



Abstract—The goal of this study is to adapt the multiscale

fluid solver EULAG [Prusa et al., Computers & Fluids, vol 37,

2008] to the future GPU-based high-performance computing

platforms. The EULAG model has a proven record of successful

applications in a range of environmental fluid dynamics, and

excellent efficiency and scalability on conventional

supercomputer architectures. Currently, the model is being

implemented as a new dynamical core of COSMO (Consortium

for Small-scale Modeling) weather prediction framework. The

EULAG code combines features of a stencil and point wise

computations. Its communication scheme consists of both halo

exchange subroutines and global reduction functions. Within

the project, two main modules of EULAG, namely the

multidimensional positive definite advection transport

algorithm, MPDATA, and the variational generalized conjugate

residual, GCR, elliptic pressure solver are analyzed and

optimized. Relevant techniques have been chosen and applied to

accelerate code execution on modern GPU architectures: stencil

decomposition, block decomposition (with weighting analysis

between computation and communication), reduction of

intercache communication by partitioning of cores into

independent teams, cache reusing and vectorization.

Testing and validation of the new GPU implementation have

been carried out based on modeling decaying turbulence of a

homogeneous incompressible fluid in a triply-periodic cube.

Simulations performed using the standard version of EULAG

and its new GPU implementation give similar solutions.

Preliminary results of the parallel performance of the new

implementation show a promising increase in terms of

computational efficiency.

Index Terms—Anelastic model, EULAG, hybrid

architectures, parallel computing.

I. INTRODUCTION

In recent years there has been growing interest in

employing heterogeneous and hybrid supercomputing

architectures for modeling complex physical processes.

Especially promising application for the new (CPUs/GPUs)

architectures is computational fluid dynamics (CFD) and

particularly the numerical weather prediction (NWP).

Adaptation of conventional CFD codes to modern

Manuscript received February 25, 2014; revised April 25, 2014. This

work was supported by the Polish National Science Centre under grant no.

UMO-2011/03/B/ST6/03500.

B. Rosa and D. K. Wójcik are with the Institute of Meteorology and Water

Management - National Research Institute, Podleśna 61 Street, 01-673

Warsaw, Poland (e-mail: bogdan.rosa@imgw.pl).

P. K. Smolarkiewicz is with the European Centre for Medium-Range

Weather Forecasts, Reading, RG2 9AX, UK.

M. Ciżnicki is with the Poznan Supercomputing and Networking Center,

Noskowskiego 10 Street, 61-704 Poznań, Poland.

K. A. Rojek and R. Wyrzykowski are with the Czestochowa University of

Technology, Dabrowskiego 69 Street, 42-201 Czestochowa, Poland.

supercomputing architectures offers a unique opportunity for

modeling complex physical flows with accuracy greater than

ever before. The new parallel computers based on multi- and

many-core processors (CPUs) or graphics processing units

(GPUs) enable to increase computational efficiency and

reduce energy consumption. Consequently, more

computational resources, i.e. processing units and memory

can be employed. This in turn allows increasing complexity

of the models, so that more details which may affect the

evolution of the system can be captured. To be able to run the

traditional codes efficiently on the new hybrid platforms it is

necessary to redesign their structures. Nowadays, several

research centers around the world are involved in various

projects aimed at adapting weather forecasting models to

future high-performance computing platforms. One of such

priority projects “Performance on Massively Parallel

Architectures,” POMPA, has been launched in 2010 by the

COSMO [1] consortium. The goal of the POMPA project is

to develop a prototype implementation of the current

COSMO NWP model for modern GPU and CPU based

computing hardware. To-date results show a large potential

of the new implementations in terms of reduction of

time-to-solution. It is worth noting that the hardware costs for

running the redesigned model, both on CPU-based and

GPU-based machines, are significantly lower. The newly

developed dynamical core is robust and capable of running

COSMO-7 (horizontal resolution 7 km) and COSMO-2

(horizontal resolution 2.2 km); grid resolution ~2 km is

nowadays common in regional weather forecast models used

in operation.

Another example of a successful GPU implementation is

the Weather Research and Forecasting (WRF) Model [2].

WRF is a mesoscale numerical weather prediction system

designed for both atmospheric research and for operational

forecasting. Porting the microphysics module to GPU

allowed obtaining a 10-fold increase in its computational

performance. The microphysics module is an important and

computationally demanding component of the WRF model.

The module represents only 1% of the total source code but

its adaptation to GPU resulted in a 20% increase in the

computational performance of the entire model. Adapting of

selected modules of WRF to GPU allowed to achieve

tremendous speedups in modeling weather forecast, ocean

dynamic and tsunami waves [3].

