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I. INTRODUCTION 
Dengue is one of the several emerging tropical diseases 

which progressively spread geographically to virtually all 
tropical countries. It is transmitted by the bite of an Aedes 
mosquito infected with any one of the four dengue viruses. 
Theses infected mosquitoes pass the disease to susceptible 
humans. It is known individuals who recover from one 
serotype become permanently immune to it, but may become 
partially-immune or temporarily-immune to the other 
serotypes [1]-[3]. Epidemiological evidence suggests that an 
important risk factor for dengue is the presence of 
preexisting antibodies at subneutralizing level [4]. This led to 
the formulation of secondary infection or immune 
enhancement hypothesis.  

In Thailand, dengue epidemics have occurred every year 
in the last 40 years [1]. Thus, the model of dengue with two 
strains is formulated for predicting the transmission 
dynamics of dengue in Thailand.   
 

II. MODEL DESCRIPTION 
The model is formulated based on the following 

assumptions. 
1) The total human population at time ,t  denoted 

by ( ),HN t  is divided into twelve sub-populations, so 
that 
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2 12 21 12 21 22

( ) ( ) ( ) ( ) ( ) ( ) ( )
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H H H H H H H

H H H H H H

N t S t E t E t I t I t R t
R t E t E t I t I t R t
= + + + + + +

+ + + + +
 

(1) 
 
2) Once a mosquito is infected it never recovers and it 

cannot be reinfection with a difference serotype of virus.  
Secondary infection, therefore, may take place only in 
human population [1]. Thus, the total mosquito 
population at time ,t  denoted by ( ),vN t  is split into five 
sub-populations,  so that  

 
1 2 1 2( ) ( ) ( ) ( ) ( ) ( ).V V V V V VN t S t E t E t I t I t= + + + +        (2) 

 
3) The recruitment rate of human and vector populations 

are denoted by HΠ  and ,VΠ  respectively. 
4) Flow from the susceptible to the infected class of both 

populations (human and mosquito), for each strain, 
depend on the biting rate of the mosquitoes, the 
transmission probabilities, as well as the number of 
infectives and susceptibles of each population [5], [6]. It 
assumed that the transmission probability from an 
infected human to a susceptible mosquito must equal 
the transmission probability from an infected mosquito 
to a susceptible human ( ) .VH HVρ ρ=  Then, the rate of  
infection with strain 1  or strain 2  per susceptible 
human  for primary infection are given by   

  ( )1 1 1 1 ,HV
V V V

HN
C

E I= +ηβ                         (3) 

( )2 2 2 2 ,HV
V V V

HN
C

E I= +ηβ                         (3) 

where, HV HVC b,= ρ b and HVρ  denote the average number 
of bites per mosquito per unit time and the transmission 
probability from an infected human to a susceptible mosquito, 
respectively. The parameter ( )0, 1 , 1, 2,vi i∈ =η  account for 
reduction in transmissibility of exposed mosquitoes relative 
to infectious mosquitoes. 

Similarly, primary infection of mosquito, infection rate 
per susceptible mosquito with strain 1 or strain 2 are given by 

[ ] [ ]( ) [ ] [ ]( )1 1 ,HV
v H

H

C
ES ER IS IR

N
= + + +β η               (5) 

[ ] [ ]( ) [ ] [ ]( )2 2
HV

v H
H

C
SE RE SI RI .

N
= + + +β η               (4) 

where, ( )0, 1 , 1, 2,Hi i∈ =η  accounts for the reduction in 
transmissibility  with  strain i  of exposed human relative  to 
infectious human. 
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Abstract—In this paper, a mathematical model of dengue 

fever with two strains is developed. Analysis of the model 

reveals the existence of four equilibrium points, which belong to 

the region of biological interest. One of the equilibrium points 

corresponds to the disease–free state, the other three equilibria 

correspond to the two states where just one strain is present, 

and the state where both strain coexist, respectively.  The model 

has a local asymptotically stable, disease-free equilibrium (DFE) 

wherever the maximum of the associated reproduction 

numbers of the two strains (denoted by
0

sR ) is less than unity. 

