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Abstract—The Hall effect is the generation of a current 

perpendicular to the direction of applied electric as well as 

applied magnetic field in a metal or a semiconductor. It is used 

to determine the concentration of electrons. The Quantum Hall 

effect has been discovered by von Klitzing in Germany and by 

Tsui, Stormer and Gossard in U.S.A. Robert Laughlin also in 

U.S.A. explained the quantization of Hall current by using “flux 

quantization” and introduced incompressibility to obtain 

fractional charge. We have developed the theory of the 

quantum Hall effect by using the theory of angular momentum. 

Our predicted fractions are in accord with those measured. Von 

Klitzing in 1985, and Tsui, Stormer and Laughlin in 1998 

received the Nobel prize for their discoveries.  In this lecture, we 

report a review of the subject as well as emphasize our 

explanation of the observed phenomena. We use spin to explain 

the fractional charge and hence we discover spin-charge 

coupling. We find a new way to quantize the flux and compare 

our explanation  with other prize winning researches. 

 

Index Terms—Angular momentum, flux quantization, hall 

effect, modified landau levels, modified lande’s g value formula.  

 

I. INTRODUCTION 

The ordinary Hall effect was discovered by Edwin Hall [1] 

in 1879. In 1930, Landau showed that the orbital motion of 

the electron gives magnetic susceptibility. In 1978 K. von 

Klitzing and Th. Englert [2] found a plateau in the Hall effect. 

In 1980 von Klitzing et al. [3] found the value of h/e2 from 

the plateau in the Hall effect. In 1985, Klitzing was awarded 

the Nobel prize in Physics for the discovery of quantum Hall 

effect. In 1982, D. C. Tsui, H. L. Stormer and A. C. Gossard 

[4] discovered the steps at fractional numbers which was 

extended by Willet et al. [5]. Laughlin wrote a wave function 

which gave the ideas of a fractional charge [6]. Shrivastava [7] 

wrote the correct theory which agrees with the experimental 

data. In 1998, Tsui, Stormer and Laughlin were awarded the 

Nobel prize. 

A. Applications of the Hall Effect 

1) Hall probe. The detection of magnetic fields is often 

done by using Hall currents. 

2) Hall effect sensors. The sensor  responds to changes in 

the magnetic field intensity. 

3) Hall effect motors and switches. 

The force is F= e vxB so that the Hall voltage is, V= 

IB/necd 

where I is the Hall current, B is the magnetic induction, n the 

electron concentration, e is the electron charge, c is the 

velocity of light and d is the thickness of the sample as shown 

 
Manuscript received February 7, 2013; revise March 22, 2013. 

K. N. Shrivastava is with the University of Hyderabad, Hyderabad 

500046, India (e-mail: keshav1001@yahoo.com).  

 

in the Fig. 1. 

 

 
Fig. 1. The Hall voltage is measured orthogonal to both the applied electric as 

well as the magnetic field. 

 

B. Two Dimensional Electron Systems 

A two dimensional electron system is formed in a 

heterostructure which has layers of GaAs over AlGaAs. The 

energy gap of GaAs increases upon Al doping. When GaAs 

is doped with donors at zero temperature the Fermi level lies 

higher than the bottom of the conduction band. The electrons 

bound to donors move into GaAs conduction band and the 

process stops when some proportion of electrons have moved. 

The electrons in the inversion layer are two dimensional as 

shown in Fig. 2. 

The average drift velocity of the electron subjected to the 

electric field is, 

Vd=-eE/m                                     (1)                                                       

where E is the electric field, m is the electron mass and  is 

the mean life time so that the  current density is, 

 j=-neVd=oE                               (2)                                                                                                

where 
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o=ne2/m                                 (3)   

                                                                                                    

where n is the electron density. In the presence of a steady 

magnetic field, the conductivity and resistivity become 

tensors/matrices, 

 

 

 
Fig. 2. To make a two-dimensional electron system, layers of AlGaAs are 

deposited over GaAs.  
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We take x and y axes in the 2-dimensional plane, to obtain, 

ix= ,yxyxxx EE    

 

iy= yyxxyy EE                              

(5)

