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Abstract—In this paper we presented Crank-Nicolson type 

scheme for numerical solution of one dimensional non linear 

Burgers equation with Homogeneous Dirichelets Boundary 

conditions. The difference scheme is shown to be consistent and 

is of second order in time and space. The numerical solutions 

are obtained for two test problems for different values of t and 

constant of diffusivity k. The solutions are compared with 

existing methods. 

 

Index Terms—Absolute error, burgers equation, convergence, 

Crank-Nicolson. 

 

I. INTRODUCTION 

First order non linear partial differential equations (PDE’s) 

model non linear waves and arise in gas dynamics, water 

waves, elastodynamics, chemical reactions, transport of 

pollutants flood and ecological systems. Historically 

comparatively little was known about the extraordinary range 

of behavior exhibited by the solutions of nonlinear PDE’s . 

Burgers equation is natural first step towards developing 

methods for control of flows. It has a large variety of 

applications in modeling of water in unsaturated oil, 

dynamics of soil in water, statics of flow problems, mixing 

and turbulent diffusion, cosmology and seismology. 

The one dimensional non linear Burgers equation was first 

introduced by Beteman [1] who found its steady solutions 

descriptive of certain viscous flows. It was later proposed by 

Burger [2] as one of a class of equation describing 

mathematical models of turbulence. In the context of gas 

dynamics it was discussed by Hopf [3] and Cole [4]. In recent 

years many researchers have used various numerical methods 

specially based on finite difference, finite element boundary  

element techniques and direct variational method to solve 

Burgers equation [5]-[21]. E. Benton and Platzman [22] 

surveyed exact solution of one dimensional Burgers equation. 

In 1997 D.S. Zhang, G. W. Wei and D. J. Kouri [23] solved it 

for high Reynolds number, this simple approach can provide 

very high accuracy while using a small number of grid points. 

In 2005 A. Gorguis gives comparison between Cole Hopf 

transformation and Decomposition method for solving 

Burgers equation [24]. In 2006 Jerome I.V. Lewandowski [25] 

used Marker method which relies on the definition of 

convective field associated with the underlying PDE, the 

information about the approximate solution is associated with 

the response of convective field. In 2006 K. Altiparmak [26] 

gave Economized Rational approximation method using 

Pade’s approximation which is efficient than Rational 

 
Manuscript received March 31, 2013; revised May 31, 2013. 

Sachin S. Wani is with the Department of Applied Mathematics Pillai’s 

Institute of Information Technology New panvel Navi Mumbai, India 

(e-mail: sachin.swani@gmail.com). 

Sarita H. Thakar is with the Department of Mathematics, Shivaji 

University Kolhapur, India (e-mail: saritakolhapur@gmail.com). 

approximation. In 2006 M.K.Kadalbajoo and A. Awasti [27] 

developed stable numerical method based on Crank Nicolson 

to solve Burgers equation. In 2009 J. Biazar and H. 

Aminikhah [28] solve Burgers equation by using variational 

iteration method by which approximate solution can be found 

and which is better than ADM [29]. In 2008 J. K. Djoko [30] 

examine the stability of a finite difference approximation for 

Burgers equation by approximating the nonlinear term by a 

linear expression using techniques based on the boundaries of 

the solution sequence with respect to t  for 𝑡 ∈  0,∞     and 

with the help of discrete Aronwall lemma stability is 

achieved. In 2009 Sachin S. Wani and Sarita Thakar analysed 

stability of Mixed Euler Method for one dimensional non 

linear Burgers equation. In 2009 K. Pandey and L Verma and 

A. K. Verma [31] wrote on difference scheme for Burgers 

Eqaution. In 2011 Kanti Pandey and Lajja Verma gave a note 

on Crank Nicolson scheme for Burgers Equation without 

Hopf Cole transformation solutions are obtained by ignoring 

nonlinear term. Crank Nicolson method is an implicit finite 

difference scheme to solve PDE’s numerically. 

In this paper we present a new difference scheme called 

Crank-Nicolson type scheme. The scheme is obtained by 

discretizing  𝑢𝑡 = 𝑘𝑢𝑥𝑥  like Crank-Nicolson scheme where 

as discretization of 𝑢𝑢𝑥  is obtained by average central 

difference at 𝑡 = 𝑡𝑛  and 𝑡 = 𝑡𝑛+1 so that the scheme remains 

linear at 𝑡 = 𝑡𝑛+1 . The method is shown to be second order 

in time and space and consistent. The solutions of Burgers 

equation obtained by Crank-Nicolson type method are 

compared with numerical solutions obtained in [9], [27], 

[31]. 