The adaptation of traditional NWP codes to the new

machines based on GPUs allows increasing numerical

efficiency and enables to take full advantage of the available

computational resources. This offers a unique opportunity to

develop simulations with finer grid resolutions and

computational domains larger than ever before. Refined grid

Porting Multiscale Fluid Model EULAG to Modern

Heterogeneous Architectures

Bogdan Rosa, Miłosz Ciżnicki, Krzysztof A. Rojek, Damian K. Wójcik, Piotr K. Smolarkiewicz, and

Roman Wyrzykowski

International Journal of Applied Physics and Mathematics, Vol. 4, No. 3, May 2014

188DOI: 10.7763/IJAPM.2014.V4.281

resolutions in simulation of meso- and large-scale

atmospheric flows for NWP and climate studies may have

profound impact on improving the reliability of prognoses.

This is because at the convective scales of O(1) km, flows are

highly turbulent and contain a significant amount of energy

[4]. In order to explicitly resolve or even admit convective

processes, grid spacing has to be fine enough. Due to

computational constraints these processes are grossly

underresolved in today’s simulations. The new methods and

algorithms at work on modern architectures should allow to

dispense with a large part of convective parameterizations in

global models and improve numerical weather forecasts.

The aim of this study is to develop effective methods and

algorithms for adapting multiscale model EULAG [5] for

heterogeneous and hybrid supercomputing architectures.

EULAG belongs to a class of numerical models for low Mach

number flows in geo- and astrophysics. The dynamical core

of EULAG is based on the non-hydrostatic Euler equations,

either fully compressible or anelastic. The model employs

generalized curvilinear coordinate description [6],

finite-volume non-oscillatory transport algorithm MPDATA

[7] and the advanced elliptic solver GCR [8]. Since 2008,

EULAG is a candidate for the dynamical core of a very-high

resolution NWP model of the COSMO consortium. The

dynamical core of EULAG has considerable advantages

concerning conservation properties. Moreover, modeling of

atmospheric flows with EULAG does not impose severe

constraints on the maximal allowable steepness of the surface

orography.

In this paper we present our recent efforts aimed at

adapting two main modules of EULAG, namely advection

algorithm MPDATA and iterative elliptic pressure solver

GCR to GPU based supercomputers. We describe the crucial

detail of different strategies used to accelerate code execution,

namely stencil decomposition, block decomposition (with

weighting analysis between computation and

communication), reduction of inter-cache communication by

partitioning of cores into independent teams, cache reusing

and vectorization.

The remainder of the paper is organized as follows.

Section II describes the key details of the EULAG code. In

Section III main concepts of the new MPDATA

implementation and some preliminary results of performance

tests are presented. Analogously, Section IV contains the

discussion of the new GCR implementation. Validation of

the new GPU implantation is presented in Section V. Key

conclusions are summarized in Section VI.

II. METHODOLOGY

Porting the EULAG solver to modern GPU architectures is

a highly complex task; therefore, the entire process had to be

divided into several stages. Essential programming work was

preceded by a number of preliminary tasks. The initial efforts

were focused on extracting the main driver with MPDATA

advection and the GCR elliptic solver subroutines from the

main code. We used the latest version of the EULAG in

which parallelization scheme is based on the

three-dimensional spatial MPI domain decomposition [9].

Special options and extensions of no interest to this project

were removed from the code. The call tree has been

reformulated to better expose mathematical structure of the

code. Further, careful analysis of the structure of memory

references has been done. We studied different strategies for

overlapping computations and interprocesses

communication.

EULAG employs pure MPI programming model for

parallelization between all cores. The computational grid is

divided in all three dimensions and each MPI process

advances the solution in its subdomain. The computational

domain is decomposed evenly so that MPI processes have the

same number of grid points and the same computational load.

All-to-all communications are required for computing global

reduction operations, whereas point-to-point

communications exchange halo regions between the nearest

neighbors in X, Y and Z dimensions. The data arrays are

explicitly dimensioned to contain a subgrid of a total array

corresponding to the entire model grid, plus an extra space

for a copy of the neighboring processors’ boundary cells,

commonly referred as ”hallo cells”. Each subgrid is then

assigned to only one processor, though the halo regions may

vary through the code. To minimize communication cost, the

blocks of data corresponding to halo regions are exchanged

partially and only when needed.

III. ADAPTATION OF ADVECTION TRANSPORT ALGORITHM

MPDATA TO GPU ARCHITECTURES

In this Section, we describe our new approach that allows

efficiently distribute computational tasks of MPDATA

across GPU resources. The proposed technique is based on

stencil computations and is an extension of the concept

described in previous studies [10]-[13]. In this paper, we

assume prior knowledge about OpenCL programming and

terminology. For an informative description of the crucial

aspects of GPU programming, the reader is referred to

reference [14].

The MPDATA algorithm is a set of 17 stencils [15], where

each stencil may depend on one or more others. MPDATA

requires loading 5 input matrices and returns only one. We

assume that the size of the computational grid is n × m × l. In

previous work [11], it has been shown that MPDATA is

strongly memory-bounded. The main bottleneck in

adaptation of MPDATA to GPU architecture resides in

memory traffic between global and local GPU memory. Our

idea of adaptation is based on an appropriate distribution of

stencils onto GPU kernels in order to minimize the number of

GPU memory transaction between local and global memory.