                                                                  

 

Owing to the isotropy, xx=yy and xy=-yx. The first one 

is called the diagonal conductivity and the second one is 

called the Hall conductivity. The relation between 

conductivity and resistivity is, 

 

xx=yy= 
22

xyxx

xx






                 (6)                                                                                

for the diagonal resistivity and for the Hall resistivity, we 

obtain, 

 

xy= - yx= - 
22

xyxx

xy






               (7)                                  

 

We measure these quantities by connecting various leads 

as given in Fig. 3. 

 
Fig. 3. The sample with the magnetic field B and the current I perpendicular 

to it.  

 

The wires are connected to measure Hall voltage 

perpendicular to both I and B in various directions. W is the 

width of the sample and L is the length. 

In the case of homogeneous current in the y direction, 

ix=I/W and iy=0. The electric field is given by, Ex=V12/L and 

Ey=V13/W so we have, xx=V12W/IL and yx= V13/I=RH. The 

Hall resistivity in two dimensional electron system is the Hall 

resistance per unit area. According to the Drude (ordinary 

non-interacting metals) theory, 

xx=1/o=m/ne2 and xy=B/nec in a weak magnetic field. 

The Hall resistivity is inversely proportional to the electron 

density and independent of mean scattering life time. In 

strong magnetic fields, there are new phenomena. Von 

Klitzing found the plateau in the Hall resistivity which gave 

the correct value of h/e2. One of his plateaus is given in Fig. 4. 

We see from the plot that (i) there is a plateau region in which 

the Hall resistivity remains constant.  As the electron density 

is varied in this region the diagonal resistivity is almost zero. 

(ii) The value of the Hall resistivity in the plateau regions is 

exactly equal to h/e2 divided by an integer. Therefore, the 

Hall conductivity xy in the plateau region is “quantized” into 

integer multiples of e2/h. This phenomenon was called the 

“integer quantized Hall effect (IQHE). Since the bending 

point occurs a little bit earlier than the plateau, the value is 

uncertain by that much. 

 

II. QUANTUM HALL EFFECT 

A. Flux Quantization and the Hall Effect. 

Introduction of the flux quantization immediately  explains  

von Klitzing’s plateau. We have the Hall resistivity as, 

 

=B/nec                                             (8)                                                                                                            

 

where B is the magnetic field. According to flux quantization, 

the field in a certain area, A,  is quantized, 

B.A=mo                                           (9)   

 

where the magnetic flux quantum is, o=hc/e. Substitution of 

(9) into (8) gives the integer quantized Hall effect as, 
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The quantum Hall effect thus is the quantization of Hall 

resistivity as, 

  = 
2ie

h
.                     (11)                                                       

                                                                                                              
Fig. 4. The Hall resistivity shows plateau at high fields. The picture shows 

von Klitzing’s data at a field of 13 Tesla (13x104Gauss). 

 

 
Fig. 5. The data of Hall resistivity showing plateau at 1/3 below a 

temperature of 1 K. (D.C. Tsui, H.L.Stormer and A.C. Gossard). 

Hence the charge of the quasiparticle is ie . Here i=integer. 

The charge thus becomes 1e, 2e, 3e, …, ie, … . von Klitzing 

obtained the correct value of the charge for i=1. So the value 

of h/1e2 became “one von Klitzing”. When this experiment 

was repeated with cleaner samples with higher electron 

mobility, with higher magnetic fields and lower temperatures, 

it  lead to the discovery of i=1/3 plateau which gave birth to 

the fractional charge. We show the data of Tsui, Stormer and 

Gossard in Fig. 5 with plateau at 1/3. Since this fractional 

value occurred in the middle of various highly degenerate 

Landau levels, where no gap is apparent, the observation 

could not be explained by the experimentalists by using the 

non-interacting quantum mechanical theory. It was thought 

that the observation is a result of the many-body effects of 

electron interactions. Subsequent experimental work showed 

a lot many more plateaus which are displayed  in Fig.6. We 

will see that there is no need of interaction to explain the 

plateau at 1/3. 

