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Abstract—Image converters and intensifiers give access to a 

larger spectral domain of electromagnetic radiation than the 

human eye. They amplify low light images and increase the eye 

sensitivity. The visual acuity, and therefore, the range of vision 

of any image detector, is limited by optical properties of the 

detector, such as a modulation-transfer-function (MTF) and the 

value of noise, produced by the device. This paper presents the 

methods and computational algorithms for calculating MTF 

and the noise factor of image converters and intensifiers which 

incorporate an inverting electron optical system and a 

microchannel plate as an amplifier. The approach, presented 

here, enables one to improve the visual acuity of the device. 

 

Index Terms—Image device, modulation-transfer-function, 

noise factor, visual acuity. 

 

I. INTRODUCTION 

Although the human eye is a good and adaptable photon 

detector, it has some physical limitations. The limitations of 

visual perception include limitations of the eye as radiation 

detector: wavelength and sensitivity limitations, and 

limitations of the eye as an image detector what includes 

resolving power and contrast perceptibility [1]. 

These limitations can be improved by using image 

converters and intensifiers where the original image, created 

from wave lengths outside the visible region, is converted 

into the visible image. Image converters and intensifiers give 

access to a larger spectral domain of electromagnetic 

radiation than the human eye, amplify low light images and 

increase the eye sensitivity. 

Distinction of small details of an object, and therefore, the 

range of vision of any image detector, are limited by optical 

properties of the detector. Such properties are usually 

characterized by the modulation-transfer-function (MTF) 

and by the value of noise, produced by the device. The MTF 

describes the resolution over the image area of an image 

device [2]-[4], and gives the dependence of the output 

contrast on the spatial frequency. The noise factor F, which is 

a measure of the loss of available information, can be written 

as [5]: 
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respectively. 

The noise factor and MTF of the device affect a visual 

acuity which defines the size of the smallest visible detail as a 

function of brightness for different values of contrast. The 

angular resolution (the visual acuity) for different levels of 

illumination can be given by the formula [1]: 
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where ,/, 2mkdL  is the illumination; min,,  is the angle of 

vision of an object detail (visual acuity); C is a contrast of an 

image; 
min)/( NS  is the minimal ratio of the signal to noise, 

which required to detect details of an object. 
 

 
Fig. 1. Dependence of the visual acuity ( min ) on the illumination 

( 2/ mkdL ). 

 

Fig. 1 shows the typical curve of the visual acuity of an 

image detector [1]. For the high illumination, MTF reduces 

the contrast to the level, lower than the contrast of the 

observable object, and deteriorates the visual acuity. The 

image device is the source of the extra noise, and the ratio 

outNS )/(  decreases as FNSNS inout )/()/(  . Respectively, 

the ratio 
inNS )/( , needed to detect an object, increases in 

F  times. This leads to deterioration of the visual acuity 

especially in case of low illumination. Therefore, 

improvement of visual acuity of image detectors relates to 

improvement of the detector's MTF, and to reduction of its 

noise factor. It is especially important for the night vision 

devices. 

This paper presents methods and computational algorithms 

for calculating MTF and the noise factor of image converters 

and intensifiers which incorporate an inverting electron 

optical system (EOS) and a microchannel plate (MCP) as an 

amplifier. 

In such case, the process of image conversion and 

intensification is: (a) electromagnetic radiation from a certain 

part of the spectrum is absorbed by a photocathode; (b) an 

optical image is converted into an electron image by means of 
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photoemission; (c) the photoelectrons are accelerated and 

focused by EOS, and intensified by the MCP; (d) the 

intensified electron image is converted into a visible image 

by a luminescent process on a screen. Fig. 2 shows a cross 

section of such device. 
 

 
Fig. 2. Electron – optical system. 

 

The MCP is a thin plate made up of a large number of 

single parallel channels, each of which acts as an electron 

multiplier [2], [4], [6]. For each primary electron entering a 

channel, a large pulse of electrons will exit as a result of 

multiple collisions of both primary and secondary electrons 

with the inner secondary-emission layer. It is a compact, 

efficient amplifier of two-dimensional electron-images and 

provides several advantages such as very high gain, good 

resolution and small size. Poor noise characteristics are the 

main drawback of systems with channel amplification. 