The proposed model is used to forecast transmission dengue in 

Thailand.



  

5) Immunity to reinfection with a previously experienced 
serotype hold lifelong. The antibody dependent 
enhancement (ADE) which is a negative immune 
reaction occurs after the temporal cross immunity 
period.  Then, secondary infection with strain  i  are 
produced at a rate , 1, 2,i i i =λ β where iλ  is 
enhancement multiple for strain .i  If 0 1,j≤ <λ   
primary infection confer partial or total immunity to 
strain j  for 1, 2.j =  If 0,j >λ  primary infection 
increase susceptibility to strain j  due to immune 
enhancement. If 1,j =λ  primary infections do not alter 
the susceptibility to secondary infections [7], [8]. 

6) All subpopulations of human and mosquito die at the 
same rate Hμ  and ,Vμ  respectively. 

7) The parameter , 1, 2i i =σ denotes the transfer from 
exposed human to infectious human. The parameter 

, 1, 2Vi i =σ denotes the transfer rate from exposed 
vector to infectious mosquito.  

8) The per capita mortality rate of dengue virus with strain 
i for infectious human and infectious mosquito are   

, 1, 2i i =δ  and , 1, 2,Vi i =δ  respectively. 
9) The recovery rate of infectious human with strain i  is 

, 1, 2.i i =γ  
With above assumptions, the model of dengue with two 

strains described by the following system of nonlinear 
differential equations 

( )1 2 S ,H
H H H H

dS
S

dt
= Π − + −β β μ                    (7) 

( )1
1 1 1,H

H H H
dE

S E
dt

= − +β σ μ                           (5) 

( )2
2 2 2 ,H

H H H
dE

S E
dt

= − +β σ μ                         (6) 

( )1
1 1 1 1 1,H

H H H
dI

E I
dt

= − + +σ γ δ μ                      (10) 

( )2
2 2 2 2 2 ,H

H H H
dI

E I
dt

= − + +σ γ δ μ                    (11) 

( )1
1 1 2 2 1,H

H H H
dR

I R
dt

= − +γ λ β μ                          (7) 

( )2
2 2 1 1 2 ,H

H H H
dR

I R
dt

= − +γ λ β μ                        (8) 

( )12
2 2 2 2 12 ,H

H H H
dE

R E
dt

= − +λ β σ μ                     (9) 

( )21
1 1 1 1 21E ,H

H H H
dE

R
dt

= − +λ β σ μ                      (15) 

( )12
2 12 2 2 12 ,H

H H H
dI

E I
dt

= − + +σ γ δ μ                   (16) 

( )21
1 21 1 1 21,H

H H H
dI

E I
dt

= − + +σ γ δ μ                   (10) 

22
1 21 2 12 22 ,H

H H H H
dR

I I R
dt

= + −γ γ μ                    (11) 

( )1 2 ,v
v v v v v v

dS
S S

dt
= Π − + −β β μ                        (12) 

( )1
1 1 1,v

v v v v v
dE

S E
dt

= − +β σ μ                          (13) 

( )2
2 2 2 ,v

v v v v v
dE

S E
dt

= − +β σ μ                           (14) 

( )1
1 1 1 1,v

v v v v v
dI

E I
dt

= − +σ δ μ                            (22) 

( )2
2 2 2 2 .v

v v v v v
dI

E I
dt

= − +σ δ μ                          (15) 

Human population 

 
Vector population 

 
Fig. 1. Schematic diagram of the system (7)-(23). 