 
 

 
Fig. 6. The fractional charges seen symmetrically around ½. 

B. Laughlin’s Theory 

Laughlin made the first efforts to explain the quantum Hall 

effect. The flux quantization was immediately found to 

explain at least the integer quantized Hall effect. 

Subsequently, Laughlin started from first principles using the 

Hamiltonian, 
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where j and k sum over N particles and V is the potential due 

to nuclei. The repulsive Coulomb interactions can produce 

the plateaus only when flux quantization is considered. A 

trial wave function of the form given below, 
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with =1/m , 
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and  is a multicenter integral, to solve the Schrodinger 

equation to find the ground state. Laughlin obtained the 

approximate energy expression in terms of m as well as 

computed exactly.  By using “incompressibility”   the charge 

of the particles is fixed at 1/3 and 1/5. Unfortunately, there is 

area in the flux quantization which must also be fixed, 

otherwise the charge will leak.  Laughlin also shared the 1998 

Nobel prize with Tsui and Stormer but it is now believed that 

Laughlin’s wave function is not relevant to explain the data. 

C. Shrivastava’s Theory 

We consider that electrons have spin as well as the orbital 

angular momentum so that, 
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Multiplying both sides by j = l +s and taking eigen values, 
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(16) 

 

Substituting s=1/2 and j = l  (1/2) we get, 

12 




l
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For gs=2, gl = 1, we find, 

g = 

12

1
1




l
  .                                            (18) 

                                                                                                                                                          

The equation (17) has both the signs for the spin. The 

cyclotron frequency is, 

mc

eB
                             (19)                                                  

From the charge, e in the cyclotron frequency, we generate 

the charge of a particle. It is also possible to obtain the charge 

from the e in Bohr magneton. Corresponding to the cyclotron 

frequency, the voltage along y direction is, 

 

=eVy.                          (20)                                                            

 

or, 

 


mc

eB
=eVy. Multiplying this expression by e/h, we get, 
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which is the current in x direction, so that the resistivity, 

 

xy= 2e

h
                       (22)                                                                                                     

 

The Sz=1/2, and the energy in a magnetic field is gBH.S, 

so correcting B in the cyclotron frequency we find, 
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For l =0, g=2,  

Ix= yV
h

e 2

                    (24)  

                                                                                                      

which describes the quantized current correctly for =1. 

From the above equations we have 
 g

2

1


 which gives the 

filling factor, one for + sign and the other for – sign as in (18). 

For l =0, we obtain (1/2)g+=1 and (1/2)g-=0 and other values 

as given in Table 1.The Landau levels are introduced by 

multiplying the above values by n so that =n(
2

1 g) so we 

can multiply the tabulated values by an integer when needed. 

The values of xx and xy for a single interface of 

GaAs/AlGaAs have been measured by Willet et al at 150 mK. 

The values predicted in the Table I are exactly the same as in 

Willet’s experimental data shown in Fig. 7. The values 

shown in the figure occur in two sets, 

The values 2/5, 3/7, 4/9, 5/11, 6/13, … etc. and 2/3, 3/5, 

4/7, 5/9, 6/11 etc. The predicted values in the table are the 

same as in the experimental data. Using the table 1, when we 

multiply the values by n we can interpret all of the 

experimentally measured values. The columns of Table I 

belong to two signs of spin, one belonging to +1/2 and the 

other to -1/2. For the cyclotron frequency c=gBB where 

B=e/2mc is the Bohr magneton. Therefore, (1/2)g can be 

considered to be the effective charge, eeff= ege 
2

1 . In Table 

I, we see two series, 
12 


l

l


  and 
12

1






l

l


 which can be 

used to explain the high Landau levels easily. 

