property does not hold for an 

odd integer N. A simple counterexample is 
+   

   
   

3 1 3

2 2
. Readers can confirm the general cases by referring 

to the Remark on (P37). 

(P39) For arbitrary positive real numbers x and y satisfying 𝑥 ≥ 𝑦, it holds 

− =    +              0 1x y y x y  

Proof. First is to prove the necessity as following reasoning:   

 − =  + − − =           

 − + − =          

0 { } { } 0

{ } { } 0

x y x x y y

x y x y
 

Since {𝑥} and {𝑦}  are positive real numbers satisfying 0 ≤ {𝑥} < 1 and 0 ≤ {𝑦} < 1 , it knows −1 <

{𝑥} − {𝑦} < 1 ⇒ −1 ≤ ⌊{𝑥} − {𝑦}⌋ ≤ 0 and thus 

− + − =          

   +          

{ } { } 0

1

x y x y

y x y
 

(P40) For positive integer  and  0 1x , it holds 

  − + = − 2log (2 1 ) 1x  and    + = 2log (2 )x  

Proof. By property of T3 tree,  −2 1 is on level  −2 of T3 (see in [14]). That is 

     − = − −  − = −   2 22 log (2 1) 1 log (2 1) 1  

Since    −  − +  =2 2 2log (2 1) log (2 1 ) log (2 )x , by (P13) it holds 

      − = −  − +  − +    2 2 21 log (2 1) log (2 1 ) log (2 1 )x x  

Likewise,  +2 1 is on level  −1 of T3, namely 

     + − = −  + =   2 2log (2 1) 1 1 log (2 1)  

Since    +  +2 2 2log 2 log (2 ) log (2 1)x , it knows 

      +  + =   2 2log (2 ) log (2 1)x  

(P41). For integers 0n  and  0 , it holds 

 

− −   
= − −   

   

1
1

2 2

n n
 

Proof. By (P16), the proof considers two cases: +1n is divisible by 2 and it is not. For the case +1n is 
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divisible by 2 , let + =1 2n s with 1s being an integer; then  



 

+ − − 
+   =  = − 

 

1 1
1 0mod2

2 2

n n
n s s  

And this time 



 

   
= −  = − = −   

   

1
2 1 1

2 2

n
n s s s  

Consequently, it holds 

 

− −   
= − −   

   

1
1

2 2

n n
 

For the case +1n is not divisible by 2 , let + = +1 2n s r ; then integer 1s  and  

   −   −  −0 2 1 0 1 2 2r r  

Accordingly, it holds  

 



 

+ = +   −

 = + −

+   
 = =   

   

1 2 ,0 2 1

2 1

1

2 2

n s r r

n s r

n n
s

 

And consequently 

 

− −   
= − −   

   

1
1

2 2

n n
 

(P42). Given positive integers k and N; let 𝑚 = ⌊𝑙𝑜𝑔2 𝑁⌋ − 𝑘 > 0. Then there must be an odd one among 

1 2
, ,...,

2 2k k

N N
+ +

   
   
   

 and 
2k m

N
+

 
 
 

  if 0
2k

N 
 

 
 is even. Similarly, there must be an even one among 

1 2
, ,...

2 2k k

N N
+ +

   
   
   

,and 
2k m

N
+

 
 
 

 if 0
2k

N 
 

 
is odd.  

Proof. Consider the case 
2k

N 
 
 

is even. Suppose 2
2k

N
s 

= 
 

with 1  being a positive integer and 1s   

being an odd integer; then 

2 2 ,0 2 1
2

k k k

k

N
N r s r r+ 
= + = +   − 

 
 

This follows 

2k

N
s

+

 
= 

 
 

Which is odd. 

Now check the bound of  . Since 2kN s+ , it knows  

2

2

2

log

log

k N
N

s

N k

N k







+  

  −

  −  

 

For the case 
2k

N 
 
 

is odd, suppose 2 1
2k

N
s 

= + 
 

 with 1  being a positive integer and 𝑠 ≥ 1 being an 
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odd integer; 

2 2 2 ,0 2 1
2

k k k k

k

N
N r s r r+ 
= + = + +   − 

 
 

and for a positive integer x, it holds 

2
2

2 2

k
x

k x k x

N r
s −

+ +

 + 
= +   

   
 

Since 1 12 2 2 1 2k k k kr + + +  −   , it knows
2

0
2

k

k x

r
+

 +
= 

 
 when 1x   . Consequently, if 1 1x   −   then 

2
2

x

k x

N
s−

+

 
= 

 
is even. Considering 2 2 2 2

2

k k k k

k

N
N r s r + + 
= + = + +  

 
, it follows 2log N k  −   . 

5. Motivation of This Paper 

In writing a paper related with mathematics, computer science, physics and so on, mathematical reasoning 

plays a major role in the whole procedure. During a reasoning procedure, some minor evidences such as one 

or more formulas are often required to keep the reasoning correct. Since our primary middle school we have 

remembered tens of identities, inequalities, theorems and axioms in our minds. The things we have 

remembered do help us to write an excellent paper of science and technology. However, it is not so fortunate 

for researchers who research the number theory, the graph theory and the related subjects because they often 

have to face the floor function, which frequently occurs in the reasoning but does not have many citable 

formulas. As I mentioned in [15], the mathematical reasoning or modeling involved with the floor function 

always requires quite a lot of special skills related with inequalities together with discrete mathematics and 

it is of quite individuality because the function is defined with an inequality,   +       1x x x , and applied in 

occasions with integers and other discrete traits. For this reason, I have paid attention to the function and 

collected its formulas in my teaching and researching work. In 2017, I collected 31 properties and published 

them in [5]. Among the 31 properties, I proved 5 ones. They are (P12), (P13), (P28), (P30), and (P31). In 2018, 

I collected 35 properties among which I proved 4 new ones and published them in [6]. In this paper, I collected 

42 properties among which the newly added 7 ones are proved in previous subsection. I am sure these 

collected properties are helpful for certain people to cite. At least I myself frequently look over them when I 

was writing a paper related with the issue.   

The motivation that I say so many words here is to show something on how to agitate interest in scientific 

research. An old thing like the floor function might contain a lot of new work and any new work cannot be 

lack of some old things. I hope the background and history of this paper are educationally meaningful. 
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