For this purpose we propose a method, where a different

number of GPU kernels is considered. In each configuration,

a single kernel processes a different number of stencils. For

each configuration, we estimate a number of GPU memory

transactions and then select the configuration, where the

number of memory transaction is minimized.

A. GPU Kernel Processing

Each GPU kernel is processed by n × m work-items (GPU

threads), that are grouped into work-groups. Each work-item

is responsible for computing one element of data grid. Each

International Journal of Applied Physics and Mathematics, Vol. 4, No. 3, May 2014

189

work group contains g1  g2 work-items, so the total number

Fig. 1. A single data chunk of MPDATA matrix with its halo areas processed

by a single work-group.

In this approach, we first copy the data from GPU global

memory to registers, and then, for each iteration across l

dimension, we move the data between registers and local

memory. This method is illustrated in Fig. 2.

Fig. 2. GPU kernel processing.

B. Implementation Tuning

The main challenge in the efficient adaptation of

MPDATA to GPU platforms is reduction of global memory

usage and optimization of data transfer. In the new approach

we address this problem through a comprehensive analysis of

the data flow. Distribution of computational tasks is preceded

by estimation of local memory utilization, sizes of halo areas

(ghost zones), data dependencies between and within stencils.

Based on such extensive analysis we are able to specify the

most favorable number of GPU kernels and set an optimal

distribution of stencils across kernels and the sizes of

work-groups for each kernel. As a consequence, a load

balancing is maintained and data communication is

minimized and well structured.

Our analysis is based on the estimation of the number of

GPU memory transactions (assuming 64-bits access mode)

from global to local memory (Gf) and from local to global

memory (Gt).

1 2 2 / 1

2 / 1 ,

f p ls

ls p m m

G (g ,g)= ceil((g + j) u) g +

ceil(g u) (i +i)+ g j



 

(1)

1 2 2 / 1t lsG (g ,g)= ceil(g u) g (2)

where ceil (x) returns a rounded up value of x, uls is the

number of load/store units for each compute unit. The halo

area can have a different size for each side of the g1 × g2 data

chunk: i) ip × g2 from the top; ii) im × g2 from the bottom; iii)

jm × g1 on the left side, and finally iv) jp × g1 on the right side.

The number of bytes that needs to be allocated in the local

memory to store g1 × g2 data chunk can be computed as

follows

1 2 1 2mem m p m p elL (g ,g)=(g +i +i)(g + j + j) S (3)

where Sel is size of the grid element in bytes.

The number of transactions to the GPU global memory can

be greatly reduced by merging two stencils into one. To

perform this task a special procedure has been developed.

The procedure has a build-in set of conditions, including:

1) if merged stencils are independent, then the local

memory usage and the number of transactions is

accumulated from each stencil;

2) if the output matrix of the first stencil is among the input

matrices of the second stencil, then the halo area of the

first stencil is extended by the halo area of the second

stencil, otherwise

3) The halo area is a maximum from the halo areas for each

stencil.

This procedure is called repeatedly in order to build a set of

possible configurations of kernels. Finally, the simple

minimum algorithm estimates the best configuration of

MPDATA, including the number of kernels, the mapping of

stencils onto kernels, and the work-groups sizes.

C. Parallel Performance

To examine the scalability of the MPDATA algorithm in

the stand-alone version, a number of numerical experiments

have been performed. All tests presented in this paper were

conducted on NVIDIA GTX TITAN GPU [17]. This GPU

graphics card is based on the Kepler architecture and includes

14 streaming multiprocessors (SMX), each consist of 64

double precision units (DP units) with 48 KB of shared

memory and 16 KB of L1 cache.

We compare parallel performance of the original CPU

version of MPDATA with the new GPU implementation.

The CPU used in the test is Intel Core i7-3770 with 3.4 GHz

clock frequency. The input data were defined as an array of

random values. The sizes of grid range from 16×16×16 to

512×512×64. The CPU tests have been performed for a

sequential (one core) and parallel (4 cores) version of

MPDATA.

The first test was conducted for 100 time steps. The

performance results are shown in Table I. Our GPU

implementation allows achieving speedup of about 5 over the

International Journal of Applied Physics and Mathematics, Vol. 4, No. 3, May 2014

190

of work-groups is n/g1  m/g2. Fig. 1 illustrates a single data

chunk of MPDATA matrices, which is processed by a single

work-group. In this paper, we focus on the analysis of

coalesced and uncoalesced memory areas of the data chunk.