A computational method for simulation of stochastic 

processes of an electron multiplication in microchannel 

electron amplifiers, developed by the author [4], is used for 

investigation of the noise factor. The method is based on 3D 

Monte Carlo (MC) simulations and theorems about serial and 

parallel amplification stages proposed by the author. The 

method is used to show how the input ratio of the signal to the 

noise is transforming to the output one, and how different 

multiplication stages contribute to the noise factor of the 

system. 

The analysis of MTF of the image device includes 

calculations of the MTF of the EOS and MTF of the channel 

multiplier. Such calculations are based on numerical 

calculation of the field distribution inside the device and the 

channel, trajectories of the photo-and secondary electrons 

[7]. 

 

II. COMPUTATIONAL ANALYSIS OF MTF 

A. Motion of Electrons in the Potential Field 

Calculation of the electrostatic field in the device with 

rotational symmetry (Fig. 2) is a matter of finding a solution 

to the Laplace's partial differential equation expressed in 

cylindrical coordinates as follows: 
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where U(r,z) is the potential at any point (z,r), z is the 

coordinate along the axis of symmetry and r is the off-axis 

radius. 

It is the classical mixed problem for the equation of 

Laplace in some region with Dirichlet and Neumann 

boundary conditions. The finite difference method is used to 

obtain the field distribution [7]. 

Fig. 3 shows the computational results of the potential 

distribution (given by the equipotential lines) in the 

cross-section of the EOS. 
 

 
Fig. 3. Equipotential lines and central meridional trajectories of electron 

beams. 

 

An electrostatic lens, formed by MCP-screen field 

penetration into channels, at the output of a channel has a 

significant influence on the electron trajectories and the 

spatial resolution [7]. The potential distribution in the field of 

the lens depends on the field intensity in the MCP-screen gap, 

the channel diameter, and the sputtering depth of the contact 

layer at the channel output. Fig. 4 shows the computational 

results of the electrostatic lens at the exit of a single channel. 
 

 
Fig. 4. Electrostatic field at the exit of the channel. 

 

In the cylindrical coordinate system, equations of motion 

of electrons can be written as: 
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where t is time, 
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  are the radial and axial 

components of the strength of the electrostatic field 

respectively, 
0r  is the initial electron coordinate, 

0V  is the 

initial azimuthal component of the electron velocity, e and m 

are electron charge and mass respectively. 

The system of (4) is solved by the Runge-Kutta method for 

the electron motion inside the EOS of the device, and in the 

area of the inhomogeneous electrostatic field of the channel 

multiplier. The strengths of the electrostatic field at the exit of 

a single channel and inside the EOS are calculated using 

International Journal of Applied Physics and Mathematics, Vol. 4, No. 3, May 2014

206



 

 

 

different interpolating polynomials [7]. 

Fig. 3 shows central meridional trajectories of the electron 

beams emitted from the photocathode. 

B. Modulation Transfer Function of the Image System 

The MTF of the overall system, at a given spatial 

frequency, is the product of the MTFs of the elements [2], [3], 

[7]. Consequently, to evaluate the total MTF of the imaging 

system with a micro-channel plate, the MTFs of EOS and 

MCP-screen system should be determined. 

The MTF in the image plane for the point on the axis of the 

symmetry of EOS is calculated using the well known 

formula: 
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where 
0J  is Bessel's function, ν is a spatial frequency, and 

)(rA  is an electron density distribution in the cross section 

of the axial electron beam on the image surface. 

To find the electron density function )(rA  let assume that 

( )dN ε,θ ,j  electrons are emitted from the axial point of the 

photocathode in a time unit with initial energies in the 

interval ],[  d , initial angles [ , ]d    and ],[  d , 

where   and   are meridional and asimuthal angles 

respectively. 

The number of electrons ),,( dN depends on the total 

number of the electrons 
0N  emitted from one point of the 

photocathode and the probability of the emission ),,( P . 

Therefore, 
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, 

where ),,( p  is the probability density, and 

dd sin . 

