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Abstract: In this article, we present the sufficient and necessary conditions for H�̈�lder’s inequality in 

weighted Orlicz spaces and in their weak type. One of the keys to prove our results is to estimate the norms 

of characteristic function in ℝ𝑛.   
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1. Introduction 

The Orlicz spaces were first introduced by Orlicz in [1] are generalizations of Lebesgue spaces. Recently, 

Osançliol [2] also introduced weighted Orlicz spaces as generalization of Orlicz spaces and weighted 

Lebesgue spaces. Many researchers have been studying intensively about Orlicz spaces (see [3]-[9], etc.).  

Hölder’s inequality was first studied by L.C Rogers in 1888 and was reproved by O. Hölder in 1889. The 

sufficient and necessary conditions for generalized Hölder’s inequality in Lebesgue spaces may be found in 

[3], [10], [11]. In 2018, Ifronika et al. [10] obtained the sufficient and necessary conditions for generalized 

Hölder’s inequality in Morrey spaces, in generalized Morrey spaces, and in their weak type. Recently, 

Ifronika et al. [11] also obtained the sufficient and necessary conditions for generalized Hölder’s inequality 

in Orlicz spaces. In 2019, Masta et al. [9] also discussed the sufficient condition for Hölder’s inequality in 

weighted Orlicz spaces. Motivated by these results, we would like to discuss the Hölder’s inequality in 

weighted Orlicz spaces and in weighted weak Orlicz spaces. 

The novelty of this paper is a necessary condition of Hölder’s inequality in weighted Orlicz spaces and in 

their weak type. From our results, we can also see what parameters are significant in the Hölder’s 

inequality in weighted Orlicz spaces. 

First we recall the definition of Young functions. A function Φ: ,0,∞) → ,0,∞) is called a Young function 

if Φ is a convex, left-continuous, lim
𝑡→0
Φ(𝑡) = 0 = Φ(0), and lim

𝑡→∞
Φ(𝑡) = ∞. For Φ is a Young function, we 

define Φ−1(𝑠): = inf*𝑟 ≥ 0:Φ(𝑟) > 𝑠+ for every 𝑠 ≥ 0. For Φ  is a Young function, the Orlicz space 

𝐿Φ(ℝ
𝑛) is the set of functions 𝑓:ℝ𝑛 → ℝ such that 

     (ℝ ): =    { >  : ∫  
ℝ 
 (

| ( )|

 
)    }  ∞               (1) 

Meanwhile, for Φ is a Young function, the weak Orlicz space 𝑤𝐿Φ(ℝ
𝑛) is the set of all measurable 

functions 𝑓:ℝ𝑛 → ℝ such that  
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  𝑓  𝑤𝐿Φ(ℝ𝑛): = inf {𝑏 > 0: sup
𝑡>0
Φ(𝑡)𝜇 (*𝑥 ∈ ℝ𝑛:

|𝑓(𝑥)|

𝑏
> 𝑡+)  1}  ∞             (2) 

Now, we come to the definition of weighted Orlicz spaces and weighted weak Orlicz spaces. Let Φ be 

a Young function and 𝑢  is a weight on ℝ𝑛  (i.e 𝑢:ℝ𝑛 → (0,∞)  is a measurable function), the 

weighted Orlicz space 𝐿Φ
𝑢 (ℝ𝑛) is the set of all functions 𝑓:ℝ𝑛 → ℝ such that 

  𝑓  𝐿Φ
𝑢 (ℝ𝑛): = 𝑢𝑓  𝐿Φ(ℝ𝑛)= inf {𝑏 > 0: ∫  

ℝ𝑛
Φ(

|𝑢(𝑥)𝑓(𝑥)|

𝑏
) 𝑑𝑥  1}  ∞            (3) 

Note that, if 𝑢(𝑥) = 1 for every 𝑥 ∈ ℝ𝑛, then 𝐿Φ
𝑢 (ℝ𝑛) = 𝐿Φ(ℝ

𝑛) is Orlicz space. 