Eisenstein et al have found that for the higher values of the 

Landau level quantum number, n,  the number of fractions 

observed are much less than at the lowest Landau level. At 

the magnetic field of 4 or 5 Tesla only a small number of 

fractions are observed, the strongest ones are at: 8/3, 5/2 and 

7/3. The series )12/( ll  is the particle-hole conjugate of 

).12/()1(  ll  For l=7, two values, 7/15 and 8/15 are 

predicted and for l= the value is ½. When the same particle 

occurs in different levels its charge remains unchanged. We 

can multiply the values by n=5 so that the predicted values of 

½, 7/15 and 8/15 become 5/2, 7/3 and 8/3. These predicted 

values are exactly the same as those observed experimentally 

by Eisenstein et al. Thus, 7/3 is the particle-hole conjugate of 

8/3 as seen in Table II for n=5. 
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TABLE I: THE PRINCIPAL FRACTIONS OBTAINED FROM THE TWO SERIES 

l (1/2)g-=l/(2l+1) (1/2)g+=(l+1)/(2l+1) 

0 0 1 

1 1/3 2/3 

2 2/5 3/5 

3 3/7 4/7 

4 4/9 5/9 

5 5/11 6/11 

6 6/13 7/13 

 1/2 1/2 

 

 
Fig. 7. The experimental data on Hall resistivity showing fractions of 

charges. 

 

 
Fig. 8. Hall effect data showing plateau at 1/3. The observed series of charges 

are exactly the same as in Table I. 

 

For a long time only odd denominators were reported 

which show that even denominators are weak. After that even 

denominators as well as even numerators with odd 

denominators are found. We go back to the same formula, 

12

2

1





l

sl . When s=1, l=0, it is 3/2 for + sign. Hence for electron 

clusters or pairs the fraction has even denominator. Since the 

number of particles is larger than one its probability becomes 

small so these plateaus are weak but the same theory explains 

the even denominators. There is a limiting value of the series 

which also gives ½. One can introduce a Fermi surface at n/2, 

Thus ½, 2/2, 3/2, 4/2, 5/2, 6/2 and 7/2 are predicted which are 

observed by Yeh et al. [8] as shown in Fig. 9. 

 

 
Fig. 9. The predicted n/2 is observed in this experimental data. 

 
TABLE II: EFFECT OF N THE LANDAU LEVEL NUMBER 

l l/(2l+1) (l+1)/(2l+1) nl/(2l+1) n(l+1)/(2l+1) 

 1/2 1/2 5/2 5/2 

7 7/15 8/15 7/3 8/3 

 

It has been reported by Yeh et al. [8] that the effective 

mass and g factor of some of the fractions are equal to those 

of others. We have shown that the effective mass can be 

equal only when the two quasiparticles are particle-hole 

conjugates. The particle-hole conjugates should obey the 

following relation, 

 

p+h=1                                   (25) 

                                                                                                                       

The values given in Table I always obey this relation. 

D. Half filled Landau Level 

The l = in the two series produces, 
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One ½ comes from the right and the other from the left  

when magnetic field is varied, i.e., one while increasing the 

field and the other while reducing. One can go from 1/3 to ½ 

by reducing the field while from 2/3 to ½ is obtained by 

increasing the field. We can go from 1/3 to 3/5 by reversing 

the spin and increasing the l. Similarly from 2/3 to 2/5 by 

reducing the spin and increasing l. In this way angular 

momentum is conserved. One of the ½ values is like an 

electron (1/2)A and the other is like a hole, (1/2)B, (A for + 

series and B for – series). Since the electron and the hole are 

separated by a distance, this state is compressible. When we 
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multiply this result by n, the Landau level quantum number, 

we obtain: ½, 2/2, 3/2, 4/2, 5/2, …, which are in agreement 

with data. 

E. Effective Charge 

We discussed the Laughlin’s wave function earlier. Here 

the repulsive Coulomb interactions can not give rise to a 

fractional charge of 1/3. It is first assumed on the basis of 

experimental data and then substituted in the theory. 

Laughlin’s charge is independent of spin but in our theory it 

depends. In Laughlin’s theory a particle of charge 1/3 is 

produced but in our theory, splitting occurs in fractions of 1/3 

and 2/3, etc. 