Since  ,  and   are independent random variables then 

)()()(),,(  pppp  , where )(),(  pp , and )(p  

are probability density functions of the electron's energy, 

meridional and azimuthal angles respectively. 

Assuming that  2)( p  is the uniform distribution, the 

expression for the number of the emitted electrons 

),,( dN  can be written as: 
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The photoelectrons with the initial energy   would have a 

distance r  from the axis of the symmetry at the image 

surface if their initial angle   satisfies a condition 

0),(  fr . Using the  -function the expression for the 

electron density at the distance r  from the axis of the 

symmetry can be written as: 
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Integrating (6) with respect to energy   the electron 

density function )(rA  can be expressed as 
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Substituting (7) to (5) the expression for the modulation 

transfer functions can be written as: 
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Using the property of the  -function that 
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modulation transfer functions can be obtained: 
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where )(),(  pp  are energy and angular distributions of 

the electrons respectively (here the angular distribution is 

described by Lambert's law,  cos)( p , and the electron 

energy is chosen from the parabolic function 

)1(
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 p ; 0 is the maximal possible initial 

energy of the photoelectron; ),( fr  is the distribution 

of the electron radial coordinates at the image surface which 

can be written as: 
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where 
0E  is the strength of the electrostatic field near the 

photocathode; )(1 zu  and )(2 zu  are two particular solutions 

of the equation of the motion of paraxial electrons. )(1 zu  and 

)(2 zu are calculated as described above. 

Formula (5) is used in computations of the MTF of the 

MCP-screen system as well. The electron density distribution 

)(rA  in the image of an individual channel is determined 

from the arrival coordinates of the electrons at the screen. 

The multiplication process of the electron flux in the channel 

was modeled using MC simulations as it is described below. 

Taking into account the discreet nature of the 

determination of )(rA , and using the relationship 

  )()(1 xJxdxxJx n

n

n

n
, the calculating formula for 

MTF of the channel multiplier can be written: 
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Fig. 5 shows calculated results of the dependence of the 

EOS's MTF on the potential 
aU , applied between the cathode 

and the anode. 
 

 
Fig. 5. MTF’s of the EOS for the different voltage between the cathode and 

anode. 

 

Fig. 6 displays the MTFs of the MCP-screen system, 

where the solid curves represent calculations and dashed 

curve represents experimental results. (The experimental data 

here and later was provided by A.M.Tyutikov, State Optic 

Institute, St Petersburg.) The distance between MCP and the 

screen D=1mm for the curves (2) and (3), and D=0.4 mm for 

the curve (1). 
 

 
Fig. 6. MTF of the MCP-screen (the solid curves represent calculations and 

dashed curve represents experiment). 

 

The final MTF of the image system is the product of the 

MTFs of the EOS (Fig. 5}) and MCP (Fig. 6). Fig. 7 shows 

the total MTF of such imaging system where the solid curve 

represents calculations (d=10 μm) and dashed curve 

represents experiment (d=12 μm) for the MCP-screen gap 

  
 

 
Fig. 7. Final MTF of the imaging system (the solid curve represents 

calculations and dashed curve represents experiment). 

 

III. NOISE FACTOR 

A. Simulation of Stochastic Processes 

The following real physical picture was implemented in 

the model. The electrons of a primary monochromatic 

parallel beam are incident on the input plane of a 

microchannel amplifier. Electrons, entering the channel, hit 

the channel walls at different angles and different incidence 

coordinates (Fig. 8). 
 

 
Fig. 8. Electron multiplication in the channel. 

 

After the first collision the primary electrons produce 

secondary electrons with different emission energy and 

directions. The secondary emission yield (SEY) of the first 

collision and the length along which subsequent 

amplification occurs in the channel are different. The 

secondary electrons are multiplied until they leave the 

channel. When all the electrons have emerged from the 

channel, the yield of the individual pulse is known. The gain 

of individual pulses is fluctuated considerably, and the pulse 

amplitude distribution at the output of the channel has a 

negative exponential form [3]-[5]. The Poisson distribution at 

the beginning of the channel changes to the negative 

exponential function. The length of a channel, where the 

amplitude distribution changes from the peaked one to the 

negative exponential distribution, is determined in [4] and 

called 'the effective length of a channel', which is equal half 

of the channel's length. 