Analog with weighted Orlicz spaces, for a Young function Φ and a weight 𝑢 on ℝ𝑛, the weighted 

weak Orlicz space 𝑤𝐿Φ
𝑢 (ℝ𝑛) is the set of all measurable functions 𝑓:ℝ𝑛 → ℝ such that 

 𝑓  𝑤𝐿Φ
𝑢 (ℝ𝑛): = 𝑢𝑓  𝑤𝐿Φ(ℝ𝑛) ∞                           (4) 

As well as the Orlicz space and the weak Orlicz space, the relation between weighted weak Orlicz 

spaces and (strong) weighted Orlicz spaces is 

 

𝐿𝛷
𝑢 (ℝ𝑛) ⊂ 𝑤𝐿𝛷

𝑢 (ℝ𝑛) 

 

with  𝑓  𝑤𝐿𝛷𝑢 (ℝ𝑛)  𝑓  𝐿𝛷𝑢 (ℝ𝑛) for every 𝑓 ∈ 𝐿𝛷
𝑢 (ℝ𝑛). 

The rest of this paper is organized as follows. In Section 2, we presented some lemmas which useful for 

obtain our results. The main results are presented in Section 3. In Section 3, we state the sufficient and 

necessary conditions for H�̈�lder’s inequality in weighted Orlicz spaces and in their weak type. 

2. Methods 

To obtain the sufficient and necessary conditions for Hölder’s inequality in weighted Orlicz spaces, we 

use the norms of the characteristic function in ℝ𝑛 and some lemmas as in the following. 

Lemma 2.1 [3], [4], [11], [12] Suppose that 𝛷 is a Young function and 𝛷−1(𝑠): = 𝑖𝑛𝑓*𝑟 ≥ 0:𝛷(𝑟) > 𝑠+. 

We have 

1) Φ−1(0) = 0. 
2) Φ−1(𝑠1)  Φ

−1(𝑠2) for 𝑠1  𝑠2. 
3) 𝛷(𝛷−1(𝑠))  𝑠  𝛷−1(𝛷(𝑠)) for 0  𝑠  ∞. 

Lemma 2.2 [2], [11], [12] Let 𝑢:ℝ𝑛 → (0,∞) be a measurable function such that 𝑢(𝑥 + 𝑦)  𝑢(𝑥) ⋅ 𝑢(𝑦) 

for every 𝑥, 𝑦 ∈ ℝ𝑛. If 𝛷 is a Young function, 𝑇𝑥𝑓(𝑦) = 𝑓(𝑦 − 𝑥), for  𝑓 ∈ 𝐿𝛷
𝑢 (ℝ𝑛) and 𝑓 ≠ 0, then there 

exists a constant 𝐶 > 0 (depends on 𝑓) such that  

𝑢(𝑥)

𝐶
  𝐿𝑥𝑓  𝑤𝐿Φ

𝑢 (ℝ𝑛)  𝑇𝑥𝑓  𝐿Φ
𝑢 (ℝ𝑛) 𝐶𝑢(𝑥)                       (5) 

Lemma 2.3 [12] Let 𝛷 be a Young function. If 𝑓 ∈ 𝑤𝐿𝛷
𝑢 (ℝ𝑛), then for arbitrary 𝜖 > 0 we have  

sup
𝑡>0
Φ(𝑡) |{𝑥 ∈ ℝ𝑛:

|𝑢(𝑥)𝑓(𝑥)|

 𝑓 𝑤𝐿Φ
𝑢 (ℝ𝑛)+𝜀

> 𝑡}|  1                          (6) 
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3. Main Results 

First, we present the sufficient and necessary conditions for Hölder’s inequality in weighted Orlicz 

spaces in the following theorem. 

Theorem 3.1. Let 𝛷1, 𝛷2, 𝛷3 be Young functions and 𝑢1, 𝑢2, 𝑢3: ℝ
𝑛 → ℝ be measurable functions such 

that 𝛷1
−1(𝑡)𝛷2

−1(𝑡)  𝛷3
−1(𝑡) for every 𝑡 > 0. Then the following statements are equivalent: 

1) There exists a constant 𝐶 > 0 such that 𝑢3(𝑥)  𝐶𝑢1(𝑥)𝑢2(𝑥) for every 𝑥 ∈ ℝ𝑛.  

2) For 𝑓1 ∈ 𝐿𝛷1
𝑢1 (ℝ𝑛) and 𝑓2 ∈ 𝐿𝛷2

𝑢2 (ℝ𝑛), there exists a constant 𝑀 > 0 such that 

 

 𝑓1𝑓2  𝐿𝛷3
𝑢3 (ℝ𝑛) 𝑀  𝑓1  𝐿𝛷1

𝑢1 (ℝ𝑛) 𝑓2  𝐿𝛷2
𝑢2 (ℝ𝑛)  

 

for every 𝑓1 ∈ 𝐿𝛷1
𝑢1 (ℝ𝑛) and 𝑓2 ∈ 𝐿𝛷2

𝑢2 (ℝ𝑛). 

