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Abstract: In the present paper, first we introduce the notion of subsequential continuous mappings in the 

framework of fuzzy metric space and show that this concept is more general than continuous mappings as 

well as reciprocal continuous mappings. Also, we cited an example in support of this. Secondly, we 

introduce the concept of occasionally weakly compatible mappings which is more general than weakly 

compatible mappings in fixed point theory. At the end, we prove an interesting common fixed point theorem 

in fuzzy metric space for four self mappings by employing the notion of subsequential continuity, 

occasionally weakly compatible mappings and semi-compatible mappings. 
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1. Introduction 

After Zadeh [1] introduced the concept of fuzzy sets in 1965, many authors have extensively developed 

the theory of fuzzy sets and its applications. Specially to mention, fuzzy metric spaces were introduced by 

Deng [2], Erceg [3], Kaleva and Seikkala [4], Kramosil and Michalek [5]. In this paper we use the concept of 

fuzzy metric space introduced by Kramosil and Michalek [5] and modified by George and Veeramani [6] to 

obtain Hausdorff topology for this kind of fuzzy metric space which has very important applications in 

quantum particle physics, particularly in connection with both string and e theory (see, [7]–[9]). Fuzzy set 

theory also has applications in applied sciences such as neural network theory, stability theory, 

mathematical programming, modeling theory, engineering sciences, medical sciences (medical genetics, 

nervous system), image processing, control theory, communication etc. Consequently in due course of time 

some metric fixed point results were generalized to fuzzy metric spaces by various authors viz Grabiec [10], 

Cho [11], [12], Subrahmanyam [13] and Vasuki [14]. In 2002, Aamri and El-Moutawakil [15] defined the 
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notion of (E.A.) property for self mappings which contained the class of non-compatible mappings in metric 

spaces. It was pointed out that (E.A.) property allows replacing the completeness requirement of the space 

with a more natural condition of closedness of the range as well as relaxes the compleness of the whole 

space, continuity of one or more mappings and containment of the range of one mapping into the range of 
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other which is utilized to construct the sequence of joint iterates. Many authors have proved common fixed 

point theorems in fuzzy metric spaces for different contractive conditions. Recently, Grabiec [10] has proved 

fixed point results for Fuzzy metric space. In the sequel, Singh and Chauhan [16] introduced the concept of 

compatible mappings in Fuzzy metric space and proved the common fixed point theorem. Jungck et al. [17] 

introduced the concept of compatible maps of type (A) in metric space and proved fixed point theorems.  

Cho [11], [18] introduced the concept of compatible maps of type () and compatible maps of type () in 

fuzzy metric space. In 2011, using the concept of compatible maps of type (A) and type (), Singh et al. [19], 

[20] proved fixed point theorems in a fuzzy metric space.  Recently, Sintunavarat and Kumam [21] defined 

the notion of (CLRg) property in fuzzy metric spaces and improved the results of Mihet [22] without any 

requirement of the closedness of the subspace.  Recently in 2012, Jain et al. [23], [24] and Sharma et al. [25] 

proved various fixed point theorems using the concepts of semi-compatible mappings, property (E.A.) and 

absorbing mappings.  

Recently Singh et al. [26] introduced the notion of semi-compatible maps in fuzzy metric space and 

compared this notion with the notion of compatible map, compatible map of type (), compatible map of 

type () and obtain some fixed point theorems in complete fuzzy metric space in the sense of Grabiec [10]. 

In the present paper, we prove fixed point theorems in complete fuzzy metric space by replacing 

continuity condition with a weaker condition called subsequential continuity.  

2. Preliminaries 

In this section we recall some definitions and known results in fuzzy metric space. 

Definition 2.1. In ref. [27], a binary operation *: [0, 1] × [0, 1]  [0, 1] is called a t-norm if ([0, 1], *) is an 

abelian topological monoid with unit 1 such that a * b  c × d whenever a  c and b  d for a, b, c, d  [0, 1]. 

Examples of t-norms are a * b = ab and a * b = min{a, b}. 

Definition 2.2. In ref. [27], the 3-tuple (X, M, *) is said to be a Fuzzy metric space if X is an arbitrary set, * 

is a continuous t-norm and M is a Fuzzy set in X2 × [0, ) satisfying the following conditions :  

for all x, y, z  X and s, t > 0. 

(FM-1) M(x, y, 0) = 0, 

(FM-2) M(x, y, t) =1 for all t > 0  if and only if   x = y, 

(FM-3) M (x, y, t) = M (y, x, t), 

(FM-4) M(x, y, t) * M(y, z, s)  M(x, z, t + s), 

(FM-5) M(x, y, .) : [0, )  [0, 1] is left continuous,   

(FM-6) t
lim

 
M(x, y, t) =1. 