Laughlin’s 1/3 charge. 

 
 

 

Shrivastava’s theory. 

 
 

(1/3)e+(2/3)e =1e 

 

(2/5)e+(3/5)e=1e, etc. 

 

Fig. 10. There is a difference between Laughlin and our 

theories. The fractionalization in Laughlin’s theory is 

independent of spin. Whereas in our theory spin plays an 

important role in determining the fraction. 

F. Dirac Equation 

The basic idea of Dirac equation is to have space-time 

symmetry and the constancy of velocity of light, so that 

instead of p2/2m, the kinetic energy appears as c.p and the 

wave equation becomes, 
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The free particle solutions of which are, 

 
2/14222 )( cmpcE  .         (28)  

                                                                                       

This equation gives the correct magnetic moments for the 

proton as well as for the neutron subject to using the mass of 

the respective particle and an appropriate g value. In the case 

of electron Lande’s formula, 
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with positive spin is used. In our case, the effective charge 

and hence the magnetic moment is determined by the g 

values. Hence, our method of defining the charge of the 

electron  is the same as that for the magnetic moments of 

proton and neutron. 

G. Shubnikov-de Haas Effect 

At low temperatures, the integration over the Fermi 

distributon leads to x/sinh x 

Type expression which is called Dingle’s formula. The 

spin symmetry is found to modify this formula which 

determines the oscillation amplitude of resistivity as a 

function of magnetic field, called the Shubnikov-de Haas 

effect. Our theory introduces the effective charge so that the 

cyclotron frequency gets fractionalized resulting into m/ 

which for =1 becomes m, the electron mass. Thus, we have 

taken into account, the spin-charge fractions, to obtain the 

correct mass. For example, at certain magnetic field 1.5 m is 

found instead of m. The mass of the electron relative to band 

value as a function of carrier density deduced from 

Shubnikov-de Haas effect in GaAs/AlGaAs heterostructures 

is shown in the Fig. 11. The factors 1 and 2/3 are found to 

arise from the spin-charge effect of Shrivastava. The 

experimental data is obtained from Tan, Stormer et al. [9 ]. 

The dashed line is found by Kwon et al on the basis of small 

self energy corrections due to many body perturbative 

interactions. The factors of 1 and 2/3 in the mass are found by 

us. The mass of the free electron is me and the screening 

radius is deduced from the density, n, per unit area. We find 

that m/ occurs in place of m for the mass of the electron in 

the Shubnikov-de Haas (SdH) effect. In fact, many other 

fractions of the mass of the electron given in Table 1, become 

allowed so that the electron really “falls apart”. The 

oscillations due to flux quantization allow the measurement 

of m/h2. The flux quantization in the Shubnikov-de Haas 

effect leads to “quantized Shubnikov-de Haas effect”. 

Therefore, we observe consequences of the effect of flux 

quantization on the Shubnikov-de Haas oscillations. There 

are zeroes in the resistivity at certain fields. There is a 

spin-charge effect so that the spin flip corresponds to a 

change in the charge. 

The Shubnikov-de Haas effect uses quantization of 

Landau levels but not the flux quantization. Hence, we find 

that there is a “quantized Shubnikov-de Haas effect” which 

measures the m/h2. We find that when fractional values of    

are taken into account, the mass of the electron, equal to band 

mass in GaAs/AlGaAs is obtained. When magnetic field is 

varied, the different values of n cross the Fermi energy at 

different fields resulting into oscillations in the resistivity as a 

function of magnetic field. The oscillating resistivity is given 

by, resistivity is given by, 
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The cosine factor also leads to zero resistivity when ever, 
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so that the resistivity vanishes when B satisfies the above 

formula. We introduce the flux quantization so that the 

exponential factor in (30) becomes, 
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so that m/h will be measured from the oscillations. 

Introducing the flux quantization in the argument of Sinh 

factor, we obtain, 
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which does not have the charge but measures m/h. In the 

experiments the factor measured is m*g*/n so it is clear that 

the mass and g get mixed. 

