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Abstract—We reexamine the work of Rashdan et al., who 

considered a chiral model for the nucleon based on the linear 

sigma model with scalar-isoscalar scalar-isovector mesons 

coupled to quarks.  The dependence of the axial-vector coupling 

constant gA and the pion nucleon coupling constant gNN on the 

quark masses and sigma masses have been investigated in the 

frame work of the extended linear sigma model.  In this work 

we calculate both of gA and gNN to investigate the effect of the 

quark masses on the gA in the framework of the extended linear 

sigma model, which is proposed by Rashdan et al. and  compare 

it with the free Skyrmion model, extended Skyrmion model  and 

finally with Birse and Banerjee model.  The field equations have 

been solved in the mean-field approximation by Goldflam and 

Wilets. Our study shows a better fitting to the experimental 

data compared with the existing models.  

 

Index Terms—Extended linear sigma model, axial vector 

coupling constant, quark mass and mean field approximation.  

 

I. INTRODUCTION 

The axial-vector coupling constant gA is  important to 

understand Quantum Chromodynamics (QCD). In recent 

years there has been a growing interest in studying Ag .  A 

lot of groups have made significant progress towards 

understanding Ag  using several models (see Cloet et al. [1] 

and Ali et al. [2]). We study the extended linear sigma model 

as one of these models to describe the interactions of quarks 

and   meson in a mean field approximation which has the 

hedgehog property. A similar model has been considered by 

Kalbermann and Eisenberg [3], Birse and Banerjee [4], while 

the higher order of the mesonic inteactions in the linear sigma 

model was considered by Sahu and Ohnishi [5], [6] and 

M.Rashdan et al. [7]-[9], who used the mean field 

approximation to get a better description of the gA. In our 

study [10],  we used the coherent pair approximation to study 

the gA. Few solutions for the lagrangian of chiral linear 

soliton models applied to the nucleon have already been 

suggested. The mean-field equations are a straightforward 

extension of the finding by Goldflam and Wilets [11]. In this 

work, we consider a model based on the idea of strong QCD 

forces. The aim is to investigate the effect of the quark 

masses on the Ag  in the framework of the extended linear 

sigma model, which is proposed by Rashdan et al. [7] with 

prameters like the pion decay constant 91.9=f  MeV and 

the pion mass 138.04=m  MeV fixed in similar way as 

 

Struber and Rischke [12]. The paper is organized as follows; 

first, the explaination of  extended linear sigma model in 

Section II,  the numerical results and the discussion  in 

Section III , and finally, the conclusion presented in Section 

IV. 

 

II. THE EXTENDED LINEAR SIGMA MODEL 

The extended linear sigma model is described in details in 

[7]. We describe the interactions of quarks with   mesons 

and pions by Birse and Banerjee [4]. The Lagrangian density 

is, 
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It is clear that this potential also satisfies chiral symmetry. 

Applying the PCAC we get, 
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Now, we expand the extremum, with the shifted field 

defined as  
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inserting equ.(4) into equ.(1), we obtain  
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The time-independent fields  r
'

  and  r


 are to satisfy 

Determination of the Axial-Vector Coupling Constant 

from the Extended Linear Sigma Model 

Tarek Sayed Taha Ali 

International Journal of Applied Physics and Mathematics, Vol. 4, No. 3, May 2014

184DOI: 10.7763/IJAPM.2014.V4.280

Manuscript received January 10, 2014; revised April 4, 2014.

Tarek Sayed Taha Ali is with Faculty of Science, UAE University, 

AL-AIN, U.A.E. (e-mail: t.ali@uaeu.ac.ae).