The mean gain and the variance of the amplitude 

distribution at the output of the system define the noise factor 

of the amplifier which is greater for the negative exponential 

distribution than for a peaked amplitude distribution. 

The entire multiplication process can be split into 

sequential stages and/or parallel multiplication paths, and 

how it is done depends on particular investigation. If the 

input signal amplification is represented as a sequence of 

transformations (each of which is characterized by the mean 

and variance), then one can speak of serial amplification 

stages. The mean and variance of the entire multiplication 

process can be calculated using the mean and variance of the 

separate sequential stages. 

If )(kp  is the probability distribution of the number of 

particles at the output of the k-th stage, produced by one 

particle at its input, 
km  is the mean and 

kd  is the variance of 

the )(kp , then, using the generating function of the 

probability distribution )(kp , we obtain the mean M, and 

variance D of the amplitude distribution )(NP  after the N-th 

stage: 
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The expressions (10) constitute the theorem of serial 

amplification stages [5]. 

If the primary particle is multiplied along one of n possible 
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parallel paths, and if each path gives an average of 
kg  

particles at the output with a variance of 
kv , then the mean G 

and the variance V of the amplitude distribution at the output 

of the system with some parallel amplification paths, can be 

obtained as: 
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where k is the probability of choosing the k-th path. 

Equations (11) constitute the theorem of parallel 

amplification paths [4]. 

In the model the multiplication process of a single electron 

   

coordinate directed along the channel axis and measured 

from its beginning) is simulated by 3D MC methods in a 

homogeneous field along the effective channel length. 

The process of MC simulations uses a random number 

generating procedure [5] to sample the various distributions 

such as: the distribution of the actual yield of secondaries 

after each collision, the emission energy, and the direction of 

each secondary electron. 

The actual number of secondaries generated by the 

particular collision is a random sample taken from the 

Poisson distribution  
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where ν is the number of secondary electrons produced, σ is 

the Secondary Emission Yield (SEY). The variation of the 

SEY is defined by a secondary emission function [5]: 
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where V  is the collision energy in eV, 0  is the collision 

angle (angle between the direction of the primary electron 

and the normal to the surface), m  is the maximum SEY for 

the normal incidence 0 = 0) which is achieved for  
mVV   

(both mV  and m  are functions of 0 ); α and β are 

constants of the channel multiplier surface , and are chosen to 

fit experimental secondary emission curves at normal 

incidence. 

The energy distribution is described by the formula: 
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where   is the mean energy. 

Each secondary electron is assigned two emission angles 

chosen from Lambert's law:  

 2sin)(1 p  and  2/1)(2 p , 

where   is the angle between the normal to the surface and 

emission direction, and   is the azimuthal angle. 

The trajectory of each electron is calculated in three 

dimensions from the ballistic equations, and the position, 

energy, and angle of the subsequent collisions are determined. 

The result of each collision is calculated as before and the 

process is repeated for each secondary electron generated. 

The dependence of the mean gain m(z) and variance d(z) 

on the coordinate z along the channel axis 2/0 Lz  , 

where L is the coordinate of the end of the channel) are 

calculated for a single electron starting out at the beginning 

of the channel (z=0), using MC simulations. Then, using the 

theorems of serial and parallel amplification stages, the 

functions m(z) and d(z) along the entire channel length 

( Lz 0 ) are calculated. 

Modeling the statistical multiplication processes by means 

of the MC methods for only one electron, emitted at the 

beginning of the channel, along half of its length reduces 

considerably the amount of computer time required to 

investigate the noise characteristics of the channel multiplier. 

The functions m(z) and d(z) for Lz 0  and the 

theorems about serial and parallel amplification stages are 

used to calculate the mean M and the variance D of the 

distribution at the output of a channel, and thus determine the 

noise factor of the channel multiplier. 