To increase data locality within work-groups, we employ

widely used method of 2.5D blocking [16] in which two

dimensional work-groups are responsible for computing g1 

g2 data chunks. The loop inside kernel is used to traverse the

grid in the l dimension. Since, the MPDATA algorithm

requires to store at most 3  (g1  g2) data chunks at the same

time, we use a queue of data chunks placed in registers and

local memory.

parallel CPU version and of about 15.7 over the sequential

version.

TABLE I: EXECUTION TIME OF GPU AND CPU VERSIONS FOR 100 TIME

STEPS

 CPU
GPU [s]

n × m × l 1 core [s] 4 cores [s]

16 × 16 × 16 0.044 0.016 0.087

32 × 32 × 16 0.164 0.048 0.100

64 × 64 × 16 0.636 0.192 0.112

64 × 64 × 64 2.216 0.776 0.366

128 × 128 × 64 10.484 3.316 0.792

128 × 128 × 128 20.517 6.624 1.583

256 × 256 × 64 40.374 12.868 2.560

256 × 256 × 128 - 24.373 5.221

256 × 256 × 256 - 52.776 10.516

512 × 512 × 64 - 50.743 9.689

The speedups for all grid sizes are listed in Table II. The

GPU version is profitable for mesh sizes greater than or equal

to 64×64×16. Computations on smaller grids do not allow

taking full advantage of GPU resources; hence the GPU

performance is rather weak for these cases.

TABLE II: SPEEDUP

 Speedup

n × m × l 1 core/GPU 4 cores/GPU

16 × 16 × 16 0.51 0.18

32 × 32 × 16 1.64 0.48

64 × 64 × 16 5.68 1.71

64 × 64 × 64 7.15 2.12

128 × 128 × 64 13.24 4.19

128 × 128 × 128 13.15 4.18

256 × 256 × 64 15.77 5.03

256 × 256 × 128 - 4.67

256 × 256 × 256 - 5.02

512 × 512 × 64 - 5.24

Significantly better results of the code scalability have

been obtained in the second test. The second test has been

performed for 1000 time steps. The speedup results are

illustrated in Fig. 3. In the longer simulation, we achieved

speedup about 15 times comparing to the CPU parallel

version and about 40 times comparing to the CPU sequential

version.

Fig. 3. Speedup of GPU version over CPU versions for 1000 time step.

IV. ADAPTATION OF ELLIPTIC SOLVER COMPUTATION TO

GPU ARCHITECTURES

A. Main Objectives

Several different techniques for porting the GCR elliptic

solver to hybrid architectures have been presented in

previous study [18]. The proposed techniques rely on porting

MPI-all code (which uses MPI exclusively) to the hybrid

version MPI+OpenMP. The body of the elliptic solver

consists of five major routines. The main routine advances

the solution iteratively by calling other major computational

routines. The elliptic solver invokes the collective

communication to compute grid global values. The routines

prforc and divrhs initialize the solver. The prforc evaluates

the first guess of the updated velocity - combining the explicit

part of the solution and the estimate of the generalized

pressure gradient - while imposing the appropriate boundary

condition. The divrhs evaluates the density weighted

divergence of that velocity, and thus the initial residual error

of the elliptic problem for pressure. The most

computationally intensive routine of the GCR is laplc that

evaluates iteratively generalized laplacian operator (a

combination of divergence and gradient) acting on residual

errors. An important part of the solver is the preconditioner

precon that accelerates the convergence of the variational

scheme. By performing direct matrix inversion in the vertical,

it is especially useful for large-scale simulations on thin

spherical shells with grids characterized by large anisotropy.

The routine precon employs sequential Thomas algorithm to

solve tridiagonal system of equations with the right hand side

consisting of the horizontal divergence of the generalized

horizontal gradient, evaluated by nablaCnablaxy, the second

most computationally intensive routine of the elliptic solver.

To sum up, the computational loops within the elliptic solver

can be simply divided, with regard to the data access pattern,

into three categories: reductions, implicit methods – the

Thomas algorithm and explicit methods – the stencils.

B. Parallel Performance

To evaluate numerical intensity of the new GPU

implementation we made use of the standard metric for

measuring computational performance. The metric is defined

for each function as the ratio of the number of arithmetic

operations to the number of required bytes. The number of

bytes is computed for double precision quantities and takes

into account both reading and writing operations. The

constant values are not included in the metric, as they can be

easily cached by the compiler in the registers.

Table III shows the computational intensities (CI) of the

main GCR functions for both CPU and GPU code. We

compare them with the computational intensity of Kepler

GPU (http://www.nvidia.com/object/tesla-servers.html) to

show which hardware resources affect the code efficiency

more.