Proof.  

((1)  ⟹ (2)). The proof of (1) implies (2) can be found in [11] and it goes as follows. Suppose that (1) 

holds. Since Φ is a convex function, we have 

 ∫  
ℝ𝑛
Φ3 (

|𝑢3(𝑥)𝑓1(𝑥)𝑓2(𝑥)|

2 𝑓1 𝐿Φ1
𝑢1 (ℝ𝑛)

 𝑓2 𝐿Φ2
𝑢2 (ℝ𝑛)

+𝑑𝑥  
1

2
∫  
ℝ𝑛
Φ3 (

|𝑢3(𝑥)𝑓1(𝑥)𝑓2(𝑥)|

 𝑓1 𝐿Φ1
𝑢1 (ℝ𝑛)

 𝑓2 𝐿Φ2
𝑢2 (ℝ𝑛)

+𝑑𝑥 

 
1

2
∫  
ℝ𝑛
Φ3 (

|𝑢1(𝑥)𝑢2(𝑥)𝑓1(𝑥)𝑓2(𝑥)|

 𝑓1 𝐿Φ1
𝑢1 (ℝ𝑛)

 𝑓2 𝐿Φ2
𝑢2 (ℝ𝑛)

+𝑑𝑥             (7) 

Without loss of generality, suppose that Φ1(𝑠)  Φ2(𝑡) for 𝑠, 𝑡 ≥ 0. By Lemma 2.1(3), we obtain 

  

 𝑠𝑡  Φ1
−1(Φ1(𝑠))Φ2

−1(Φ2(𝑡))  Φ1
−1(Φ2(𝑡))Φ2

−1(Φ2(𝑡))  Φ3
−1(Φ2(𝑡))  

 

Hence, we have 

 Φ3(𝑠𝑡)  Φ3(Φ3
−1(Φ2(𝑡)))  Φ2(𝑡)  Φ2(𝑡) + Φ1(𝑠).                (8) 

On the other hand, by using inequality (8), we obtain 

∫  
ℝ𝑛
Φ3 (

|𝑢1(𝑥)𝑢2(𝑥)𝑓1(𝑥)𝑓2(𝑥)|

 𝑓1 𝐿Φ1
𝑢1 (ℝ𝑛)

 𝑓2 𝐿Φ2
𝑢2 (ℝ𝑛)

+𝑑𝑥  ∫  
ℝ𝑛
Φ1 (

|𝑢1(𝑥)𝑓1(𝑥)|

 𝑓1 𝐿
Φ1

𝑢1 (ℝ𝑛)

+𝑑𝑥 + ∫  
ℝ𝑛
Φ2 (

|𝑢2(𝑥)𝑓2(𝑥)|

 𝑓2 𝐿
Φ2

𝑢2 (ℝ𝑛)

+𝑑𝑥     2,       (9) 

whenever 𝑓1 ∈ 𝐿Φ1
𝑢1 (ℝ𝑛) and 𝑓2 ∈ 𝐿Φ2

𝑢2 (ℝ𝑛). From inequality (7) and (9) we have,  

 

∫  
ℝ𝑛
Φ3 (

|𝑢3(𝑥)𝑓1(𝑥)𝑓2(𝑥)|

2  𝑓1  𝐿Φ1
𝑢1 (ℝ𝑛) 𝑓2  𝐿Φ2

𝑢2 (ℝ𝑛)

)𝑑𝑥  1  

 

By definition of  ⋅ 𝐿Φ3
𝑢3 (ℝ𝑛), we have  𝑓1𝑓2  𝐿Φ3

𝑢3 (ℝ𝑛) 2  𝑓1  𝐿Φ1
𝑢1 (ℝ𝑛) 𝑓2  𝐿Φ2

𝑢2 (ℝ𝑛)  

((2)  ⟹ (1)). Assume that (2) holds. Take arbitrary 𝑓1 ∈ 𝐿Φ1
𝑢1 (ℝ𝑛) and 𝑓2 ∈ 𝐿Φ2

𝑢2 (ℝ𝑛). By Lemma 2.2, we 

have 
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𝑢3(𝑥)