  

the Euler-Lagrangian equations, and the quark wave function 

satisfies the Dirac eigenvalue equation. The meson field 

equations are written as: 
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where 


 refers to Pauli isospin matrices,   
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 We used Hedgehog Ansatz in the pion field [4] where  

   .ˆ= rrr 


                                     (9) 

Now, the pion isospin and space angular momentum are 

correlated because the quark source terms are themselves 

correlated corresponding to (2)(2) isospinspin SUXSU  wave 

functions. This will be established using hedgehog ansatz, 

which breaks I


 symmetry and breaks J


 symmetry, but 

conserves the Grand spin G

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The Dirac equation for the quarks are  
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where ,=)( 'grS   ,ˆ.=)( rgrp 


 E  are the scalar 

potential, the pseudoscalar potential and the eigenvalue of the 

quarks spinor  , respectively. Including the color degrees 

of freedom, one has  gNg c
 where 3=cN  

colors, g is the coupling constant. The Dirac wave 

functions  r  and  r  are given by  
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and the sigma, pion and vector densities are given by  
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These equations are subject to the boundary conditions 

that asymptotically the fields approach their vacuum values,  

       .at0MeV  rrfr      (17) 

 

III. NUMERICAL CALCULATIONS AND DISCUSSION 

A.  The Scalar Field 
'   

To solve equ.(7), we integrate a suitable Green's function 

over the source fields [13]-[17]. Thus  
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The scalar field is spherical in this model as we only need 

the 0=l , therefore  
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Note that this form is implicit in that the solution of 
' involves integrals over the unknown 

' itself. We will 

solve these implicit integral equation by iterating to self 

consistency.  

B. The Pion Field   

To solve equ.(8), we integrate a suitable Green's function 

over the source fields [16]-[18]. We use 1=l  component of 

the pion Green's function. thus  
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We have solved the equations of  (11, 12) fields using 

fourth order Rung-Kutta.  Due to the nonlinearly of these 

equations it is necessary to iterate the solution until 

self-consistency is achieved. To start this iteration process, 

we use the chiral circle form for the meson fields  
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,sin=)( qmrp                                       (23) 

 

where rtanh= , and 
qm  is quark mass 

C. Nucleon Axial Vector 

The nucleon axial-vector coupling constant is found from 
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To calculate the pion-nucleon coupling constant, we 

consider the limit 0q  of  
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where the pion source current is defined by [4]-[21]  
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IV. CONCLUSION 
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The field equations (7, 8, 11, 12) have been solved by 

iteration for different values of quark and sigma masses [19], 

[20]. Table I shows the values of (0)Ag  and 

B

NN
M

m
g

2
(0) 


calculated for 460=qm  MeV and  for 

different values of m  [19]. As shown in Table I below, the 

increase in the order of the mesonic interaction greatly 

modifiey the values of (0)Ag  and 

B

NN
M

m
g

2
(0) 


. In 

comparison with the linear sigma model of Gell-Mann and 

Levy [15] and Birse and Banerjee [4], the quark and sigma 

masses are taken as 500 MeV and 1200 MeV, respectively; in 

which 
qm  is larger than that commonly quoted [13]-[15].  

This is due to the fact that in [16], [17],  bound solutions have 

only been obtained for 4.55<<3.9 g  and to the less degree 

of the mesonic interaction which has been taken in the lowest 

order. Increasing the order of this interaction has resulted in 

the erradication of our problem, where we obtained good 

results for more reasonable values for the quark and sigma 

masses. The results obtained for 1000=m  MeV and  for 

different values of 
qm  are presented in Table  II. This value 

of the quark mass is consistent with the value deduced from 

NJL soliton models similar to [22]. Furthermore, the values 

International Journal of Applied Physics and Mathematics, Vol. 4, No. 3, May 2014

186

Therefore (For details see Birse and Banerjee [4] and M.

Rashdan et al. [7]

TABLE III: VALUES OF 
(0)Ag

AND B

NN
M

m
g

2
(0) 



CALCULATED FOR THE 

FREE SKYRMION MODEL [22], EXTENDED SKYRMION MODEL [23], BIRSE 

AND BANERJEE [4] WHICH ARE COMPARED WITH OUR CALCULATIONS 

Observable [24] [22]           [23]          Our work
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of (0)Ag  and 

B

NN
M

m
g

2
(0) 


 are more adequately reproduced 

than that of Birse and Banarjee [4] who used standard 

potential and Skyrme model [22], [23] as seen from Table III. 

In conclusion, the present calculations show the 

importantance of mesonic correlations which, may be of 

higher-order than that normally used in most soliton models. 
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