The paper is arranged as follows. In Section II exact 

solutions of Burgers Equation for different initial conditions 

are given. In Section III the difference scheme is developed 

the method is proved to be consistent and the scheme is of 

second order in both space and time. In Section IV the 

numerical solutions of certain test problems are obtained by 

Crank-Nicolson type method and results are compared with 

analytical solutions and other numerical methods given in [9], 

[27], [31]. 

 

II. EXACT SOLUTION OF BURGERS EQUATION 

Consider one dimensional non linear Burgers equation 

with homogeneous Dirichlets boundary conditions. 

𝑢𝑡 + 𝑢𝑢𝑥 = 𝑘𝑢𝑥𝑥                            0 < 𝑥 < 1 

𝑢 𝑥, 0 = 𝑢0 , 𝑢 0, 𝑡 = 𝑢 1, 𝑡 = 0.      𝑡 > 0   
(1) 

where k is a constant of diffusivity. 

The exact solution of equation (1) is  

𝑢 𝑥, 𝑡 = 2𝜋𝑘
 𝑎𝑛 𝑒−𝑛2𝜋2𝑘𝑡 𝑛 sin  𝑛𝜋𝑥  ∞

𝑛=1

𝑎0+ 𝑎𝑛 𝑒−𝑛2𝜋2𝑘𝑡 cos  𝑛𝜋𝑥  ∞
𝑛=1

           (2) 

Crank-Nicolson Type Method for Burgers Equation 
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where the Fourier coefficients 𝑎𝑛 , n = 0, 1, 2 ---are obtain 

from initial condition [4] 

1) With the initial condition  𝑢 𝑥, 0 = sin 𝜋𝑥, 10  x  

𝑎0 =  𝑒 − 2𝜋𝑘  −1 1−cos 𝜋𝑥   

1

0

 𝑑𝑥 

𝑎𝑛 = 2  𝑒 − 2𝜋𝑘 −1 1−cos 𝜋𝑥   

1

0

cos 𝑛𝜋𝑥 𝑑𝑥    

𝑛 = 1, 2, 3 − − − 

2) With the initial condition 𝑢 𝑥, 0 = 4𝑥(𝑥 − 1) ,   

10  x  

𝑎0 =  𝑒−
𝑥2

3𝑘
 3−2𝑥 

1

0

 𝑑𝑥 

𝑎𝑛 = 2  𝑒−
𝑥2

3𝑘
 3−2𝑥 

1

0

cos 𝑛𝜋𝑥 𝑑𝑥    

𝑛 = 1, 2, 3 − − − 

 

III. CRANK-NICOLSON TYPE METHOD 

For discretization we use the following notation  

tnttn  0
,  ∆𝑡  is step size in t, xjxx j  0

 

Nj 0 , N ∆𝑥 = 1 .The numerical solution at 𝑡 =

𝑡𝑛𝑎𝑛𝑑 𝑥 = 𝑥𝑗  is denoted by 𝑢𝑗
𝑛 . The solutions at 

ntt   for 

Nj 0  are denoted by  𝑢𝑛 =  𝑢0
𝑛 , 𝑢1

𝑛 − − − 𝑢𝑥
𝑛 𝑇. 

Approximate 𝑢𝑡  by forward difference, u𝑢𝑥 by central 

difference at 𝑡 = 𝑡𝑛  and 𝑡 = 𝑡𝑛+1 so that the scheme will 

remain linear in u at 𝑡 = 𝑡𝑛+1 and 𝑘𝑢𝑥𝑥  is approximated by 

usual Crank-Nicolson expression. Then discretization of 

equation (2.1) gives   

 

𝑢𝑗
𝑛+1 − 𝑢𝑗

𝑛

∆𝑡
+

1

4Δ𝑥
 𝑢𝑗

𝑛 𝑢𝑗+1
𝑛+1 − 𝑢𝑗−1

𝑛+1 + 𝑢𝑗
𝑛+1 𝑢𝑗+1

𝑛 − 𝑢𝑗−1
𝑛    

=
𝑘

2 ∆𝑥 2
 𝑢𝑗+1

𝑛+1 − 2𝑢𝑗
𝑛+1 + 𝑢𝑗−1

𝑛+1 + 𝑢𝑗+1
𝑛 − 2𝑢𝑗

𝑛 + 𝑢𝑗−1
𝑛   

(3) 