𝐶
  𝑇𝑥𝑓1𝑇𝑥𝑓2  𝐿Φ3

𝑢3 (ℝ𝑛) 𝐶  𝑇𝑥𝑓1  𝐿Φ1
𝑢1 (ℝ𝑛) 𝑇𝑥𝑓2  𝐿Φ2

𝑢2 (ℝ𝑛) 𝐶𝑢1(𝑥)𝑢2(𝑥), 

 

for every 𝑥 ∈ ℝ𝑛. So, we obtain 𝑢3(𝑥)  𝑀𝑢1(𝑥)𝑢2(𝑥), for 𝑀 = 𝐶2    

Corollary 3.2. (Hölder’s inequality in weighted Lebesgue spaces) 𝐿𝑒𝑡 1   𝑝1, 𝑝2 ,𝑝3   ∞ such that 
1

𝑝1
+

1

𝑝2
=

1

𝑝3
  and 𝑢1, 𝑢2, 𝑢3: ℝ

𝑛 → ℝ  be measurable functions. Then the following statements are 

equivalent: 

1) There exists a constant 𝐶 > 0 such that 𝑢3(𝑥)  𝐶𝑢1(𝑥)𝑢2(𝑥) for every 𝑥 ∈ ℝ𝑛.  

2) For 𝑓1 ∈ 𝐿𝑝1
𝑢1(ℝ𝑛) and 𝑓2 ∈ 𝐿𝑝2

𝑢2(ℝ𝑛), there exists a constant 𝑀 > 0 such that 

 

 𝑓1𝑓2  𝐿𝑝3
𝑢3(ℝ𝑛) 𝑀  𝑓1  𝐿𝑝1

𝑢1(ℝ𝑛) 𝑓2  𝐿𝑝2
𝑢2(ℝ𝑛)  

 

for every 𝑓1 ∈ 𝐿𝑝1
𝑢1(ℝ𝑛) and 𝑓2 ∈ 𝐿𝑝2

𝑢2(ℝ𝑛). 

Proof.  

Let Φ1(𝑡): = 𝑡
𝑝1 , Φ2(𝑡): = 𝑡

𝑝2 , Φ3(𝑡): = 𝑡
𝑝3  for every 𝑡 ≥ 0. Since 1   𝑝1, 𝑝2,𝑝3   ∞, we have Φ1, Φ2, 

and Φ3 are Young functions. Observe that, using the definition of Φ−1, we also obtain  

 

 Φ1
−1(𝑡) = 𝑡

1

𝑝1 , Φ2
−1(𝑡) = 𝑡

1

𝑝2 , a𝑛𝑑  Φ3
−1(𝑡) = 𝑡

1

𝑝3   
 

Moreover, Φ1
−1(𝑡)Φ2

−1(𝑡) = 𝑡
1

𝑝1𝑡
1

𝑝2 = 𝑡
1

𝑝3 = Φ3
−1(𝑡). By using Theorem 3.1, we have (1) and (2) are 

equivalent.    

Now we come to the sufficient and necessary conditions for Hölder’s inequality in weighted weak Orlicz 

spaces as the following theorem. 

Theorem 3.3 Let 𝛷1, 𝛷2, 𝛷3 be Young functions and 𝑢1, 𝑢2, 𝑢3: ℝ
𝑛 → ℝ be measurable functions such 

that 𝛷1
−1(𝑡)𝛷2

−1(𝑡)  𝛷3
−1(𝑡) for every 𝑡 > 0. Then the following statements are equivalent: 

1) There exists a constant 𝐶 > 0 such that 𝑢3(𝑥)  𝐶𝑢1(𝑥)𝑢2(𝑥) for every 𝑥 ∈ ℝ𝑛 .  

2) There exists a constant 𝑀 > 0 such that 

 

 𝑓1𝑓2  𝑤𝐿𝛷3
𝑢3 (ℝ𝑛) 𝑀  𝑓1  𝑤𝐿𝛷1

𝑢1 (ℝ𝑛) 𝑓2  𝑤𝐿𝛷2
𝑢2 (ℝ𝑛) 

 

for every 𝑓1 ∈ 𝑤𝐿𝛷2
𝑢2 (ℝ𝑛) and 𝑓2 ∈ 𝑤𝐿𝛷2

𝑢2 (ℝ𝑛). 

Proof.  

((1)  ⟹ (2)). The proof of (1) implies (2) can be found in [12] and it goes as follows. Suppose that (1) 

holds. Let 𝑓𝑖 be elements of 𝑤𝐿Φ𝑖
𝑢𝑖 (ℝ𝑛), 𝑖 = 1,2. By Lemma 2.3, for every 𝑘 ∈ ℕ we have 

 

Φ1(𝑡) |{𝑥 ∈ ℝ
𝑛:

|𝑢1(𝑥)𝑓1(𝑥)|

(1+
1

𝑘
) 𝑓1 𝑤𝐿

Φ1

𝑢1 (ℝ𝑛)

> 𝑡}|  1 and Φ2(𝑡) |{𝑥 ∈ ℝ
𝑛:

|𝑢2(𝑥)𝑓2(𝑥)|

(1+
1

𝑘
) 𝑓2 𝑤𝐿Φ2

𝑢2 (ℝ𝑛)

> 𝑡}|  1 

 

for every 𝑡 > 0. 

