
  

 

Abstract—A theoretical model of electron tunneling current 

in a p-n junction made from strained armchair 

graphenenanoribbon (AGNR) was developed. The effect of 

strain to the energy dispersion relation of AGNR was 

formulated under the tight binding method. The energy 

bandgap of AGNR was then analytically determined. 

Furthermore, the electron transmittance was calculated by 

utilizing the Airy wavefunction-approach. Finally, the 

calculated transmittance was used to obtain the tunneling 

current by employing the Landauer formula. The effects of 

strain to the energy band gap, AGNR width, and tunneling 

current were studied thoroughly.  

 

Index Terms—Graphene, AGNR, tight binding, strain, band 

gap, p-n junction, Airy wave function, tunneling current. 

 

I. INTRODUCTION 

Graphene has recently attracted considerable as a potential 

candidate material for nanoelectronics due to its electronics 

properties. Basically, graphene is a single-atom-thick 

material composed of carbon atoms forming a hexagonal 

lattice. When the width is smaller than the length, graphene 

becomes graphenenanoribbons (GNRs) which can be 

metallic or semiconducting depending on their structures 

[1]-[4]. Armchair graphenenanoribbon (AGNR) is one type 

of GNRs which has semiconductor properties [5]. Because of 

the properties, AGNRs can be applied for various electronic 

devices including p-n junction diodes [6], [7]. 

One of the important electronic properties of GNRs is 

energy bandgap. The bandgap of GNRs can be changed by 

manipulating their geometry and width. Beside those, the 

band gap of GNRs can be altered by giving a strain to the 

lattice of GNR. The strained lattice of GNR will affect the 

form and width of GNR to result in the change in the bandgap. 

Tight binding method is one of the methods in obtaining the 

bandgap of GNRs that depends on the lattice structure and 

atomic position [8], [9] 

In this paper, we report the studies on the strained AGNR 

by using the tight binding method and its implication to the 

tunneling current through the strained potential barrier of 

AGNR in a p-n junction diode. The tunneling current was 

derived by employing the Airy wavefunction-approach and 

calculated by using the Landauer formula. The effects of 

strain to the energy bandgap, AGNR width, and tunneling 

current will be discussed in detail. 

 

  

Fig. 1 (a) and Fig. 1 (b) illustrate the lattice crystal and 

atomic position of GNR without and with applying a strain to 

the GNR, respectively. Under the tight binding model, the 

Hamiltonian and the energy dispersion relation is described 

by [8] 
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where E0 is the initial energy of electron and t is the 

overlapping electron parameter which has a magnitude of 

2.76 eV [8]. The geometry factor of GNR, f(k), is defined by 
 

 
Fig. 1. The lattice structure of GNR with atoms A and B before (a) and after 

applying a strain (b). 
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where k is the wave number and m is the atom position. When 

the strain was applied to the GNR, the positions of atoms 

become as follows [10]: 
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where a is a distance between two carbon atoms, x is the 

strain on x-axis and y is the strain on y-axis. The relation 

between x and y  is written by [11] 
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where v is the Poisson ratio with the magnitude of 0.186 [10]. 

Furthermore, Eqs. (4), (5), and (6) are substituted into Eq. (3) 

and then substituted into Eq.(2), thus, we obtain 
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Here, the term of (3at/2) is equal to ℏvf, where vf is the 

Fermi velocity [8], [9]. 

The next step is how to find the electron characteristics in 

the places where the conduction and valence bands are in the 

low states. These locations are known as points K and K’ 

with slight shift p or mathematically can be written by 

k K p  and 'k K p  , where 𝐾 =
4𝜋

3 3𝑎
𝑒𝑥 and 𝐾 ′ =

−
4𝜋

3 3𝑎
𝑒𝑥 [1], the geometry factor becomes 
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where px and py are wave number in x-axis and y-axis 

respectively. 

In order to obtain the energy dispersion relation at the point 

K and K’, it is assumed that the initial energy electron is zero, 

and the energy becomes  
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The symbol of ± indicates the conduction band (+) and 

valence band (-). The magnitude of px in AGNRs is 

determined by the boundary condition [10] which is given by 
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where Wac is the width of AGNR. 
 

 

 

 
Fig. 2. (a) An energy band diagram of a p-n junction diode in thermal 

equilibrium, (b) when the reserve-bias voltage is applied to a p-n junction, 

and (c) a model of potential barrier. 