H. Spin-Charge Locking 

The charge of the electron may be described by matrices 

just as the angular momentum is. When the spin is aligned 

along the charge, such as sx parallel to ex, the arrangement is 

called the spin-charge locking. Taking our effective charge 

expression for eeff/e=(1/2)g we find the dot product of spin 

and charge to find, 
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which produces spin-orbit and spin-spin interactions and 

there is spin divided by 2l+1. That is what makes it difficult 

to detect this type of effect.

 

 

We have

 

thus found the correct explanation of the 

experimentally observed quantum Hall effect. We find that 

angular momentum gives rise to fractional charge. Therefore, 

there is a spin-charge effect, i.e., under high magnetic fields,

 

the spin determines the charge the Lande’s formula is 

replaced by a linear formula and Landau levels are modified

 

[11-24].

 

Laughlin’s wave function is not the interpretation of 

quantum Hall effect [25].

 

 

III.

 

HELICITY IN QUANTUM HALL EFFECT

 

We look at the charge of the electrons in the quantum Hall 

effect  as

 

e*=(1/2)g±e.

 

For l

 

= 0, 

 

 

see 
2

1
/*

                                  (35)

 

 

Hence we predict particles of charge  0 and 1. The particle 

of charge zero uses the negative sign and hence its helicity is 

negative. The particle of charge 1 uses the positive sign. 

Hence its helicity is positive. The particles occur in pairs. 

Hence particle is defined by positive helicity and its charge is 

equal to that of the electron charge. The particle of charge 

zero has negative helicity and hence it is the antiparticle 

analog of the electron of charge 1. 

Particle: helicity positive, charge =1, 

Antiparticle: helicity negative, charge =0. 

For l =1, s=1/2, e*=1/3 with negative helicity and e*=2/3 

for positive helicity. These values are exactly the same as 

observed in the experimental data. Hence we can determine 

the helicities of all of the plateaus. The particle of charge 1/3 

is left handed. Li et al. [10] have performed the experimental 

measurements in AlGaAs from which we observe that the 

plateaus occur at, 1/5, 2/9, 2/3, 3/5, 2/5, 1/3, 5/3, 4/3, 4/7, 

7/11, 3/7 and 63/100. 

We explain all of these values and determine the helicity in 

each case. 

1) For 2l+1=5, l =2, s=1/2, the principal fractions occur at  

l/(2l+1) and ( l +1)/(2l+1) so that 2/5 has negative 

helicity and 3/5 has positive helicity. The resonance 

occurs at 3/5-2/5=1/5. This explains the plateau at 1/5 as 

a “resonance”. It belongs to mixed helicity. It can rotate 

and the velocity can change sign during rotation such 

that 3/5 can become 2/5 and 2/5 can become 3/5 so that 

3/5+2/5=2/5+3/5 =1 becomes a particle of charge 1 with 

mixed helicity and 3/5-2/5 =1/5 becomes 2/5-3/5=-1/5 

which is a hole in the band theory. The hole has the 

charge of opposite sign compared with that of the 

electron. Thus we have particles of mixed helicities with 

charge ±1/5 as well as 2/5 and 3/5. 

2) The charge 2/9 has the denominator of 2l+1=9. Hence, l 

=4. The l /(2l+1)=4/9 and (l +1)/(2l+1) = 5/9. The 

resonance occurs at 5/9-4/9=1/9 and 4/9 has negative 

helicity whereas 5/9 has positive helicity. The charge 1/9 

has mixed helicity and the two particle state at 

1/9+1/9=2/9 has mixed helicity. 

3) The state 2/3 has l =1 and (l +1)/(2l+1)=2/3 has positive 

helicity and l/(2l+1)=1/3 has negative helicity. 

4) The states 2/5 and 3/5 are the l =2, s=1/2 with 

l/(2l+1)=2/5 for negative helicity and (l +1)/(2l+1)=3/5 

for positive helicity. 