 
TABLE I: DESCRIPTION OF VARIABLE OF THE SYSTEM (7)-(23) 

Variables Description 

HS  Humans susceptible to both strains 

1HE  Humans exposed with strain 1 in primary infection 

2HE  Humans exposed with strain 2 in primary infection 

1HI  Humans infected with strain 1 in primary infection  

2HI  Humans infected with strain 2 in primary infection 

1HR  Humans recovered with strain  1 in primary infection  

2HR  Humans recovered with strain 2 in primary infection 

12HE  Humans exposed to strain 2 in secondary infection 

21HE  Humans exposed to strain 1 in secondary infection 

12HI  Humans infected to strain 2 in secondary infection 

21HI  Humans infected to strain 1 in secondary infection 

22HR  Humans recovered with both strain  

VS  Mosquitoes susceptible to both strains 

1VE  Mosquitoes exposed with strain 1 

2VE  Mosquitoes exposed with strain 2 

1VI  Mosquitoes infected with strain 1 

2VI  Mosquitoes infected with strain 2 
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Complete interaction and a schematic flow diagram of 
human and mosquito populations are depicted in Fig. 1, and 
the associated variables and parameters are described in 
Tables I, respectively. 
 

III. ANALYSIS OF THE MODEL 

A. Basic Properties of the Model 
From of biological considerations, the system (7)-(23) is 

studied in the region of biological interest  
12 5

1 2 ,T T T + += ∪ ⊂ ×  

where  

({

) }

1 1 2 1 2 1 2 12

12
21 12 21 22

H H H H H H H H

H
H H H H H

H

T S ,E ,E ,I ,I ,R ,R ,E ,

E ,I ,I ,R : N+

=

∈ ≤
Π
μ

 

and   ( ) 5
2 1 2 1 2, , , , : .V

V V V V V V
V

T S E E I I N+

⎧ ⎫
= ∈ ≤⎨ ⎬

⎩ ⎭

Π
μ

 

It can be shown that the closed set T  is positively 
invariant and attracting for the system(7)-(23), see more 
detail in [9]. Hence, it is sufficient to study the dynamics of 
the system (7)-(23) in T.  

B. Disease Free Equilibrium and the Basic Reproduction 
Number 
In the absence of infection (that is, all infected 

components are zero), the system has a disease-free 
equilibrium, DFE, obtained by setting the right-hand sides of 
(7)-(23) to zero, is given by  
 
 
 

(
)

* * * * * * * * * *
0 1 2 1 2 1 2 12 21

* * * * * * * *
12 21 22 1 2 1 2

, , , , , , , , ,

, , , , , , ,

,0,0,0,0,0,0,0,0,0,0,0, ,0,0,0,0 .

H H H H H H H H H

H H H V V V V V

vH

H v

E S E E I I R R E E

I I R S E E I I

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

ΠΠ
μ μ

       (16) 

 
 

The local stability of *
0E  can be established using the next 

generation operator method [10], we have 
 

0 1 2max{ , },sR R R=                                    (17) 
 
where, 1R  and 2R  are the associated reproduction numbers 
for strain 1 and strain 2, respectively, given by  
 

2 ( )( )
,HV V H Hi i i Vi i Vi

i
H V i i i i

C B D
R

A B C D
Π + +

=
Π

μ η σ η σ
μ

               (18) 

 
For 1, 2,i =  where, 1 1 HA ,= +σ μ 2 2 HA ,= +σ μ  

1 1 1 HB ,= + +γ δ μ 2 2 2 HB ,= + +γ δ μ 1 1 ,V VC = +σ μ

2 2 ,V VC = +σ μ 1 1V VD = +δ μ  and 2 1 .V VD = +δ μ   
The following Theorem, using theorem 2 in [10], is 

established. 

Theorem 1. The DFE, *
0E  of the system (7)-(23) is locally 

asymptotically stable (LAS) if 0 1sR ,< and unstable if 

0 1sR .>   

The threshold quantity 0
sR  given in (17) is called basic 

reproduction number of the model.  It represents the average 
number of secondary cases of strain i,  produced by a single 
infective of strain i, in completely susceptible population 
[9]. 

The results of Theorem 1, indicates that the disease will be 
eradicated from the community if 0 1sR ,<  that is both 1R  
and 2R  are less than unity. Therefore, in the event of an 

endemic is to determine the condition that can make 0 1sR ,<  
which is of great public health interest. 