International Journal of Applied Physics and Mathematics, Vol. 4, No. 3, May 2014

191

TABLE III: AVERAGE VALUES PER GRID CELL

precon prforce divrhs laplac GCR

CPU Ops 18 27 15 33 297

Bytes 255 289 170 604 4329

CI 0.07 0.09 0.09 0.05 0.07

Ops 22 27 17 32 291

GPU Bytes 167 154 113 242 2443

CI 0.13 0.17 0.15 0.13 0.13

CI GPU/CPU [%] 185 184 167 239 189

International Journal of Applied Physics and Mathematics, Vol. 4, No. 3, May 2014

192

In the Kepler K20 accelerator the time needed for

computing 8 double precision operations is equal to the

read/write time of one byte of data from/to the global

memory. Thus, all functions in the elliptic solver are bound

by the global memory bandwidth. Each of them requires

more than 10 bytes of data to compute one operation.

Increasing the computational intensity can optimize the

memory-bound functions. This, in turn, can be achieved by

both reducing of the memory traffic and increasing the

number of arithmetic operations. To address this issue we

analyze the data dependencies between the computational

loops. Based on the analysis we try to join them to increase

the computational intensity. The next paragraphs describe

methodology of optimization which has been applied to the

selected functions of the elliptic solver.

C. Preconditioner Optimization

The preconditioner employs the sequential Thomas

algorithm [19] to solve tridiagonal systems of equations.

There are two different implementations of the algorithm that

depend on the parallelization method or, equivalently on the

domain decomposition scheme. The standard version is

dedicated for the 2D horizontal decomposition. For

implementations that use the 3D domain decomposition, the

version based on recurrence doubling approach is more

suitable. The detailed description of the recurrence doubling

version can be found in [20]. Equation (4) shows the

structure of the 2D horizontal decomposition

for 3... , 1... , 1...k = l j = mp i = np

        

 

, , 33 , , 1 , , 2 , ,

, ,

f i j k = p i j k f i j k +r i j k

dni i j k

  



for 2...1, 1. , 1...k = l j = .mp i = np (4)

       , , , , , , 2 , ,p i j k = e i j k p i j k + + f i j k

where the np and mp values are sub-domain sizes in the

horizontal direction. The data dependency in both loops

implies that this decomposition is more suitable for use on a

single graphic card. The numerical scheme of our

implementation is shown in (5).

       202111 f=freg=fsm;f=freg=fsm

for 3...k = l

0112 freg=freg;freg=freg

    

 

0 33 1 (-2) ()fsm k = freg = p k f k r k

dni k

  



   101 lp=preg;lp=preg (5)

for 2...1k = l 

0112 preg=preg;preg=preg

     0 2p k = preg = e k preg + fsm k

To minimize the global memory traffic two loops that

compute the f and p array, have to be joined into one kernel.

The kernel is a function executed by each thread on the

vertical column. The computation of the f array is done by

using registers to eliminate global memory access in the k-2

direction. The shared memory could be used to cache access

in the k-2 direction and still the registers would provide lower

access latency. Next, the f array is saved in the shared

memory. To compute the p array the f array is read from the

shared memory and similarly, the usage of registers

eliminates the k+2 global memory access pattern. Those

optimizations improved the computational intensity about

40% from 0.07 to 0.1, mainly by reducing the number of

required bytes.

D. Stencil Optimization

Here we demonstrate the new methodology for stencil

computation taking as an example the horizontal Laplacian.

The stencil is a function that independently updates each cell

in a computational grid. The update is defined by a pattern

that indicates which neighbors of the cell take part in the

computation. The horizontal Laplacian contains four

computation loops defined as the stencils. The stencils have

access only to one neighboring cell on both sides for the i-th

and j-th directions, see Fig. 4a for details. In particular

situations when the required data on domain boundaries are

not available, the boundaries have to be handled specifically.

We joined all computational loops into one kernel to improve

the computational intensity, see Fig. 4b.

a) b)

Fig. 4. a) Two stencils computing px (partial derivative of p in x direction)

and r (partial derivative of px in x direction) in the i-th direction. The same

applies to j-th direction. b) The stencil pattern in the i-th and j-th directions

after transformation.

This transformation creates a larger stencil with the new

access pattern. In this new pattern each cell accesses a distant

neighbor that is one cell away from the currently updated

position. The distant neighbors, similarly to stencils before

transformation, have to be accessed on both sides for the i-th

and j-th directions. We use 2.5 D spatial blocking technique

proposed in [16] to efficiently cache the neighbor cells in the

shared memory and reduce the global memory traffic. That is,

we read the horizontal sub-planes, defined by the i-th and j-th

directions, to shared memory and iterate through the k-th

direction. The additional data, called margin, is read to the

shared memory in order to compute properly cells on the

sub-plane boundaries. Thus, some cells are read more than

once and their number depends on the sub-plane dimensions.