Note that M(x, y, t) can be considered as the degree of nearness between x and y with respect to t. We 

identify x = y with M(x, y, t) = 1 for all t > 0. The following example shows that every metric space induces a 

Fuzzy metric space. 

Example 2.1. In ref. [6], let (X, d) be a metric space. Define a * b = min {a, b} and ( )
( )

t
M x, y,t

t d x, y



 

for all x, y  X and all t > 0.  Then (X, M, *) is a Fuzzy metric space. It is called the Fuzzy metric space 

induced by d. 

Definition 2.3. In ref. [10], a sequence {xn} in a Fuzzy metric space (X, M, *) is said to be a Cauchy 

sequence. If and only if for each  > 0, t > 0, there exists n0  N such that M(xn, xm, t) > 1 -  for all  n, m  n0.   

The sequence {x
n
} is said to converge to a point x in X if and only if for each  > 0, t > 0 there exists n0  N 

such that M(xn , x, t) > 1 -  for all n  n0 .  
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A Fuzzy metric space (X, M, *) is said to be complete if every Cauchy sequence in it converges to a point in 

it. 

Definition 2.4. In ref. [16], self mappings A and S of a Fuzzy metric space (X, M, *) are said to be 

compatible. If and only if M(ASx
n
, SAx

n
, t)  1 for all t > 0, whenever {x

n
} is a sequence in X such that Sx

n
, Ax

n
 

 p for some p in X as n . 

Definition 2.5. In ref. [27], two self maps A and B of a fuzzy metric space (X, M, *) are said to be 

weak compatible if they commute at their coincidence points, i.e. Ax = Bx implies ABx = BAx.  

Definition 2.6. Self maps A and S of a Fuzzy metric space (X, M, *) are said to be occasionally weakly 

compatible (owc) if and only if there is a point x in X which is a coincidence point of A and S at which A 

and S commute. 

Definition 2.7. In ref. [26], suppose A and S be two maps from a Fuzzy metric space (X, M, *) into itself. 

Then they are said to be semi-compatible if 
n
lim ASxn=Sx, whenever {xn} is a sequence such that 

n
lim

 
Axn 

= 
n
lim

 
Sxn = x  X.   

Definition 2.8. Suppose A and S be two maps from a Fuzzy metric space (X, M, *) into itself. Then they 

are said to be subsequential continuous if and only if there exists a sequence {xn} in X such that 
n
lim

 
Axn = 

n
lim

 
Sxn = x  X and satisfy 

n
lim ASxn = Az   and   

n
lim SAxn = Sz. 

If A and S are both continuous then they are obviously subsequential continuous  but the converse need 

not be true as seen in the following example. 

Example 2.2. Let X = R, endowed with metric d and  ( , )
( , )




d

t
M x y

t d x y
 for all x, y X, t > 0. Define 

the self maps A, S as  

 

2, 3

3, 3


 



x
Ax

x
 

 

and 

 

2 4, 3
.

3, 3

 
 



x x
Sx

x
 

 

Consider a sequence xn = 
1

3
n

  then   

 

 
   

 
n

1
Ax A 3 3

n  
 

and 

 
   

 
n

1
SAx S 3 3

n
 S(3) =  2 as n . 

Thus A and S are not reciprocally continuous and also not continuous but, if we consider a sequence  



  

1
{ } 3

 
  
 

nx
n

, 

then  

 

Axn = 2, 
1

2 3 4 2,
 

    
 

nSx
n  

 

2
2 2 (2),
 

    
 

nASx A A
n

 SAxn = S(2) = 0 = S(2) as n→∞. 

 
Therefore A and S are sub-sequentially continuous. 

Lemma 2.2. Ref. [27] Let (X, M, *) be a fuzzy metric space. If there exists k  (0, 1) such that for all x, y  X 

M(x, y, kt)   M(x, y, t)  t > 0, then x = y. 

Lemma 2.3. [15] Let {x
n
} be a sequence in a fuzzy metric space (X, M, *). If there exists a number k  (0, 1) 

such that 

 

M(x
n+2

, x
n+1

, kt)  M(x
n+1

, x
n
, t)  t > 0 and n  N. 

 
Then {x

n
} is a Cauchy sequence in X. 

Singh and Jain [26] proved the following result: 

Theorem 2.1. Let A, B, S and T be self-maps on a complete fuzzy metric space (X, M, ∗) satisfying 

 

A(X) ⊂ T(X), B(X) ⊂ S(X)                              (1) 

 
one of A and B is continuous,                           (2) 

 

(A, S) is semi-compatible and (B, T) is weak-compatible,          (3) 

 

for all x, y ∈ X and t > 0 

 

M(Ax, By, t) ≥ r(M(Sx, Ty, t))                         (4) 

 
where r: [0, 1] → [0, 1] is a continuous function such that r(t) > t for each 0 < t < 1. Then A, B, S and T have 

a unique common fixed point. 