C. The Existence of Endemic Equilibrium 
The equilibria of the system (7)-(23) are difficult to be 

expressed in closed form, an approach in [11] for 
investigating the existence of endemic equilibrium of the 
system is as follow.  

Let, 
 

(
)

* * * * * * * * *
1 2 1 2 1 2 12

* * * * * * * * *
21 12 21 22 1 2 1 2

, , , , , , , ,

, I , , , , , , ,

H H H H H H H H

H H H H V V V V V

E S E E I I R R E

E I R S E E I I

=
         (19) 

 
be any positive equilibria where at the last one of the infected 
variable of the system (7)-(23) is non-zero. Further, the 
forces of infection with strain 1 and strain 2 at steady state 
are given by, respectively, 

( )1 1 1 1
* * *HV

v V V*
HN

C
E I ,= +ηβ                             (20) 

( )* * *
2 2 2 2* .HV

v V V
HN

C
E I= +ηβ                             (21) 

Setting all derivative in the system (7)-(23) equal to zero 
and solving the obtain results give the positive equilibrium in 
terms of *

1β  and  *
2β  as follow, 

 
*

* *
1 2

,H
H

H

S
Π

=
+ +β β μ ( )

1
1

1 1 2

*
* H
H * *

H

E ,
A

=
+ +

Π β
β β μ

 

 

( )
*

* 2
2 * *

2 1 2

,H
H

H

E
A

Π
=

+ +
β

β β μ ( )
*

* 1 1
1 * *

1 1 1 2

,H
H

H

I
A B

Π
=

+ +
σ β

β β μ
 

 

( )
*

* 1 1
1 * *

1 1 1 2

,H
H

H

I
A B

Π
=

+ +

σ β
β β μ ( )

*
* 1 1

1 * *
1 1 1 2

,H
H

H

I
A B

Π
=

+ +

σ β
β β μ

 

 

( )( )
*

* 2 2 2
2 * * *

2 2 1 1 1 2

,H
H

H H H

R
A B

Π
=

+ + +

σ γ β
μ λ β μ β β μ

 

 

( )( )
*

* 2 2 2
2 * * *

2 2 1 1 1 2

,H
H

H H H

R
A B

Π
=

+ + +
σ γ β

μ λ β μ β β μ
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( )( )
* *

* 2 2 1 1 2
21 * * *

1 2 2 1 1 1 2

,H
H

H H

E
A A B

Π
=

+ + +
σ γ λ β β

λ β μ β β μ
 

 

( )( )
* *

* 1 2 1 2 1 2
12 * * *

1 2 1 2 2 2 1 2

,H
H

H H

I
A A B B

Π
=

+ + +

σ σ γ λ β β
λ β μ β β μ

          (22) 

 

( )( )
* *

* 1 2 2 1 1 2
21 * * *

1 2 1 2 1 1 1 2

,H
H

H H

I
A A B B

Π
=

+ + +

σ σ γ λ β β
λ β μ β β μ

 

 
( ) ( ){ }

( )( )( )
* * * *

1 2 1 2 1 2 1 1 2 1 2 2*
22 * * * *

1 2 1 2 1 1 2 2 1 2

H H H

H
H H H

R
A A B B

Π + + +
=

+ + + +

σ σ β β γ λ λ β μ γ λ λ β μ

λ β μ λ β μ β β μ
  

 
*

* *
1 2

,V
V

V V V

S
Π

=
+ +β β μ ( )

*
* 1

1 * *
1 1 2

,V V
V

V V V

E
C

Π
=

+ +

β
β β μ

 

 

( )
*

* 2
2 * *

2 1 2

,v V
V

V V V

E
C

Π
=

+ +

β

β β μ ( )
*

* 1 1
1 * *

1 1 1 2

,V V V
V

V V V

I
C D

Π
=

+ +

σ β
β β μ

 

 

