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Abstract—The existence, uniqueness and continuous 

dependence of a mild solution of a Cauchy problem for 

semilinear impulsive first and second orderfunctional 

differential-equations with nonlocal conditions in general 

Banach spaces are studied. Methods of fixed point theorems, of 

a 𝑪𝟎 semigroup of operators and the Banach contraction 

theorem  are applied. 

 

Index Terms—Functional-differential equations,impulsive, 

mild solution, nonlocal conditions, semilinear. 

 

I. INTRODUCTION 

Many evolutionary processes in nature are characterized 

by the fact that at certain moments of time they experience an 

arbitrary change of the states. Therefore, the theory of 

impulsive differential equations is richer than that of the 

corresponding non-impulsive differential equations and 

repeats its development (see monographs [1], [2]. The theory 

of impulsive differential equations is quite new and is one of 

the attractive branches of differential equations which has 

extensive realistic mathematical modeling applications in 

physics, chemistry, engineering, and biological and medical 

sciences.  The nonlocal condition is a generalization of the 

classical initial condition. A Banach space is a normed linear 

space that is a complete metric space with respect to the 

metric derived from its norm [3], [4]. A normed linear space 

is a metric space with respect to the metric 𝑑 derived from its 

norm, 𝑑 𝑥,𝑦 =  𝑥 − 𝑦 . If  𝑋,𝑑 is a metric space, then a 

contraction of 𝑋  (also called contraction on 𝑋 ) is a 

function𝑓:𝑋 → 𝑋 that satisfies 

 

∀𝑥, 𝑥 ′ ∈ 𝑋:   𝑑 𝑓 𝑥 , 𝑓 𝑥′  ≤ 𝛼𝑑 𝑥, 𝑥′  

 

for some real number 𝛼 < 1 . Such an 𝛼  is called a 

contraction modulus of 𝑓. Every contraction mapping on a 

complete metric spacehas a unique fixed point. (This is also 

called the Contraction Mapping Theorem.) If 𝑇  is a 

contraction on a complete metric space  𝑋,𝑑  and 𝛼 is a 

contraction modulus of𝑇, then for every𝑥 ∈ 𝑋, 

 

∀𝑛 ∈ ℕ:   𝑑 𝑇𝑛𝑥, 𝑥∗ ≤ 𝛼𝑛𝑑 𝑥, 𝑥∗ , 
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where 𝑥∗ is the unique fixed point of𝑇. The generator 𝐴 of a 

𝐶0semigroup𝑈 is the operator 

 

𝐴𝑥 ≔ lim
→0

1


 𝑈 − 1 𝑥 , 

 

defined for all those 𝑥 ∈ 𝑋  for which this limit exists.  

Generally speaking, we say that a 𝐶0semigroup is a strongly 

continuous one parameter semi-group of bounded linear 

operators on a Banach space 𝑋.  A𝐶0semigroup (or strongly 

continuous semigroup) is a family 𝑇 =   𝑇 𝑡  𝑡 ∈ ℝ+ of 

bounded linear operators from 𝑋 to 𝑋 satisfying 𝑇 𝑡 + 𝑠 =
𝑇 𝑡 𝑇 𝑠  ∀𝑡, 𝑠 ∈ ℝ+ , secondly, 𝑇 0 = 𝐼 − the identity 

operator on 𝑋  and, finally, lim𝑡→0+ 𝑇 𝑡 𝑓 = 𝑓  for each 

𝑓 ∈ 𝑋 with respect to the norm on 𝑋.  In this paper we study 

the existence,uniqueness and continuous dependence of a 

mild solution of anonlocal Cauchy problem for a semilinear  

impulsive functional-differential evolution equation. Such 

problems arise in some physical applications as a natural 

generalizationof the classical initial value problems. We 

cannot measure 𝑥(𝑡0) and 𝑥(𝑡𝑘 ), (k=1,2,…,p)but we can 

measure a relation between measure 𝑥(𝑡0) and 𝑥(𝑡𝑘 ), 

(k=1,2,…,p). There are some physical problems where 

nonlocal conditions are more realistic and usefulthan the 

classical initial conditions such as theory of vibrations, 

kinematicsto determine the evaluation of 𝑡 → 𝑥(𝑡)  of 

thelocation of a physical object forwhich we do not know the 

positions 𝑥 𝑡0 , 𝑥 𝑡1 ,… , 𝑥 𝑡𝑝 ,  but we do know thatthe 

introduced suitable nonlocal condition is satisfied. For 

examplefollowing nonlocalmodel describes simultaneous 

description of the motion trajectories 𝑡 → 𝑥(𝑡) of two rockets. 

The first rocket is lunched to the cosmic space from the 

Earthsurface outside of the Earth gravitation and the second 

rocket lunched fromEarth orbit and next rocket goes to the 

cosmic space in the same direction as the first rocket [8]. 