3. Main Results 

In the following theorem we replace the continuity condition by weaker notion of subsequential 

continuity to get more general form of result of [26]. 

Theorem 3.1. Let A, B, S and T be self maps on a complete fuzzy metric space (X, M, *) where * is a 

continuous t-norm defined by a * b = min{a, b} satisfying : 

International Journal of Applied Physics and Mathematics

327 Volume 4, Number 5, September 2014

Lemma 2.1. In ref. [10], let (X, M, *) be a fuzzy metric space. Then for all x, y  X, M(x, y) is a 

non-decreasing function. 
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A(X)  T(X), B(X) S(X), 

 (B, T) is occasionally weak compatible, 

 

for all x, y X and t > 0, 

 

M(Ax, By, t) (M(Sx, Ty, t)), 

 

where : [0, 1]  [0, 1] is a continuous function such that (1) = 1, (0) = 0 and (a) > a for each 0 < a < 1. 

If (A, S) is semi-compatible pair of sub-sequential continuous maps then A, B, S and T have a unique 

common fixed point. 

Proof. Let x0  X be any arbitrary point. Then for which there exists x1, x2  X such that Ax0 = Tx1 and Bx1 

= Sx2. Thus we can construct a sequences {yn} and {xn} in X such that y2n+1 = Ax2n = Tx2n+1, y2n+2 = Bx2n+1 = 

Sx2n+2 for n = 0, 1, 2, 3, . . . . . 

By contractive condition, we get 

 

M(y2n+1, y2n+2, t) = M(Ax2n, Bx2n+1, t ) 

(M(Sx2n, Tx2n+1, t)) 

= (M(y2n, y2n+1, t )) 

> M(y2n, y2n+1, t). 

 

Similarly, we get 

 

M(y2n+2, y2n+3, t ) > M(y2n+1, y2n+2, t). 

 

In general, 

 

M(yn+1, yn, t) (M(yn, yn-1, t)) > M(yn, yn-1, t).  

 

Therefore {M(yn+1, yn, t )} is an increasing sequence of positive real numbers in [0, 1] and tends to limit l  

1. We claim that l = 1.  

If l < 1 then M(yn+1, yn, t )  M(yn, yn+1, t).  

On letting n we get 

n
lim  M(yn+1, yn, t ) (

n
lim M(yn, yn-1, t )) 

i.e. l (l) = l, a contradiction. Now for any positive integer p, 

 

M(yn, yn+p, t ) M(yn, yn+1, t/p) * M(yn+1, yn+2, t/p)  * … * 

 

M(yn+p-1, yn+p, t/p). 

 

 

n
lim M(yn, yn+p, t) 1 * 1 * 1 * … * 1 = 1. 

Thus, 

Letting n we get



  

n
lim


 M(yn, yn+p, t ) = 1. 

 

Thus {yn} is a Cauchy sequence in X. Since X is complete, {yn} converges to a point z in X. Hence the 

subsequences {Ax2n}, {Sx2n}, {Tx2n+1} and {Bx2n+1} also converge to z. 

Now since A and S are subsequential continuous and semi-compatible then we have  

 

n
lim  ASx2n = Az, n

lim SAx2n = Sz and n
lim M(ASx2n,Sz, t ) = 1. 

 

Therefore we get Az = Sz.  

Now we will show Az = z. For this suppose Az z. Then by contractive condition, we get 

 

M(Az, Bx2n+1, t)  (M(Sz, Tx2n+1, t)). 

 

Letting n , we get 

 

M(Az, z, t) (M(Az, z, t)) > M(Az, z, t), 

 

a contradiction, thus  z = Az = Sz.   

Since A(X) T(X), there exists u X such that z = Az = Tu. 

Putting x = x2n and y = u in (3.3) we get, 

 

M(Ax2n, Bu, t)  (M(Sx2n, Tu, t)). 

 

Letting n , we get 

 

M(z, Bu, t) (M(z, z, t)) = (1) = 1, 

 

i.e. z = Bu = Tu and the occasionally weak-compatibility of (B, T) gives TBu = BTu, i.e.  

 

Tz = Bz. 

 

Again by contractive condition and assuming Az Bz, we get Az = Bz = z.  

Hence finally, we get 

z = Az = Bz = Sz = Tz, i.e. z is a common fixed point of A, B, S and T. The uniqueness follows from 

contractive condition. This completes the proof. 

4. Conclusion 

Our result is a generalization of the result of Singh and Jain [26] in the sense that the condition of weak 

compatibility has been replaced by occasionally weak compatibility. Moreover, we replace the continuity 

condition with a weaker condition called subsequential continuity, which is more general than continuity 

condition.   
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