( )
*

* 2 2
2 * *

2 2 1 2

.V V V
V

V V V

I
C D

Π
=

+ +

σ β
β β μ

 

 
where *

1Vβ  and *
2Vβ  are determined by (5) and (6) at steady 

state.  
Substituting the expressions (30) into the force of 

infections *
1β  and 2

*β  given in (28) and (29), respectively, 
yields the fixed points problem 

( )
( )

1 1 2

2 1 2

* *

* *

,
x ( x )

,

⎡ ⎤
⎢ ⎥= =
⎢ ⎥
⎣ ⎦

φ β β
φ

φ β β
                             (23) 

where, 
 

( ) ( )
( )

*
1 1 1 1* * *

1 1 1 2 * * *
1 1 1 2

, ,HV V V V V

H V V VN

C D
C D

+ Π
= =

+ +

η σ β
β φ β β

β β μ
          (24) 

 

( ) ( )
( )

*
2 2 2 2* * *

2 2 1 2 * * *
2 2 1 2

, .HV V V v V

H V V VN

C D
C D

+ Π
= =

+ +

η σ β
β φ β β

β β μ
            (33) 

and 1

2

*

*x .
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

β
β

 

Thus, solving (31) for *
1β  and 2

*β  substituting obtained 
results into expression (30), yield three endemic equilibria of 
the model as in the following.  

1) Competitive exclusion 
Strain 1-only boundary equilibrium, denoted by 1

*E ,  

occurs whenever 2 11R R< <  so that 0 1sR .>  It is given by is 
given by 

 
(

)

* * * * *
1 1 1 1

* * *
1 1

, ,0, ,0, , 0, 0,0,0,0,0,

S , ,0, ,0

H H H H

V V V

E S E I R

E I

=
           (25) 

where, *
*
1

,H
H

H

S =
+

Π
β μ

 
( )

*
* 1

1 *
1 1

,H
H

H

E
A

=
+

Π β
β μ

  

 

( )
*

* 1 1
1 *

1 1 1

,H
H

H

I
A B

Π
=

+

σ β
β μ ( )

*
* 1 1 1

1 *
1 1 1

,H
H

H H

R
A B

Π
=

+

σ γ β
μ β μ

 

 
*

*
1

,V
V

V V

S
Π

=
+β μ ( )

*
* 1

1 *
1 1

,V V
V

V V

E
C

Π
=

+

β
β μ ( )

*
* 1 1

1 *
1 1 1

.V V V
V

V V

I
C D

Π
=

+

σ β
β μ

 

 
Strain 2-only boundary equilibrium, denoted by 2

*E ,  
occurs whenever 1 21R R< <  so that 0 1sR .>  It is given by 
 

(
)

* * * * *
2 2 2 2

* * *
2 2

,0, , 0, , 0, , 0,0,0,0,0,

,0, , 0,

H H H H

V V V

E S E I R

S E I

=
        (26) 

 

where *
*
2

,H
H

H

S =
+

Π
β μ ( )

*
* 2

2 *
2 2

,H
H

H

E
A

Π
=

+

β
β μ

  

 

( )
*

* 2 2
2 *

2 2 2

,H
H

H

I
A B

Π
=

+

σ β
β μ ( )

*
* 2 2 2

2 *
2 2 2

,H
H

H H H

R
A B

Π
=

+

σ γ β
μ μ β μ

 

 
*

*
2

,V
V

V V

S
Π

=
+β μ

*
*

2

,V
V

V V

S
Π

=
+β μ ( )

*
* 2 2

2 *
2 2 2

.V V V
V

V V

I
C D

Π
=

+

σ β
β μ

 

 
2) Co-existence equilibrium 
Co-existence equilibrium, denoted by *

12 ,E  occurs 

whenever 1 1R >  and 2 1R >  so that 0 1sR .>  it is given by 
*
12E as given in (27) 

D. Stability Analysis 
The equilibrium in (34) and (35) are a second type of 

equilibrium which is competitive exclusion. These 
equilibriums occur when one strain in the populations is 
stronger than the other strain, causing the weaker strain to die 
out. Only one strain will be present in the long term of the 
system (7)-(23). Further, a third type of equilibrium is 
co-existence. This equilibrium occurs when two strains are 
present in populations.   