 

Fig. 2 (a) illustrates the energy band diagram of a p-n 

junction based on AGNRs in the thermal equilibrium. When 

the reverse bias voltage is applied to the p-n junction, the 

valence band of the p region is higher than the conduction 

band of the n region (Fig. 1 (b) ). Then, electrons in the 

valence band of p region tunnel through the depletion region 

toward the conduction band of n region, which is known as 

Zener tunneling as given in Fig. 2 (c) [6], [7]. 
 

 
Fig. 3. Potential barrier when a small bias voltage is applied. 

 

The electron transmittance was derived by using the Airy 

wavefunction-approach following the method in Ref. [7] but 

we solved it numerically. In the Fig. 3, the wave function in 

each region is defined by 
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where A, B, C, D, E, F, and G are constant, Ai and Bi are Airy 

function. In Eq.(13) the wave number in the region I is 

written as 
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where m1 is electron effective mass in p-junction, E is 

electron energy and ħ is reduced Planck constant. In the 

region II and III the Airy function is expressed by 
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where m2 is electron effective mass in n-junction, EG is the 

band gap and F is the applied electric field. And then for the 

region IV, the wave number is illustrated by 
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Applying boundary conditions between two regions, the 

wave function becomes  
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From the equation (21), (22), and (23), we obtain the 

transmittance 
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The obtained transmittance was then employed to calculate 

the tunneling current by using Eq. (25). 
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where      
v b b

1 / 1 /f E exp E eV k T   and 

    
c b

 1 / 1 /f E exp E k T  are the Fermi-Dirac 

distributions in the valence and the conduction bands, 

respectively, kb is Boltzmann constant, gvis GNR 

degeneration which has a magnitude of 1, and  ħ is the Planck 

constant. 

 

III. CALCULATED RESULTS AND DISCUSSIONS 

Fig. 4 (a) shows the strain effect to the energy dispersion 

relationship and the energy bandgap, respectively. The 

AGNR width was taken as 10 nm. It is shown that the energy 

dispersion relationship between the conduction and valence 

band edges is changed when the strain was applied as seen in 

Fig. 4 (a). It is also shown that the energy bandgap gets wider 

with the strain given to the AGNR as depicted in Fig. 4 (b). It 

could be explained as follows: when the strain force was 

applied to the AGNR, the atoms of honey comb lattice will 

repel each other so that the electrons require a greater energy 

to move to another position. On the other hand, it was known 

that the AGNRs band gap is strongly influenced by the width 

[8], [9] so that if the width is changed by the strain, the band 

gap will also change. These results show that the strain gives 

an effect to the energy dispersion and band gap of AGNR. 
 

 
Fig. 4. (a) The effect of strain to the energy dispersion relationship and (b) 

The change of the energy band gap for various strains. 

 

 
a) 

 
b) 

Fig. 5. (a) I-V characteristics of an AGNR-based p-n junction for various 

strains and (b)Tunneling current density as a function of AGNR width for 

various strains. 
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Fig. 5 (a) depicts the tunneling current versus bias voltage 

for various strains. The AGNR width, electric field, and 

temperature were 10 nm, 1 MV/cm, and 300 K, respectively. 

It is shown that the tunneling current increases as the strain 

decreases and it reaches the highest when without giving a 

strain to the AGNR. It happens because the band gap 

becomes narrow as the strain decreases as given in Fig. 4 (b). 

The potential barrier was then lowered so that the electrons 

become easier to tunnel through the barrier resulting in the 

increase in the tunneling current. The strain effect to the 

tunneling current and width of AGNR is shown in Fig. 5 (b). 

The parameters V = 0.1 V, F = 1 MV/cm, and T = 300 K were 

taken. It is seen that the tunneling current increases with 

decreasing the strain effect and width. It is also observed that 

the strain does not affect to the tunneling current for the 

AGNR width thicker than 20 nm. 

 

IV. CONCLUSION 

We have studied the strain effect to an AGNR-based p-n 

junction diode by using the tight binding method. It has been 

shown that the strain effect cannot be neglected in 

determining the dispersion energy relation and band gap. It 

has been also observed that the tunneling current increases 

with decreasing the strain effect. However, the strain does not 

affect to the tunneling current for thicker ribbon width of 

AGNR. 
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