These dimensions are mainly constrained by the size of the

shared memory. We minimize the number of the global

memory transactions by changing the dimensions of the

sub-planes. The memory transactions are defined at the

granularity of cache lines. The sub-plane dimensions that are

close in shape to square limit the margin size. On the other

hand the sub-plane dimensions have influence on the number

of so-called coalesced memory transactions. The coalesced

memory transactions define cache lines fully loaded with

useful data. The higher size of the sub-plane dimension on

the longest direction, in which following cells are placed in

consecutive memory addresses, the larger number of the

coalesced memory transactions. Therefore, we try to find the

sub-plane dimensions that optimize both goals. All described

optimizations improved the computational intensity from

0.06 to 0.22 and reduced the number of moved bytes to/from

global memory per cell by a half.

E. Computational Intensity of the New Implementation

Parallel performance of the new GPU-implementation

have been tested using dual socket Intel Xeon E5-2670 CPU

with 16 cores clocked at 2.6 GHz and Kepler K20 GPU. To

compare the performance of CPU and GPU processors solely,

the data transfer time between RAM and GPU is not included

in case of the GPU timings. It is reasonable to assume that all

data are available on the global memory as we transfer the

full data set to CPU after every one hundred time steps.

TABLE IV: PERFORMANCE RESULTS – TEST 1

Test 1

n × m × l
CPU - 16 cores GPU

Speedup
[ms] [GFLOPS] [ms] [GFLOPS]

16 × 16 × 16 0.4 2.31 3 0.28 0.13

32 × 32 × 32 1.2 6.15 3.6 1.86 0.33

64 × 64 × 64 11.6 5.09 7.3 7.34 1.59

128 × 128 × 128 113 4.18 36.5 11.75 3.10

256 × 256 × 256 902 4.19 264 12.99 3.42

512 × 256 × 256 1741 4.34 506 13.56 3.44

TABLE V: PERFORMANCE RESULTS – TEST 2

Test 2

n × m × l
CPU - 16 cores GPU

Speedup
[ms] [GFLOPS] [ms] [GFLOPS]

64×32×16 2.6 10.07 14 2.12 0.19

128×64×32 23.5 8.92 28 8.46 0.84

256×128×64 382.3 4.38 136 13.94 2.81

512×256×128 3016.5 4.32 967 15.69 3.21

1024×256×128 6053.4 4.43 1871 16.21 3.24

Table IV and Table V show the performance of the CPU

and GPU implementations obtained in two different

numerical tests.

The test 1 refers to the flow in a cube with triply periodic

boundaries. The test 2 is a simulation of the flow on a sphere

with non-periodic boundaries in the vertical. Additionally,

the test 2 utilizes the preconditioner in the horizontal

direction. Both tests were conducted with only one GCR

iteration. It turned out that, the GPU implementation is about

3 times faster than the CPU implementation. The speedup

grows with the increase of domain sizes as the kernels utilize

GPU resources more efficiently. The GPU code achieves

72% of the peak performance for the test 1 and up to 86% for

the test 2. The peak performance is defined as the product of

the measured global memory bandwidth and the

computational intensity. The measured global memory

bandwidth for Kepler K20 is 144GB/s. The peak

performance corresponds to the ideal situation in which data

transfer and computations perfectly overlap. This occurs only

if there are no memory latency effects and when the

bandwidth of the global memory is completely saturated.

V. 3D INCOMPRESSIBLE TURBULENT FLOW; VALIDATION

TEST CASE

The new GPU implementation of the GCR solver is

validated using a standard benchmark test case for

incompressible flow solvers. We simulate decaying

turbulence of a homogeneous incompressible fluid. Here,

only simplified setup proposed by Taylor and Green [21] is

considered. This problem was originally used to illustrate

processes of grinding down of large eddies into smaller ones.

The initial conditions for the velocity are slightly modified

compared to the original work [21], namely

sin()cos()cos()

cos()sin()cos()

sin()cos))

u = ax by cz

v = ax by cz

w= ax by

 (6)

where a = 2/(n−1)dx, b = 2/(m−1)dy, c = 2/(k −1)dz. Here, m,

n and k are integers whereas dx, dy and dz are grid spacings in

all three directions. Our computational domain is a

triply-periodic cube of length 2. Grid points are uniformly

distributed in each spatial direction. The size of the

computational grid is 1283. There is no external forcing so the

flow is driven by the turbulent energy cascade. We compare

results from simulations performed with two complete

versions of EULAG.

The first simulation has been performed using the

traditional CPU architecture and the standard version of

EULAG. To perform the second simulation we used the new

GPU implementation of the GCR solver and graphic card

NVIDIA Kepler K20.

First, we compare 2D velocity flow field obtained in both

International Journal of Applied Physics and Mathematics, Vol. 4, No. 3, May 2014

193

simulations. Fig. 5 shows the vertical component of velocity

in the bottom horizontal plane. There is good agreement

between solutions computed with the standard version of

EULAG and the new GPU implementation. The black and

red lines precisely overlap.

To compare the results from simulations in the entire

domain the three-dimensional visualization of the vorticity

flow field has been prepared. The results are shown in Fig. 6.