To analyze the stability of all endemic equiibria, we find 
that large explicit solution for all endemic equilibrium points 
given in (27), (34) and (35), respectively, make proving 
stability complicate. Thus, stability of endemic equilibria are 
verified by using numerical simulations of the system (7)-(23) 
are as discuss in next section. The simulation is carried out 
into four experiments. 

 

IV. NUMERICAL SIMULATIONS 
To illustrate the dynamics of the model are simulated with 

a set of parameter values in Table II and the parameters 
1, ,HV VC η   2 1V H,η η and 2Hη  are vary. The initial values for 

experiment 1, 2 and 3 are (0) 5000,HS =  1(0) 10,HE =  
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2 1(0) 50, (0) 20,H HE I= = 2 (0) 60,HI = 1(0) 70000,HR =

2 0 80000HR ( ) ,= 12 (0) 800,HE = 21(0) 200,HE =

12 (0) 300,HI =  

21(0) 100,HI = 22 (0) 600000,HR = (0) 60000,VS =

1 0 100VE ( ) ,= 2 (0) 2000,VE = 1 2(0) 100, (0) 300.V VI I= =  
The simulations are carried out into four experiments.  

Experiment 1:  Infection dies out both strain i and 
stain j 

The system (7)-(23) is first simulated using the parameter 
values in Table II with 10.8, 0.1,HV vC = =η 2 0.3v =η   and 

1 2 0.66.H H= =η η  It follows that reproduction numbers  

1 20.6031, 0.8430R R= =  so that 0 1.sR <  The time series 
simulations of the total number of  infected with strain 1 and 
strain 2 are depicted in Fig. 2. These results show that the 
persistence of strain 1 and strain 2 are dies out. 

Experiment 2:   Infection with strain i  and die out 
strain j  

The time series simulations of the infected human 
population with strain 1 and strain 2 are depicted in Fig. 3 
and 4, respectively. These result depict the infected human 
population with strain 1 establishes itself at steady state (see 
Fig. 3 a) ), while the infected human population with strain 2 
declines to zero (see Fig. 3 b) ). This is verified the 
persistence of dengue with strain 1 while strain 2 dies out 
when 0 1sR >  (that is 1 1R >  and 2 1R < ). Similarly, the 
persistence of strain 2 while strain 1 dies out when 

1 1R <  and 

2 1R >  (that is 0 1sR > ), see Fig. 4. 
In summary, the model undergoes competitive exclusion, 

with strain i driving out strain j if with strain i driving out 
strain j when   1iR >  and 1.jR <   

Experiment 3: Infection with both strains 
When the reproduction number of each strain exceeds 

unity, co-existence equilibrium exists as predicted in Fig. 5. 
These results show that the infected human population with 
strain, which has the higher reproduction number, will 
dominate, but not drive out the infection human population 
with other strain. 

Experiment 4: Comparison of simulation results and 
epidemiological data  

The simulation results of the model  are compared to 
reported values the dengue cases of some province in 
Thailand such as Chachoengsao, Roiet, Zone 13 
(Nakonnayok, Prachinburi, Chachoengsao, Sakaeo, 
Samutprakan) and Zone 18 (Kamphaengphet, Nakornsawan, 
Phichit, Utaitani). The parameter used in simulation is given 
in Table II, except the parameter  , , ,HV Hi ViC η η ,  ,i Viσ σ  for 

1,2i =  and initial conditions are varied in each considered 
area as follows. 

