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 

Abstract—In this paper an integral formula will be derived 

that will compute the velocity of a non-cylindrical flow 

variation in swan neck ducts with prescribed flow 

characteristics. The flow can be characterized by the total  head, 

H(ψ) a function of only the stream function, ψ (x, r) and by the 

function C(ψ) which is a function of the azimuthal 

(circumferential) component of velocity vector, u in cylindrical 

polar coordinates (x, r, ). The solution to the problem is given 

in terms of an integral formula based on Green’s first identity.  

 

Index Terms—Stokes stream function, cylindrical flow, 

non-cylindrical flow, singular integral formula. 

 

I. INTRODUCTION 

This is the second paper in a series of two on cylindrical 

and non-cylindrical flow in the region bounded by two 

coaxial cylinders of varying radii. The first paper Pavlika [1] 

investigates all the possible cylindrical flow variations that 

may exist by considering the separation constant occurring in 

the differential equation that arises naturally when 

considering the flow in the region bounded by the coaxial 

cylinders. If coded and verified and such that software and 

numerical results were to be created and verified this paper 

would be lead to a breakthrough into a phenomenon that has 

never been observed, similar type investigations only being 

carried out by Taylor [2] but in which a closed form 

analytical solution has not been given in the literature. No 

such integral which eliminates singularities in the integrands 

is reported in the literature. The well known equation for the 

stream function ψ (x, r), of a rotating fluid has been examined 

with a view of choosing a new dependent variable in such a 

way that the differential operator becomes the axisymmetric 

form of the Laplace operator (see for example Arfken [3]), 

this is advantageous since this makes the setting up of an 

equivalent integral formula based on Green’s first identity, 

Roach [4], possible since a singular solution to the adjoint 

equation can be obtained. A suitable choice turns out to be 

the axial component of the velocity vector, xu , and for a 

class of flows including solid body rotation, xu is shown to 

satisfy the Helmholtz equation subject to an oblique 

derivative boundary condition. Stoke’s stream function ψ (x, 

r) for steady axisymmetric swirling flow of an 

incompressible inviscid fluid satisfies the equation:  
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where )(H is the total head and 
 ruC )( , with the 

subscript  denoting the circumferential component in 

cylindrical polar coordinates. The formulation would have 

application in the so-called “swan neck” duct connecting the 

compressor (or turbines) in a multishaft gas turbine. As 

shown in Pavlika [1] after using the Euler-Poisson-Darboux 

equation (see Weinstein [5) it can be shown that 

axisymmetric form of the Helmholtz equation is satisfied by 

the axial component of the velocity. So commencing with the 

three dimensional Helmholtz equation:   
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which is self adjoint so that  
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To progress to a solution it turns out to be more convenient 

to work in spherical polar coordinates ( , , )R    to obtain the 

centro-symmetric fundamental solution )(RV  so that  
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With v purely a function of the radius R, then 
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where E and D are constants. Defining the region Γ as the 

interior of the closed surface S, comprising the duct outer and 

inner walls and the upstream and downstream planes, then 

the solution of the three dimensional Helmholtz equation at a 

point P in Γ can be expressed as Green’s formula as  
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where v satisfies Helmholtz equation in Γ except at P where it 

diverges like ||/1 Pxx   . A suitable fundamental solution 

can be obtained from the real part of equation (2)  
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where || PxxR  . In cylindrical polar coordinates 

),,( xy  , with P in the  plane α=0 
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so that v and nv  / depend on α but Ux being an 

axisymmetric solution of equation (1) does not, so that 

formula  (4) gives  
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The contour integral in formula (5) is taken around Σ the 

intersection of the plane α=0 with S and the normal direction 

is always  into Γ where the normals are drawn into Γ only on 

the inner cylinder and downstream plane. Boundary 

conditions can now be used to replace )( xU
n

 on the inner 

and outer duct walls, while on the upstream and downstream 

planes, from the assumption  

of non-cylindrical flow: 
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where the   indicates a sign convention. A suitable 

integration by parts of the integral contribution of the term  
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along the inner and outer cylinders then yields a formula for 

xU  in   in terms of its values on  . The usual limit of this 

formula as P tends to any point on   finally provides a 

singular integral equation (of the second kind) for xu . The 

functions K and 'K  can be expanded in terms of the first and 

second complete elliptic integrals of modulus k  

where  
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2/)('tan xRy   

 

II. DERIVATION OF AN INTEGRAL FORMULA TO ALLOW FOR 

THE POSSIBILITY OF NON-CYLINDRICAL FLOW UPSTREAM 

AND DOWNSTREAM 

 

 
Fig. 1. Diagram showing the discs S1, S2 and S3 in application to the integral 

formula. 