For each 𝑥 ∈ ℝ𝑛 and 𝑘 ∈ ℕ, let   𝑀(𝑥, 𝑘):= max {Φ1 (
|𝑢1(𝑥)𝑓1(𝑥)|

(1+
1

𝑘
) 𝑓1 𝑤𝐿Φ1

𝑢1 (ℝ𝑛)

+ ,Φ2 (
|𝑢2(𝑥)𝑓2(𝑥)|

(1+
1

𝑘
) 𝑓2 𝑤𝐿Φ2

𝑢2 (ℝ𝑛)

+}  
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From Φ𝑖 (
|𝑢𝑖(𝑥)𝑓𝑖(𝑥)|

(1+
1

𝑘
) 𝑓𝑖 

𝑤𝐿Φ𝑖

𝑢𝑖 (ℝ𝑛)

)  𝑀(𝑥, 𝑘) and Lemma 2.1 (3), we have  

 
|𝑢𝑖(𝑥)𝑓𝑖(𝑥)|

(1+
1

𝑘
) 𝑓𝑖 

𝑤𝐿Φ𝑖

𝑢𝑖 (ℝ𝑛)

 Φ𝑖
−1(Φ𝑖 (

|𝑢𝑖(𝑥)𝑓𝑖(𝑥)|

(1+
1

𝑘
) 𝑓𝑖 

𝑤𝐿Φ𝑖

𝑢𝑖 (ℝ𝑛)

),  Φ𝑖
−1(𝑀(𝑥, 𝑘)),              (10) 

where 𝑖 = 1,2. 

Since inequality (9) is true for 𝑖 = 1,2, we have  

∏  2
𝑖=1

|𝑢𝑖(𝑥)𝑓𝑖(𝑥)|

(1+
1

𝑘
) 𝑓𝑖 

𝑤𝐿Φ𝑖

𝑢𝑖 (ℝ𝑛)

 Φ1
−1(𝑀(𝑥, 𝑘))Φ2

−1(𝑀(𝑥, 𝑘))  Φ3
−1(𝑀(𝑥, 𝑘))                 (11) 

By using inequality (11) and Φ is increasing function, we obtain 

Φ3(∏ 

2

𝑖=1

|𝑢𝑖(𝑥)𝑓𝑖(𝑥)|

(1 +
1
𝑘
)  𝑓𝑖  𝑤𝐿Φ𝑖

𝑢𝑖 (ℝ𝑛)

,  Φ3(Φ3
−1(𝑀(𝑥, 𝑘)))  𝑀(𝑥, 𝑘)  

On the other hand, we have 𝑀(𝑥, 𝑘)  ∑  2
𝑖=1 Φ𝑖 (

|𝑢𝑖(𝑥)𝑓𝑖(𝑥)|

(1+
1

𝑘
) 𝑓𝑖 

𝑤𝐿Φ𝑖

𝑢𝑖 (ℝ𝑛)

)  

Therefore 

 

Φ3(𝑡) |{𝑥 ∈ ℝ
𝑛:∏  

2

𝑖=1

|𝑢3(𝑥) 𝑓𝑖(𝑥)|

(1 +
1
𝑘
)  𝑓𝑖  𝑤𝐿Φ𝑖

𝑢𝑖 (ℝ𝑛)

> 𝑡}| = Φ3(∏ 

2

𝑖=1

𝑡0|𝑢3(𝑥)𝑓𝑖(𝑥)|

(1 +
1
𝑘
)  𝑓𝑖  𝑤𝐿Φ𝑖

𝑢𝑖 (ℝ𝑛)

, |*𝑥 ∈ ℝ𝑛: 1 > 𝑡0+| 

 

 Φ3(∏ 

2

𝑖=1

𝑡0|𝑢𝑖(𝑥)𝑓𝑖(𝑥)|

(1 +
1
𝑘
)  𝑓𝑖  𝑤𝐿Φ𝑖

𝑢𝑖 (ℝ𝑛)