Define 𝑝 =
∆𝑡

4∆𝑥
 and 𝑟 =

𝑘∆𝑡

2 ∆𝑥 2 

 −𝑟 + 𝑝𝑢𝑗
𝑛 𝑢𝑗+1

𝑛+1 +  2𝑟 + 1 + 𝑝𝑢𝑗+1
𝑛 − 𝑝𝑢𝑗−1

𝑛  𝑢𝑗
𝑛+1

−  𝑟 + 𝑝𝑢𝑗
𝑛 𝑢𝑗−1

𝑛+1

= 𝑟𝑢𝑗+1
𝑛 +  1 − 2𝑟 𝑢𝑗

𝑛 + 𝑟𝑢𝑗−1
𝑛  

(4) 

We call the scheme (4) as Crank-Nicolson type method. 

We will prove that the scheme given in equation (3.2) is 

consistent and is of order two in space and time. The 

truncation error at 𝑡 = 𝑡𝑛  and 𝑥 = 𝑥𝑗  is given by 

 𝑇𝑗
𝑛+1 = 𝑢𝑡 + 𝑢𝑢𝑥 − 𝑘𝑢𝑥𝑥  −

𝑢 𝑥𝑗 , 𝑡𝑛+1 − 𝑢 𝑥𝑗 , 𝑡𝑛 

∆𝑡

−
1

4∆𝑥
 𝑢 𝑥𝑗 , 𝑡𝑛  𝑢 𝑥𝑗+1, 𝑡𝑛+1 

− 𝑢 𝑥𝑗−1, 𝑡𝑛+1  

− 𝑢 𝑥𝑗 , 𝑡𝑛+1  𝑢 𝑥𝑗+1, 𝑡𝑛 − 𝑢 𝑥𝑗−1, 𝑡𝑛    

+
𝑘

2 ∆𝑥 2
  𝑢 𝑥𝑗+1, 𝑡𝑛+1 − 2𝑢 𝑥𝑗 , 𝑡𝑛+1 + 𝑢 𝑥𝑗−1, 𝑡𝑛+1    

 
 − 𝑢 𝑥𝑗+1, 𝑡𝑛 − 2𝑢 𝑥𝑗 , 𝑡𝑛 + 𝑢 𝑥𝑗−1, 𝑡𝑛    

 

Taylor’s series expansion of above expression about 

 𝑥𝑗 , 𝑡𝑛  gives 

 

    𝑇𝑗
𝑛+1 =  𝑢𝑡 − 𝑘𝑢𝑥𝑥 + 𝑢𝑢𝑥 𝑡

∆𝑡

2
+ 𝑜  ∆𝑡 2,  ∆𝑥 2  

 

Thus along (2.1) truncation error     𝑇𝑗
𝑛+1  is of 

𝑜  ∆𝑡 2,  ∆𝑥 2 . The difference scheme is consistent for 1 

dimensional nonlinear Burgers equation since the truncation 

error approaches zero as ∆𝑡 → 0 𝑎𝑛𝑑 ∆𝑥 → 0. 

 

IV. NUMERICAL EXPERIMENTS AND ANALYSIS 

 
TABLE I: COMPARISON OF ABSOLUTE ERRORS [9], [27], [31] IN THE 

SOLUTION OF (1) FOR PROBLEM 1 WITH K=10,  ∆𝑡=0.0001 AND ∆𝑥=0.025, 

T=0.01 

x Pandey et 

al. 

Kadalbajoo et 

al. 

Without Hopf 

Cole 

Crank-Nicolson 

Type Method 

0.1 0.00016 6E-5 5.78801E-5 5.5967E-5 

0.2 0.00031 0.00011 0.000109996 0.000106788 

0.3 0.00044 0.00016 0.000151182 0.000147685 

0.4 0.00051 0.00019 0.000177403 0.000174629 

0.5 0.00054 0.0002 0.000186149 0.000184737 

0.6 0.00051 0.00019 0.000176667 0.000176642 

0.7 0.00044 0.00016 0.000149991 0.000150777 

0.8 0.00031 0.00011 0.000108805 0.000109482 

0.9 0.00016 6E-5 5.71442E-5 5.68618E-5 

 

TABLE II: COMPARISON OF ABSOLUTE ERRORS [9], [27], [31] IN THE 

SOLUTION OF (1) FOR PROBLEM 1 WITH K=10, ∆𝑡=0.0001 AND ∆𝑥=0.0125, 

T=0.01 

x Pandey et 

al. 