5) The state 5/3>1 is not due to the principal fractions. It 

requires that a contribution should come from the 

bosonic character of the Landau levels. It is possible to 

make 5/3 as 1/3+1/3+1/3+1/3+1/3=5/3 which is of 

negative helicity. It is also possible to make 

2/3+2/3+1/3=5/3 which is of mixed helicity. It can rotate 

to make 2/3+1/3+2/3=5/3 which is an example of 

“reversed helicity”. It is possible to make a state 

1/3+1/3+2/3=4/3 which is a case of mixed helicity. If 

2/3+2/3+1/3=5/3 is a particle then 1/3+1/3+2/3=4/3 is 

the antiparticle analog of 5/3. The 4/3 as well as 5/3 are 

degenerate because there is more than one way of 

making them. The state 2/3+2/3=4/3 as well as 

1/3+1/3+2/3=4/3 are degenerate. 

6) The denominator 2l+1=7 is made from l = 3. Hence, the 

principal value for negative helicity  l /(2l+1)=3/7 and 
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for positive helicity, ( l +1)/(2l+1)= 4/7. 

7) For 2l+1=11, l =5. Hence the principal value for positive 

helicity is 6/11 and for negative helicity it is 5/11. The 

resonance occurs at 6/11-5/11=1/11. The sum process 

gives 6/11+1/11 =7/11 which is of mixed helicity. 

8) The value of 63/100 can be written as 

(1/2)(63/50)=(1/2)(1/2)(63/25). For a large l =12, 2 

l+1=25. Hence 12/25 and 13/25 are the 

particle-antiparticle conjugates. The 63/25 is the sum as 

50/25+13/25=2+13/25 which is above the second 

Landau level. The flux quantization occurs at n’hc/e. For 

n’=2 the charge reduces to ½ as hc/(e/2) so that we can 

reduce the charge to ½ of its value. Hence 63/25 

becomes 63/50. For l +(1/2)±s=63, l =12 we have 

±s=63-12-(1/2)=101/2 which is possible in a cluster of 

electrons. For Landau levels, for g1=0, n2=0, 

222
4

1
)

2

1
(

2

1
gng 
                       

(36)
 

Hence a factor of ¼ comes so that 63/25 becomes 63/100. 

The Landau levels with suitable quantum numbers with 

positive helicity explain the value of 63/100. In this way, the 

“principal fractions”, the resonances, the sum process as well 

as clustering explain the experimental data of  AlGaAs. 

9) For s=0, (1/2)g=1/2 so that e*/e =1/2 for both helicities. 

For s=0, the concept of particle and antiparticle 

disappears and the particles are said to become 

“Majorana type”. 

 

IV. BREMSSTRAHLUNG 

Bremsen means to brake (slow down) and Strahlung 

means radiation, i.e., radiation produced by slowing down 

the electrons. The electron with spin ½ and energy E2 slows 

down to a lower energy E1 and the energy is conserved by 

emission of radiation. There is an electron of energy E2 in the 

initial state in the initial state and there is an electron with 

energy E1 as well as a photon in the final state, E2=E1+h. In 

the quantum Hall effect, a particle of charge 1/3 travelling 

with negative helicity (left handed) emits a photon 

(unpolarized) and a particle of charge 1/3 continues to 

propagate. It is possible that a particle of charge 1/3 emits a 

particle of zero charge and a particle of 1/3 charge. A particle 

of charge 2/3 moving with positive helicity can slow down to 

emit two particles one of charge 2/3 and the other of charge 

zero. 

 

V. CONCLUSION 

The quantum Hall effect first observed by von Klitzing et 

al had no theory at all and the origin of fractions has not been 

explained by them. In particular they have not explained the 

fractional charge at which the plateaux occur. We have 

explained the fractions from our original theory [7] and found 

that Lande’s as well as Landau’s theories require 

modifications. The role of angular momentum in the 

understanding of the quantum Hall effect is quite clearly 

demonstrated.  

 

 
Fig. 11. The mass of the electron deduced from the amplitude of oscillations 

as affected by our charge factors. 
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