, |*𝑥 ∈ ℝ𝑛: 1 > 𝑡0+| 

 ∑Φ𝑖 (
𝑡0|𝑢𝑖(𝑥)𝑓𝑖(𝑥)|

(1 +
1
𝑘
)  𝑓𝑖  𝑤𝐿Φ𝑖

𝑢𝑖 (ℝ𝑛)

, |*𝑥 ∈ ℝ𝑛: 1 > 𝑡0+|

2

𝑖=1

 

 

where 𝑡0: =
𝑡(1+

1

𝑘
) 𝑓1 𝑤𝐿Φ1

𝑢1 (ℝ𝑛)
 𝑓2 𝑤𝐿Φ2

𝑢2 (ℝ𝑛)

|𝑢3(𝑥)𝑓1(𝑥)𝑓2(𝑥)|
. 

Next, we also have 

 

Φ𝑖 (
𝑡0|𝑢𝑖(𝑥)𝑓𝑖(𝑥)|

(1 +
1
𝑘
)  𝑓𝑖  𝑤𝐿Φ𝑖

𝑢𝑖 (ℝ𝑛)

, |*𝑥 ∈ ℝ𝑛: 1 > 𝑡0+| = Φ𝑖(𝑡𝑖) |{𝑥 ∈ ℝ
𝑛: (

|𝑢𝑖(𝑥)𝑓𝑖(𝑥)|

(1 +
1
𝑘
)  𝑓𝑖  𝑤𝐿Φ𝑖

𝑢𝑖 (ℝ𝑛)

, > 𝑡𝑖}|

 1 
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where 𝑡𝑖 =
𝑡0|𝑢𝑖(𝑥)𝑓𝑖(𝑥)|

(1+
1

𝑘
) 𝑓𝑖 

𝑤𝐿Φ𝑖

𝑢𝑖 (ℝ𝑛)

, for 𝑖 = 1,2. So, we obtain Φ3(𝑡) |{𝑥 ∈ ℝ
𝑛: ∏  2

𝑖=1
|u3(𝑥)𝑓𝑖(𝑥)|

(1+
1

𝑘
) 𝑓𝑖 

𝑤𝐿Φ𝑖

𝑢𝑖 (ℝ𝑛)

> 𝑡}|  2. 

On the other hand, we have  

Φ3(𝑡) |{𝑥 ∈ ℝ
𝑛: ∏  2

𝑖=1
|𝑢3(𝑥)𝑓𝑖(𝑥)|

√2(1+
1

𝑘
) 𝑓𝑖 

𝑤𝐿Φ𝑖

𝑢𝑖 (ℝ𝑛)

> 𝑡}|  sup
𝑡>0
Φ3(𝑡) |{𝑥 ∈ ℝ

𝑛: ∏  2
𝑖=1

|𝑢3(𝑥)𝑓𝑖(𝑥)|

(1+
1

𝑘
) 𝑓𝑖 

𝑤𝐿Φ𝑖

𝑢𝑖 (ℝ𝑛)

> 2𝑡}|  

= sup
𝑠>0
Φ3(

𝑠

2
) |{𝑥 ∈ ℝ𝑛:∏  

2

𝑖=1

|𝑢3(𝑥)𝑓𝑖(𝑥)|

(1 +
1
𝑘
)  𝑓𝑖  𝑤𝐿Φ𝑖

𝑢𝑖 (ℝ𝑛)

> 𝑠}| 

 sup
𝑠>0

1

2
Φ3(𝑠) |{𝑥 ∈ ℝ

𝑛:∏  

2

𝑖=1

|𝑢3(𝑥)𝑓𝑖(𝑥)|

(1 +
1
𝑘
)  𝑓𝑖  𝑤𝐿Φ𝑖

𝑢𝑖 (ℝ𝑛)

> 𝑠}|  1  

Since 𝑠 > 0 is an arbitrary positive real number, we get 

 

 sup
𝑡>0
Φ3(𝑡) |{𝑥 ∈ ℝ

𝑛:
|𝑢3(𝑥)𝑓1(𝑥)𝑓2(𝑥)|

2(1+
1

𝑘
) 𝑓1 𝑤𝐿Φ1

𝑢1 (ℝ𝑛)
 𝑓2 𝑤𝐿Φ2

𝑢2 (ℝ𝑛)

> 𝑡}|  1  

 

This shows that 

 

 𝑓1𝑓2  𝑤𝐿Φ3
𝑢3 (ℝ𝑛) 2(1 +

1

𝑘
*  𝑓1  𝑤𝐿Φ1

𝑢1 (ℝ𝑛) 𝑓2  𝑤𝐿Φ2
𝑢2 (ℝ𝑛) 