For Chachoengsao: 1 11 8 0 385HV H VC . , . ,= = =η η  

2 2 0.49,H V= =η η 1 1 0 5V . ,= =σ σ and 2 0.01.V =σ  

So that 1S
oR >  (that is 2 14 0322 3 4247 1R . R .= > = > ) and 

initial values are 
1(0) 679370, (0) 50,H HS E= = 2 50 0HE ( ) ,=  

1 0 150HI ( ) ,= 1(0) 2000,HR =
2 (0) 2000,HR =

12 (0) 001 ,HE =  

21(0) 001 ,HE = 12 (0) 150,HI = 21(0) 150,HI = 22 (0) 0,HR =
(0) 5000,vS = 1 20(0) 10 , ) 1 ,0(0 0v vE E= = 1(0) 150,vI =

2 (0) 150.vI =  

For Roiet: 1 11 8 0 385HV H VC . , . ,= = =η η
2 0.49,H =η  

2 0 49V . ,=η 1 2 0.2,= =σ σ  and 1 2 0.1V V= =σ σ  so that 

1S
oR >  (that is 1 22.3188 2.1216 1R R= > = >  ) and initial 

values are  
1 1 2(0) 140000, ( 30) , (0) 3,H H HS E E= = = 1(0) 30,HI =  
 

1(0) 5000,HR = 2 (0) 3000,HR = 12 210(0) , (0) 0,H HE E= =  
 

12 (0) 30,HI = 21(0) 50,HI = 21(0) 50,HI = (0) 60000,VS =  
 

1 20(0) 3 , 10(0) ,V VE E= = 1(0) 120,VI = 2 (0) 90.VI =  
 

For Zone 3: 1 11 8 0 385HV H VC . , . ,= = =η η 2 0.49,H =η  

2 0 49V . ,=η  1 2 0.1428,= =σ σ and 1 2 0.1V V= =σ σ  so that  

1 2 0.1V V= =σ σ  ( that is 1 24 2600 2 3872 1R . R .= > = >  ) and  
initial values are 

1 2(0) 60000, ( 00) , (0) ,0H H HS E E= = = 1(0) 50,HI =  

2 (0) 50,HI = 1(0) 400000,HR = 2 (0) 20000,HR =

12 (0 ,0)HE = 21(0 ,0)HE = 12 21(0) 50, (0) 50,H HI I= =

22 (0) 300000,HR = (0) 70000,VS =

1 2 1(0) 1 , (0) 10 0, (0) 100,V V VE E I= = = 2 (0) 100.VI =  
For Zone 18: 1 11 8 0 385HV H VC . , . ,= = =η η 2 0.49,H =η  

2 0 49V . ,=η 1 1 2 20.5, 0.05, 0.01V V= = = =σ σ σ σ  So that 
1S

oR >  (that is 2 14.0322 3.4247 1R R= > = > ) and initial 
values are  (0) 60000,HS = 1 20(0) , (0) 1,H HE E= =  

1(0) 50,HI =  
 

2 (0) 1,HI = 1(0) 600000,HR = 2 (0) 70000,HR = 12 (0 ,0)HE =  
 

21(0) 1,HE = 12 21(0) 0, (0) 1,H HI I= = 22 (0) 70000,HR =  
 

(0) 60000,VS = 1(0) 1,VE = 2 1 2(0) 1, (0) 1, (0) 1.V V VE I I= = =  
 

All simulation results are displayed in Fig. 6. It is seen that 
the trend of the number of infected humans is similar but not 
fit well to real dengue data that is reported from the bureau of 
epidemiology, Thailand. Whereas the model can predict the 
duration of outbreak.   
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V. CONCLUSION 
The model of dengue with two strains is formulated to 

gain insight into their dynamical features. The study shows 
the following 
1) The associated reproduction number of the two strains 

denoted by 0 ,SR  is derived and given in (25). 
2) The disease-free equilibrium of the model is locally 

asymptotically stable whenever 0 1SR <  (that is the 
associated reproductive number value for each strain is 
less than one). This indicates that the number of infected 
population will be brought to zero if public health 
measures that make the threshold 0

SR  to a value less than 
unity are carried out. 

3) The model has three equilibrium types: disease-free, 
competitive exclusion, and co-existence. 