Kadalbajoo et 

al. 

Without Hopf 

Cole 

Crank-Nicolson 

Type Method 

0.1 7E-5 1E-5 1.37807E-5 1.33294E-5 

0.2 0.00014 3E-5 2.61869E-5 2.54419E-5 

0.3 0.00021 5E-5 3.59876E-5 3.52052E-5 

0.4 0.00024 5E-5 4.22225E-5 4.16613E-5 

0.5 0.00025 6E-5 4.42961E-5 4.41193E-5 

0.6 0.00024 5E-5 4.20319E-5 4.22449E-5 

0.7 0.00021 5E-5 3.56792E-5 3.61289E-5 

0.8 0.00014 3E-5 2.58784E-5 2.63157E-5 

0.9 8E-5 1E-5 0.00001359 0.00001377 

 

TABLE III: COMPARISON OF ABSOLUTE ERRORS [9], [27], [31] IN THE 

SOLUTION OF (1) FOR PROBLEM 1 WITH K=1, ∆𝑡=0.001 AND ∆𝑥=0.025, T=0.1 

x Pandey et 

al. 

Kadalbajoo et 

al. 

Without Hopf 

Cole 

Crank-Nicolson 

Type Method 

0.1 0.00016 6E-5 6.10384E-5 4.44569E-5 

0.2 0.00030 0.00011 0.0001156 0.00008722 

0.3 0.00042 0.00016 0.000157849 0.00012590 

0.4 0.00050 0.00018 0.00018329 0.00015688 

0.5 0.00054 0.0002 0.000189452 0.00017538 

0.6 0.00052 0.00019 0.000176365 0.00017622 

0.7 0.00045 0.00017 0.000146518 0.00015543 

0.8 0.00033 0.00048 0.000104112 0.00011242 

0.9 0.00018 0.00026 5.38605E-5 5.159511E-5 

 

Numerical solutions of one dimensional nonlinear Burgers 

equation (1) are obtained by Crank-Nicolson Type method (4) 

for two problems given in section 1 and results are compared 

with existing three methods [9], [27], [31] and exact solution 

given in section 1. It is observed that the the method (4) gives 

more accurate solution than the other methods. Errors in the 
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solution is compared with the errors in numerical solution 

obtained in [9], [27], [31]. Fig. 4 shows the comparison 

between analytic solution and numerical solution of (1) 

obtained by (4). The calculated absolute errors for different 

values of t and constant of diffusivity k are shown in Table I 

to Table VI. The graphs 1to 6 of absolute errors are also given 

for comparison. In graph 7 and 8 we have calculated solutions 

at different values of t and compared with exact solution.It is 

observed that the solution are compatible with the exact 

solution. 
 

TABLE IV: COMPARISON OF ABSOLUTE ERRORS [9], [27], [31] IN THE 

SOLUTION OF (1) FOR PROBLEM 1 WITH K=1, ∆𝑡=0.001 AND ∆𝑥=0.0125, 

T=0.1 

x Pandey et 

al. 

Kadalbajoo et 

al. 

Without Hopf 

Cole 

Crank-Nicolson 

Type Method 

0.1 7E-5 2E-5 1.45914E-5 1.06932E-5 

0.2 0.00014 3E-5 2.76247E-5 2.10603E-5 

0.3 0.00020 4E-5 3.76962E-5 3.05840E-5 

0.4 0.00023 4E-5 4.37257E-5 3.84221E-5 

0.5 0.00025 5E-5 4.51272E-5 4.33974E-5 

0.6 0.00024 5E-5 4.19278E-5 4.41816E-5 

0.7 0.00021 5E-5 3.47543E-5 3.96967E-5 

0.8 0.00016 3E-5 0.000024642 2.96468E-5 

0.9 8E-5 2E-5 1.27275E-5 0.00001495 

 

TABLE V: COMPARISON OF ABSOLUTE ERRORS [9], [27], [31] IN THE 

SOLUTION OF (1) FOR PROBLEM 2 WITH K=1, ∆𝑡=0.001 AND ∆𝑥=0.025, T=0.1 

x Pandey et 

al. 

Kadalbajoo et 

al. 