 

and this is true for every 𝑘 ∈ ℕ.  We can conclude that 

 

 𝑓1𝑓2  𝑤𝐿Φ3
𝑢3 (ℝ𝑛) 2  𝑓1  𝑤𝐿Φ1

𝑢1 (ℝ𝑛) 𝑓2  𝑤𝐿Φ2
𝑢2 (ℝ𝑛)  

 

((2)  ⟹ (1)). Assume that (2) holds. Take arbitrary 𝑓1 ∈ 𝐿Φ1
𝑢1 (ℝ𝑛) and 𝑓2 ∈ 𝐿Φ2

𝑢2 (ℝ𝑛).  By Lemma 2.2, 

we have 

 

 
𝑢3(𝑥)

𝐶
  𝑇𝑥𝑓1𝑇𝑥𝑓2  𝑤𝐿Φ3

𝑢3 (ℝ𝑛) 𝐶  𝑇𝑥𝑓1  𝑤𝐿Φ1
𝑢1 (ℝ𝑛) 𝑇𝑥𝑓2  𝑤𝐿Φ2

𝑢2 (ℝ𝑛) 𝐶𝑢1(𝑥)𝑢2(𝑥), 

 

for every 𝑥 ∈ ℝ𝑛. So, we obtain 𝑢3(𝑥)  𝐶𝑢1(𝑥)𝑢2(𝑥), for every 𝑥 ∈ ℝ𝑛   

Corollary 3.4. (Hölder’s inequality in weighted weak Lebesgue spaces) 𝐿𝑒𝑡 1   𝑝1, 𝑝2,𝑝3   ∞ such that 
1

𝑝1
+

1

𝑝2
=

1

𝑝3
  and 𝑢1, 𝑢2, 𝑢3: ℝ

𝑛 → ℝ  be measurable functions. Then the following statements are 

equivalent: 

1) There exists a constant 𝐶 > 0 such that 𝑢3(𝑥)  𝐶𝑢1(𝑥)𝑢2(𝑥) for every 𝑥 ∈ ℝ𝑛.  

2) For 𝑓1 ∈ 𝑤𝐿𝑝1
𝑢1(ℝ𝑛) and 𝑓2 ∈ 𝑤𝐿𝑝2

𝑢2(ℝ𝑛), there exists a constant 𝑀 > 0 such that 

 

 𝑓1𝑓2  𝐿𝑝3
𝑢3(ℝ𝑛) 𝑀  𝑓1  𝑤𝐿𝑝1

𝑢1(ℝ𝑛) 𝑓2  𝑤𝐿𝑝2
𝑢2(ℝ𝑛)  

International Journal of Applied Physics and Mathematics

30 Volume 10, Number 1, January 2020



  

for every 𝑓1 ∈ 𝑤𝐿𝑝1
𝑢1(ℝ𝑛) and 𝑓2 ∈ 𝑤𝐿𝑝2

𝑢2(ℝ𝑛). 

Proof.  

Let Φ1(𝑡): = 𝑡
𝑝1 , Φ2(𝑡): = 𝑡

𝑝2 , Φ3(𝑡): = 𝑡
𝑝3  for every 𝑡 ≥ 0. Since 1   𝑝1, 𝑝2,𝑝3   ∞, we have Φ1, Φ2, 

and Φ3 are Young functions. Observe that, using the definition of Φ−1, we also obtain  

 

 Φ1
−1(𝑡) = 𝑡

1

𝑝1 , Φ2
−1(𝑡) = 𝑡

1

𝑝2 , a𝑛𝑑  Φ3
−1(𝑡) = 𝑡

1

𝑝3   
 

Moreover, Φ1
−1(𝑡)Φ2

−1(𝑡) = 𝑡
1

𝑝1𝑡
1

𝑝2 = 𝑡
1

𝑝3 = Φ3
−1(𝑡). By using Theorem 3.3, we have (1) and (2) are 

equivalent.    

4. Conclusions 

We have shown the sufficient and necessary conditions for generalized Hölder’s inequality in 𝐿Φ
𝑢 (ℝ𝑛) 

space and in  𝑤𝐿Φ
𝑢 (ℝ𝑛) space. From Theorems 3.1 and 3.3, we see that both Hölder’s inequality in 

weighted Orlicz spaces and in weighted weak Orlicz spaces are equivalent to the same condition, namely 

𝑢3(𝑥)  𝐶𝑢1(𝑥)𝑢2(𝑥).  