B. The Noise Factor of the Channel Amplifier 

Assuming that the number of electrons entering the 

multiplier fluctuates according to Poisson's law [3] with the 

mean and variance en , we obtain: 

eeein nnnNS  2)/()/(                   (12) 

Using the definition of the noise factor (1) and the 

theorems about serial and parallel amplification stages, 

expressions for calculating the noise factor can be obtained. 

The expressions depend on how the entire process is split into 

a sequence of amplification steps. 

The entire amplification process in the channel multiplier 

can be represented in the form of a sequence of the next 

several stages. 

1)  The first observation of electrons, incident at the input 

of the multiplier (described by the Bernoulli distribution 

[3]), can be defined as a first stage. If   is the fraction 

of the front surface of the multiplier exposed to 

electrons, then the average number of particles entering 

the channel and the variance can be given by 0m , and 

)1(0  d . 

2)  The collision of the primary electrons with the wall of 

the channel is defined as the second stage of the 

amplification. The distribution of the number of 

electrons knocked out by one primary electron (with the 

mean 
1m  and the variance 

1d ) depends on the properties 

of the emitter. For a uniform emitter the number of 

electrons fluctuates according to Poisson's law with 

111  dm , where 1  is the SEY of the emitting 

surface. 

3)  Further amplification of the electrons in the channel is 

regarded as the third stage with the mean gain 

)(2 Lmm   and the variance )(2 Ldd  . 

Taking into account the contribution of each stage to the 

with an initial departure coordinate of z = 0 (z is the 



 

 

 

overall process of amplification and with the help of the 

formulae (10) and (11) we obtain: 
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Based on the definition of the noise factor (1) and the mean 

and variance of each stage, the noise factor for the three 

stages of amplification can be written as: 

121

1 /1( mvvF rr   , 

where 2

111 / mdvr   is the relative variance of the 

distribution at the output of the second stage, and 

)(/)( 2

2 LmLdvr   is the relative variance of the stage of 

amplification of a single electron. 

If the second and third stages combined and considered to 

be one stage then the formula for the noise factor can be 

written as: 

)/1(1 MDF   , 

where M and D are the mean gain and variance of the 

distribution at the output of the channel [5], [7]. 

Fig. 9 compares theoretical and experimental results of the 

noise factor as a function of the energy of the input electron 

beam. The computational results are obtained for the array of 

identical channels, and the ideal uniform emitter. 
 

 
Fig. 9. Dependence of the noise factor (F) on the energy (E) of the input 

electron beam (the solid curve represents calculations and dashed curve 

represents experiment). 

 

C. The Noise Factor of the Imaging Device 

The entire amplification process in the image converter 

and intensifier can be represented in the form of a sequence 

of several stages, where MCP can be considered as an 

intermediate stage with mean and variance 
2M and 

2D  

respectively. 

Using the theorems about serial and parallel amplification 

stages, expressions for calculating the noise factor of the 

image detector can be obtained. 

If 
1M , 

1D  and 
3M , 

3D  are the mean and variance of 

stages before (photocathode and/or EOS) and after (screen) 

MCP, then the noise factor of the whole device can be 

obtained, using the theorems about serial and parallel 

amplification stages: 
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This expression can be rearranged to the next formula: 
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where 
1F , 

2F  and 
3F  are the noise factors of previous, 

intermediate, and following stages. The last expression 

shows that to reduce the total noise, it is important not only 

reduce the noise of each stage, but also increase the mean 

gain. 

 

IV. CONCLUSION 

Investigations dealing with reducing the noise factor and 

increasing the MTF of the image converters and intensifiers 

are of considerable practical interest, as they help to improve 

the visual acuity and range of vision of imaging devices. 

The method and algorithm of evaluating the MTF of the 

EOS and MCP, proposed here, provide the opportunity to 

investigate the effect of parameters of the device on the MTF 

with the purpose to improve it. 

The method of simulation of stochastic processes in the 

channel amplifier makes it possible to evaluate the noise 

factor of the MCP and the device, as a function of different 

parameters. 

The theorems, proposed by the author, allows showing 

how the noise is transforming through the device, and how 

different multiplication stages contribute to the noise factor 

of the system. 

The computational results show the correctness of the 

methods proposed by the author. 
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