Without Hopf 

Cole 

Crank-Nicolson 

Type Method 

0.1 0.00012 6E-5 6.34389E-5 4.54183E-5 

0.2 0.00023 0.00011 0.000119993 0.000089086 

0.3 0.00032 0.00016 0.000163549 0.000128584 

0.4 0.00037 0.00019 0.00018952 0.000160327 

0.5 0.00039 0.0002 0.000195514 0.000179487 

0.6 0.00038 0.0002 0.000181728 0.000180695 

0.7 0.00033 0.00017 0.000150809 0.000159687 

0.8 0.00024 0.00012 0.000107093 0.000115585 

0.9 0.00013 7E-5 5.53858E-5 5.279539E-5 

 

TABLE VI: COMPARISON OF ABSOLUTE ERRORS [9], [27], [31] IN THE 

SOLUTION OF (1) FOR PROBLEM 2 WITH K=1, ∆𝑡=0.001 AND ∆𝑥=0.0125, 

T=0.1 

x Pandey et 

al. 

Kadalbajoo et 

al. 

Without Hopf 

Cole 

Crank-Nicolson 

Type Method 

0.1 3E-5 1E-5 1.51440E-5 1.09217E-5 

0.2 6E-5 3E-5 2.86478E-5 2.15248E-5 

0.3 9E-5 5E-5 3.90448E-5 3.12971E-5 

0.4 9E-5 5E-5 4.52233E-5 3.93898E-5 

0.5 1E-5 5E-5 4.65990E-5 4.45943E-5 

0.6 1E-5 5E-5 4.32271E-5 4.55169E-5 

0.7 9E-5 5E-5 3.57791E-5 4.09940E-5 

0.8 6E-5 3E-5 2.53375E-5 3.06639E-5 

0.9 3E-5 2E-5 1.30758E-5 1.54511E-5 

 

  
(a) 

                                                                                                               
(b) 

Fig. 1. Absolute errors for Problem 1 (a) k=10, ∆𝑡=0.0001 and ∆𝑥=0.025, 

t=0.01. (b) k=10, ∆𝑡=0.0001 and ∆𝑥=0.0125, t=0.01. 

 
 

 

(a) 

   
 (b) 

Fig. 2. Absolute errors for Problem 1 (a) k=1, ∆𝑡=0.001 and ∆𝑥=0.025, t=0.1. 

(b) k=1, ∆𝑡=0.001 and ∆𝑥=0.0125, t=0.1. 

 

     
 (a) 

0 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 0.0000

0.0000

0.0001

0.0001

0.0002

X Axis -----> 

Absolute Error  

X against Absolute Error 

Without Holf Cole 
Crank-Nicolson Type  method      

 

0 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 0.0000

0.0000

0.0000

0.0000

0.0000

X Axis -----> 

Absolute Error  

X against Absolute Error 

Without Hopf Cole 
Crank Nicolson Type method 

0 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 

0.0000

0.0001

0.0001

0.0002

X Axis -----> 

Absolute Error  

X against Abslute Error 

 Without Holf Cole 

   
Crank  Nicolson Type Method 

0 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 
0.0000

0.0000

0.0000

0.0000

0.0000

X Axis -----> 

Absolute Error  

X against Absolute Error 

Without Hopf Cole 
Crank Nicolson Type Method 

0 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 0.0000

0.0001

0.0001

0.0002

X Axis-----> 

 
Absolute Error 

X against Absolute Error 

Without Hopf Cole 
Crank Nicolson Type Method 
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 (b)  

Fig. 3. Absolute errors for Problem 2 (a) k=1, ∆𝑡=0.001 and ∆𝑥=0.025, t=0.1. 

(b) k=1, ∆𝑡=0.001 and ∆𝑥=0.0125, t=0.1.  

 

 
(a) 

 

 
(b) 

Fig. 4. Exact and Numerical Solution of Problem 1 (a) and 2 (b) with k=0.1, 

∆𝑡=0.001 and ∆𝑥=0.0125 at different t=0.2, 0.4, 0.6. 

 

V. CONCLUSION 

A finite difference scheme called Crank-Nicolson type 

method is presented for numerical solution of one 

dimensional non linear Burgers Equation with Homogeneous 

Dirichelets boundary conditions. The method is proved to be 

consistent and is of order two in space and time. The 

numerical solution is calculated for two test problems with 

different values of constant of diffusivity k. It is observed that 

the method is more accurate than the existing numerical 

methods [9], [27], [31]. 
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