4) The model undergoes competitive exclusion in the sense 
that the persistence of strain ,i  while strain j  dies out 

whenever  1 ,i jR R> > ( ), 1,2, .i j i j= ≠    
5) The complexity of model makes finding an explicit point 

for co-existence equilibrium impractical. However, the 
numerical simulation is evidence that co-existence 
equilibrium is stable whenever 1,i jR R> >  

( ), 1, 2, .i j i j= ≠ the results also state that the strain with 
the higher reproduction number will dominate, but not 
drive out the other strain. 

6) When the model is use to can predict the transmission of 
dengue in some areas of Thailand by comparing with the 
real dengue data. The results show that the model can 
predict the duration of outbreak but not fit well to the 
number of infected population. This may be the model 
not including the seasonal variation. 
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Fig. 2. Time series plots for the system (7)-(23) for parameter

1 2 1 20.8, 0.1, 0.3, 0.66HV v v H HC           with the other parameter 

values used in Table II, so that 0 1sR   1 20.6031 0.8430 1R R    a) 

Total number of individuals infected with strain 1. b) Total number of 

individuals infected with strain 2.

Fig. 3. Time series plots for the system (7)-(23) for parameter 

1 2 1 21.8, 0.8, 0.02, 0.8, 0.05HV v v H HC         with the other 

parameter values used in Table II, so that 

0 1sR   2 10.9148 1 2.6723R R    a) Total number of individuals 

infected with strain 1. b) Total number of individuals infected with strain 2.

Fig. 4. Time series plots for the Model (7)-(23) for parameter 

11.8, 0.02,HV vC   2 1 20.9, 0.03, 0.8v H H     with the other 

parameter values used in Table II, so that 

0 1sR   1 20.9118 1 3.0981R R    a) Total number of individuals 

infected with strain 1. b) Total number of individuals infected with strain 2.

Fig. 5. Time series plots for the Model (7)-(23) for parameter 

11.8, 0.8,HV vC   2 1 20.5, 0.8, 0.5v H H     with the other parameter 

values used in Table II, so that 0 1sR   2 14.4929 4.1336 1R R    a) 

Total number of individuals infected with strain 1. b) Total number of 

individuals infected with strain 2.
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Fig. 6. Comparison of simulation results (solid lines) and reported valued 

from the bureau of epidemiology, Thailand (dotted lines) for infection case. 
a) Chachoengsao, b) Roi et, c) Zone 13 and d) Zone 18. 

 
TABLE II: PARAMETER OF THE SYSTEM (7)-(23) 

Parameters Description  Values 

HΠ  Recruitment rate of human 30  day-1       [11]

vΠ  Recruitment rate of mosquitoes 4000 day-1   [11]

Hμ  Natural death rate of humans 1/70  years-1[11]

vμ  Natural death rate of mosquitoes 1/14  days-1    [1]

b  Biting rate 0.33-1days-1   [1]

HVρ  Transmission probability from 
infected humans to susceptible 
mosquitoes 

0.75  days-1  [12]

VHρ  Transmission probability from 
infected mosquitoes to susceptible 
humans 

0.75 days-1   [12]

( )1, 2i iδ =  
 

Disease-induced death rate  
for humans infected with strain i  

0.134 day-1  [12]

( )1, 2vi iδ =  Disease-induced death rate  
for mosquitoes infected with strain 
i  

0.077 day-1  [12]

( )1, 2i iγ =  Infectious period in humans with 
strain i  

0.1428 day-1 [3]

( )1, 2i iσ =  Incubation period in human with 
strain i  

 0.5  day-1     [3]

( )1, 2vi iσ =  Incubation period in mosquito with 
strains i   

0.1   day-1     [3]

( )1, 2i iλ =  Enhancement multiple for the 
strain i   

0.66 

( 1, 2)Hi iη =  Modification parameter in human (0, 1)           [12]

( 1, 2)vi iη =  Modification parameter in 
mosquito 

(0, 1)           [12]

HVC  Infection  rate  Assume 
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