Again, we confirm the perfect agreement between

simulations performed on two different hardware platforms.

Fig. 5. Time evolution of the vertical component of velocity, displayed in the

bottom (z = -) horizontal cross section through the domain. Black lines

correspond to simulations with standard CPU version of EULAG. Red

contours represent solution from the new GPU-implementation. The dashed

lines indicate negative values.

CPU GPU

T=200dt

T=400dt

Fig. 6. Isosurfaces of vorticity magnitude from simulation at grid 1283. On

the left side are results from simulations performed with the traditional (CPU)

version of EULAG. On the right side are results from the new GPU

implementation. The top panels present the flow after 200 time steps. The

two bottom panels show the vorticity field after 400 time steps.

VI. CONCLUSION

In this paper, we reported on our efforts in adapting

multiscale model EULAG to modern GPU-based

architectures. Two main modules of EULAG, namely

advection algorithm MPDATA and iterative elliptic pressure

solver GCR have been redesigned and the new organization

of computations has been implemented. The new

implementation performs better than the conventional code,

and can take full advantage of modern heterogeneous

architectures. The scalability tests were performed using two

different graphic cards. It was found that the speedup grows

with the domain size as the kernels can utilize GPU resources

more efficiently.

Porting the multiscale model EULAG to modern

architectures opens bright perspectives for further progress in

fundamental research and in applied fields that are closely

related to computational fluid dynamics. It is expected that

improved performance will allow reproducing more

faithfully meteorological processes occurring in the real

atmosphere. The new development allows performing

simulations in a larger domain and thereby extends the range

of scales what in turn may results in a more reliable

operational weather forecast.

ACKNOWLEDGMENT

The authors would like to express gratitude to Piotr Kopta

(PSNC), Michał Kulczewski (PSNC), Krzysztof Kurowski

(PSNC), Zbigniew P. Piotrowski (IMWM-NRI) and Łukasz

G. Szustak (CzUT) for their scientific programming,

valuable comments and suggestions.

REFERENCES

[1] The Consortium for Small-scale Modeling. [Online]. Available:

http://www.cosmo-model.org.

[2] The Weather Research and Forecasting Model. [Online]. Available:

http://www.wrf-model.org/index.php

International Journal of Applied Physics and Mathematics, Vol. 4, No. 3, May 2014

194

International Journal of Applied Physics and Mathematics, Vol. 4, No. 3, May 2014

195

[3] Weather, Atmospheric, Ocean Modeling, and Space Sciences. [Online].

Available: http://www.nvidia.com/object/weather.html

[4] W. C. Skamarock, “Evaluating mesoscale NWP models using kinetic

energy spectra,” Month. Weather Rev., vol. 132, pp. 3019–3032,

December 2004.

[5] J. M. Prusa, P. K. Smolarkiewicz, and A. A. Wyszogrodzki, “EULAG,

a computational model for multiscale flows,” Comp. Fluids, vol. 37, no.

9, pp. 1193–1207, 2008.

[6] P. K. Smolarkiewicz, C. Kühnlein, and N. P. Wedi, “A consistent

framework for discrete integrations of soundproof and compressible

PDEs of atmospheric dynamics,” J. Comput. Phys., vol. 263, pp.

185–205, 15 April 2014.

[7] P. K. Smolarkiewicz, “Multidimensional positive definite advection

transport algorithm: an overview,” Int. J. Numer. Meth. Fluids., vol. 50,

no. 10, pp. 1123–1144, 2006.

[8] P. K. Smolarkiewicz and J. Szmelter, “A nonhydrostatic

unstructured-mesh soundproof model for simulation of internal gravity

waves,” Acta Geophysica, vol. 59, no. 6, pp. 1109–1134, 2011.

[9] Z. P. Piotrowski, A. A. Wyszogrodzki, and P. K. Smolarkiewicz,

“Towards petascale simulation of atmospheric circulations with

soundproof equations,” Acta Geophys., vol. 59, no. 6, pp. 1294–1311,

2011.

[10] L. Szustak and K. Rojek, “Parallelization of eulag model on multicore

architectures with GPU accelerator,” Lect. Notes in Comp. Sci., vol.

7204, pp. 391–400, 2012.

[11] K. Rojek, L. Szustak, and R. Wyrzykowski, “Performance analysis for

stencilbased 3D MPDATA algorithm on GPU architecture,” Lect.

Notes in Comp. Sci., vol. 8384, pp. 145-154, 2014.

[12] L. Szustak, R. Wyrzykowski, and K. Rojek, “Using blue gene/p and

gpus to accelerate computations in the eulag model,” Lect. Notes in

Comp. Sci., vol. 7116, pp. 662–670, 2012.

[13] R. Wyrzykowski, L. Szustak, K. Rojek, and A. Tomas, “Towards

efficient decomposition and parallelization of mpdata on hybrid

CPU-GPU cluster,” Lect. Notes in Comp. Sci., vol. 8353, pp. 450-460,

2014.