 

Let there exist a flow of fluid along a duct of varying radii 

in the axial direction. The cylinder of the flow is bounded by 



  

the discs S1 and S2 and by a channel wall S3 (as shown in Fig. 

1). On the disc S1:  
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on the outer wall: 
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Now xU satisfies Helmholtz equation thus also satisfies 

the integral formula 
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information is now required about the normal derivative of 

xU . So that on  
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for non-cylindrical flow on the channel walls 
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and as previously shown (on the inner wall) 
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III. DERIVATIVE TERMS 

If R is the distance from any point q on either surface of the 

annulus to fixed point p then   
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Substituting into equation (6) gives  
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Integrating by parts over H-C gives: 
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Hence an integral formula to cope with the possibility of 

non-cylindrical flow upstream and downstream is obtained:  
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Considering the kernel of 
)3(I in the integral set (equation 

(7)) this can be written in the form:  
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where c and  are defined by equation (9), at this point in the 

analysis the complete elliptic integrals of Legendre may be 

invoked to evaluate the integrals of the equation set (7) this 

would introduce the use of the following reduction formulae 

of the form:  
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This would not be a difficult exercise but an alternative 

method was preferred.  

 

IV. THE NUMERICAL SOLUTION VIA THE INTEGRAL 

FORMULA 

In the integral formula (formula (8)), if far upstream and 

downstream (i.e. at x )  there is cylindrical flow (i.e. 

on the discs 1S  and 2S ),  then with slight manipulation, 

formula (8) can be written in the form   
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taking a set of q positions  1 2 2, ,......, Nq q q  on the boundary 

positions on which U is unknown, a suitable integration 

technique is used to represent each element of boundary 

contribution linearly in terms of the rq

 

and 1rq  values , 

that is replace the integral by a summation. Then let p occupy 

each of the q positions in turn (see Fig. 1 and Fig. 2), so that 

for i=1, 2, ...., 2N 
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For i=1, 2, 3, …, 2N. The function f of KU will of course 

depend on which numerical technique is being used. If the 

trapezoidal technique is being used then the equations 

become (for i=1, 2, 3,…, 2N)  
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Fig. 2. Diagram showing the discs S1, S2 and S3 in application to the integral 

formula. 
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In matrix-vector form the equations become 
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i.e. RUA  . Equation (12) can now be solved by LU 

decomposition.     

 

V. SPECIAL CONSIDERATION WHEN THE INTEGRANDS 

BECOME SINGULAR 
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 , so that 2 , 0,1, 2,......n n     Writing 

the integral expressions (equations(s) (7)) in the form
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with 0  and xxx qp   , yyy qp  the first term 

in equation (13) gives 
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hence the integrand is finite in the limit as 0  , 

qp xx   , and qp yy  i.e. there is a removable 

singularity, with qp xx  , qp yy   the second term in 

equation (13) gives:  
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limits  of 

 

to   have been used since the integrand is 

even and integration through the singularity is performed. 

Therefore 
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which is now well behaved. The integrals can now be 

evaluated numerically, the notation 
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| denotes that in the 

integral the point where p and q coincide has been excluded 

since its integral contribution is zero. Now let’s consider the 

term 
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which occurs in the integral over H-C in equation (11), where  
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dropping now the arguments in these temporarily introduced 

functions, considering the first three terms in expression (14) 

and denoting this integral as 1R  say then 
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so with all integrals evaluated numerically the problems with 

the singularities have been removed. Considering now the 

last two terms in equation (14) and denoting these by 2R  say 

then 
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so that when 0,,  qPqP yyxx the first term 

vanishes so that  
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i.e.  

 

2

2 ,
0 0

( ) 2 ( , , ) |
P q PC q q x x y yR A R H Jy d H J y d

 

        

finally for the term )1()( Ixxy Pqq  , special attention is 

required only when the point P is on the discs 1S  or 2S , or 

in one of the four corners. Using a Plemelj formulae type 

analysis or y indenting the contour it may be shown that on 

the discs
1S  or 

2S   the limiting value of this expression is 2  

and for the corners it is  . 

 

VI. CONCLUSIONS 

An integral formula has been derived that allows for the 

computation of the velocity in a swan neck duck that allows 

for the possibility of non-cylindrical flow. The case when the 

integrands become singular have been examined so that all 

singular terms are catered for. This paper along with the 

accompanying paper by Pavlika[1] when coded and verified 

should make a significance advance in non-cylindrical flow 

bounded by two coaxial cylinders of varying radii. The 

matrix formulation uses the trapezoidal rule to perform the 

numerical integration but other techniques such as Simpson’s 

rule or quadrature techniques may be required.  
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