Conflict of Interest 

The authors declare no conflict of interest. 

Author Contributions 

Al A. Masta and Ifronika conceived the discussed idea and proved the theorem. S. Fatimah wrote the 

paper and supervised the results of the work. All of authors had approved the final results and contributed 

to the final manuscript. 

Acknowledgment 

The first and third authors is supported by Hibah Penguatan Kompetensi and Afirmasi dan Pembinaan 

Dosen UPI 2019. The Second Author is supported by P3MI ITB 2019. 

References 

[1] Orlicz, W. (1992). Linear Functional Analysis (Series in Real Analysis Volume 4). World Scientific: 

Singapore. 

[2] Osançliol, A. (2014). Inclusion between weighted Orlicz spaces. J. Inequal. Appl., 390-397. 

[3] Masta, A. A., Gunawan, H., & Setya-Budhi, W. (2016). An inclusion properties of Orlicz and weak Orlicz 

spaces. J. Math. Fund. Sci., 48(3), 193-203. 

[4] Masta, A. A., Gunawan, H., & Setya-Budhi, W. (2017). On inclusion properties of two versions of Orlicz – 

Morrey spaces. Mediterr. J. Math., 14(6), 228-239. 

[5] Masta, A.. A., Gunawan, H., & Setya-Budhi, W. (2015). An inclusion property of Orlicz spaces. 

Proceedings of the 5th Annual Basic Science International Conference 2015 (vol. 5, pp. 274-276). 

[6] Taqiyuddin, M., & Masta, A. A. (2018). Inclusion properties of Orlicz spaces and weak Orlicz spaces 

generated by concave function. IOP Conf. Ser.: Mater. Sci. Eng., 288, 012103. 

[7] Masta, A. A., Gunawan, H., & Setya-Budhi, W. (2017). An inclusion property of Orlicz-Morrey spaces. J. 

Phys.: Conf. Ser., 893, 012015. 

[8] O’Neil, R. (1965). Fractional integration in Orlicz spaces. I Trans. Amer. Math. Soc., 115, 300–328. 

[9] Masta, A. A., Ifronika, & Taqiyuddin, M. (2019). A note on inclusion properties of weighted Orlicz spaces. 

International Journal of Applied Physics and Mathematics

31 Volume 10, Number 1, January 2020



  

J. Indo. Math. Soc. 

[10] Ifronika, Idris, M., Masta, A. A., & Gunawan, H. (2018). Generalized holder’s Inequality in morrey spaces. 

Mat. Vesnik, 70(4), 326-337. 

[11] Ifronika, Masta, A. A., Nur, M., & Gunawan, H. (2019) Generalized Holder’s Inequality in Orlicz spaces. 

Proceedings of Jangjeon Math. Soc. (pp. 25-34).  

[12] Masta, A. A, Ifronika, & Taqiyuddin, M. (2017). Inclusion properties of weighted weak Orlicz spaces. 

Research Report. 

 

Copyright ©  2020 by the authors. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, 

provided the original work is properly cited (CC BY 4.0). 

 

Al Azhary Masta is an assistant professor in the Department of Mathematics Educations, 

Universitas Pendidikan Indonesia, Indonesia. He was born in Sungai Liat, Indonesia. He got 

his first degree at Universitas Pendidikan Indonesia, Indonesia in 2011, the master degree 

at Institut Teknologi Bandung in 2013, and Ph.D degree from the Department of 

Mathematics, Institut Teknologi Bandung, Indonesia in 2018. His area of interests are 

mathematical analysis and functional analysis.  

 

Ifronika is an assistant professor in the Department of Mathematics, Institut Teknologi 

Bandung. She was born in Lirik, Indonesia. She got her first degree at Universitas Riau, 

Indonesia in 2013 and the master degree at Institut Teknologi Bandung, Indonesia in 2015, 

both in mathematics. Her area of interests are mathematical analysis and functional 

analysis.  

 

 

Siti Fatimah is an associate professor in the Department of Mathematics educations, 

Universitas Pendidikan Indonesia, Indonesia. She was born in Yogyakarta, Indonesia. She 

obtained her first degree from the Department of Mathematics Education, Universitas 

Pendidikan Indonesia, Indonesia in 1992 and the Ph.D degree at Utrecht University, 

Netherlands in 2002. Her major research interests are in the area of differential equations 

and mathematics educations. 

 

 

 

 

International Journal of Applied Physics and Mathematics

32 Volume 10, Number 1, January 2020

https://creativecommons.org/licenses/by/4.0/
https://www/itb.ac.id