[14] A. Munshi, B. R. Gaster, T. G. Mattson, J. Fung, and D. Ginsburg,

OpenCL - Programming Guide, Boston, MA: Addison-Wesley, 2011,

ch. 1, pp. 3-37.

[15] A. Schafer and D. Fey, “High performance stencil code algorithms for

GPGPUs,” Computer Science, vol. 4, pp. 2027-2036, 2011.

[16] A. Nguyen, N. Satish, J. Chhugani, K. Changkyu, and P. Dubey,

“3.5-D blocking optimization for stencil computations on modern

CPUs and GPUs,” in Proc. 2010 ACM/IEEE Int. Conf. for High

Performance Computing, Networking, Storage and Analysis, 2010, pp.

1-13.

[17] NVIDIA Kepler computer architecture. [Online]. Available:

http://www.nvidia.com/object/nvidia-kepler.html.

[18] M. Ciznicki, P. Kopta, M. Kulczewski, K. Kurowski, and P. Gepner,

“Elliptic solver performance evaluation on modern hardware

architectures,” Lect. Notes in Comp. Sci., vol. 8384, pp. 155-165, 2014.

[19] J. Strikwerda, Finite Difference Schemes and Partial Differential

Equations, Society for Industrial and Applied Mathematics, 2004, ch.

3.5, pp. 88-91.

[20] A. Wyszogrodzki, Z. P. Piotrowski, and W. W. Grabowski, “Parallel

implementation and scalability of cloud resolving EULAG model,”

Lect. Notes in Comp. Sci., vol. 7204, pp. 252–261, 2012.

[21] G. I. Taylor and A. E. Green, “Mechanism of the production of small

eddies from large ones,” in Proc. the Royal Society of London. Series A,

Mathematical and Physical Sciences, vol. 158, no. 895, pp. 499-521,

February 1937.

Bogdan Rosa received his M.Sc. degree in physics

from the University of Warsaw in 2000, followed by the

Ph.D. in 2005. Afterwards, he spent 3 years as a

postdoctoral fellow at the University of Delaware,

Department of Mechnical Engineering, where he was

involved in developing computational tools to study

collision rates and growth of droplets in atmospheric

clouds. Since 2009, Dr. Rosa is working at the Institute

of Meteorology and Water Management - National Research Institute. His

current projects include adaptation of the numerical model EULAG into a

German/Swiss weather prediction model COSMO.

Miłosz Ciżnicki has received M.Sc. in computer science

from Poznan University of Technology in 2011. He is

employed at Poznan Supercomputing and Networking

Center affiliated to the Institute of Bioorganic Chemistry

of the Polish Academy of Sciences. His research is

focused on new hardware architectures, high

performance computing, visualization and image

compression.

Krzysztof A. Rojek received his M.Sc. in computer

science from the Czestochowa University of Technology

in 2008 and his PhD in 2012. During this period, his

doctoral research focused on adaptation of high

performance computing to the parallel processors

architectures including Cell Broadband Engine and

GPUs. Since 2012, Dr. Rojek is employed at

Czestochowa University of Technology. His current

work focused on automated performance tuning and adaptation of the

EULAG numerical model to the graphics processor architectures.

Damian K. Wójcik received M.Sc. degree in computer

science in 2009 and B.Sc. degree in physics in 2010 from

the University of Warsaw. He is employed at the

Institute of Meteorology and Water Management -

National Research Institute. His current work is focused

on coupling of the numerical model EULAG with the

German/Swiss weather prediction model COSMO.

Piotr K. Smolarkiewicz received M.Sc. and Ph.D.

degrees from the University of Warsaw, Poland, in

geophysics and physical sciences in 1973 and 1980,

respectively. Afterwards, in 1981, he went to Boulder,

Colorado, to join as a postdoctoral fellow the Advanced

Study Program at the National Center for Atmospheric

Research (NCAR). After the postdoctoral appointment,

since 1983 he has been a scientist at NCAR, in the rank

of Senior Scientist since 1994. In March 2013 he joined the Research

Department of the European Centre for Medium-Range Weather Forecasts

(ECMWF) as a consultant.

Roman Wyrzykowski received M.Sc. and Ph.D

degrees from the Kiev Polytechnic Institute in computer

science in 1982 and 1986, respectively. Since 1982, he is

employed at the Czestochowa University of Technology,

Poland, where currently he is the head of Department of

Computer and Information Science, and Director of

Metropolitan Area Network in Czestochowa. His fields

of expertise are: parallel and distributed computing,

mapping algorithms onto parallel architectures, cluster and cloud

technologies with applications. Prof. Wyrzykowski is the coordinator of the

project “Methods and algorithms for organization of computations in the

class of anelastic numerical models for geophysical flows on modern

computer architectures with realization in the EULAG model” funded by the

National Science Centre.