 

 

𝑥  𝑡 + 𝐴(𝑡)𝑥 𝑡 = 𝑓 𝑡, 𝑥 𝑡  , 𝑡 ∈ [  0,𝑇 ,

𝑥 𝑡 = 𝑀𝑒𝛽𝑡0 𝑥 𝑡 + 𝑇∗  , 𝑡 ∈   −𝑟, 0 ,𝑇∗ ∈ [𝑡0 + 𝑟,𝑇]
  

 

The result shows that for each time𝑇∗ ∈  𝑡0 + 𝑟,𝑇 and 

delay 𝜏 ∈   −𝑟, 0  there exist a unique initial location 𝜑∗(𝜏) 

of the rocket which is having unique orbitand there is only 

one motion trajectory 𝑡 → 𝑥∗(𝑡); 𝑡 ∈ [−𝑟,𝑇] of the rocket. 

For𝑡 → ∞ all the motion trajectories 𝑡 → 𝑥𝜑 𝑡 of the rocket, 

corresponding to thelocal problem will tend exponentially to 

the trajectory 𝑡 → 𝑥∗(𝑡). 

The results for a semilinear functional-differential 

evolution nonlocal problem [5]-[7] are extended for the case 
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of impulse effect. 

We consider a nonlocal Cauchy problem in the form  

 

 
 
 

 
 𝑢  𝑡 + 𝐴𝑢 𝑡 = 𝑓  𝑡,𝑢 𝑡 ,𝑢 𝑏1 𝑡  ,… ,𝑢 𝑏𝑚 𝑡   ,           

                                 𝑡 ∈  𝑡0,  𝑡0 + 𝑎 ,    𝑡 ≠ 𝜏𝑘 ,                      (1)

𝑢 𝜏𝑘 + 0 = 𝑄𝑘𝑢 𝜏𝑘 ≡ 𝑢 𝜏𝑘 + 𝐼𝑘𝑢 𝜏𝑘 ,   𝑘 = 1,2,… , 𝜅,

𝑢 𝑡0 = 𝑢0 − 𝑔 𝑢 ,                                                                      

  

 

where 𝑡0 ≥ 0, 𝑎 > 0  and −𝐴 is the infinitesimal generator 

of a compact 𝐶0 semigroup of operators on a Banach 

space 𝐸.𝐼𝑘 𝑘 = 1,2,… , 𝜅 are linear operators acting in the 

Banach space 𝐸. The functions 𝑓,𝑔, 𝑏𝑖 𝑖 = 1, 2,… ,𝑚 are 

given satisfying some assumptions and 𝑢0 is an element of 

the Banach space𝐸 . 𝐼𝑘𝑢 𝜏𝑘 = 𝑢 𝜏𝑘 + 0 − 𝑢 𝜏𝑘 − 0 and 

the impulsive moments 𝜏𝑘  are such that𝑡0 < 𝜏1 < 𝜏2 < ⋯ <
𝜏𝑘 < ⋯ < 𝜏𝜅 < 𝑡0 + 𝑎,   𝜅 ∈ ℕ. 

Theorems about the existence, uniqueness and stability 

ofsolutions of differential and functional-differential abstract 

evolution Cauchy problems were studied in [8], [9]. The 

results presented in this paper are a generalization and a 

continuation of some results reported in[10],[11]. We 

consider a classical semilinear impulsive functional- 

differential equation in the case of a nonlocal condition, 

reduced to the classical impulsive initial functional value 

problem. So far there have been a limited number of papers in 

this direction studying the existence of solutions of second 

order impulsive differential equations with 

nonlocalconditions. We try to extend the results of first order 

impulsive differential equations to second order impulsive 

differential equations with nonlocal conditions. 

As usual, in the theory of impulsive differential equations 

[6], at the points of discontinuity 𝜏𝑖  of the solution 𝑡 ↦ 𝑢 𝑡   
we assume that𝑢 𝜏𝑖 ≡ 𝑢 𝜏𝑖 − 0 .It is clear that, in general, 

the derivatives 𝑢  𝜏𝑖 do not exist. On the other hand, 

according to the firstequality of (1)there exist the 

limits𝑢  𝜏𝑖 ∓ 0 . According to the above convention, we 

assume𝑢  𝜏𝑖 ≡ 𝑢  𝜏𝑖 − 0  [1], [2]. 

Throughout the paper we assume that 𝐸 is a Banach space 

with norm  ∙ , −𝐴  is the infinitesimal generator of a 

𝐶0semigroup 𝑇 𝑡  𝑡≥0on 𝐸, 𝐷 𝐴   is the domainof 𝐴   11 . 
A 𝐶0semigroup 𝑇 𝑡  𝑡≥0is said to be acompact 𝐶0semigroup 

of operators on 𝐸 if𝑇 𝑡  is a compact operator for every 𝑡 >
0.We denote 

 

𝐼: =  𝑡0, 𝑡0 + 𝑎 , 𝑀 ≔ sup
𝑡∈ 0,𝑎 

  𝑇 𝑡  𝐵𝐿 𝐸,𝐸   

 

and  𝑋  is the space of piecewisecontinuous functions 𝐼 →
𝐸 with discontinuities of the first kindat 𝜏1, 𝜏2,… , 𝜏𝜅 . 

Let 𝑓: 𝐼 × 𝐸𝑚+1 → 𝐸,   𝑔:𝑋 → 𝐸  (for instance, we can 

have 

𝑔 𝑢 = 𝑔  𝑢 𝑡1 ,𝑢 𝑡2 ,… ,𝑢 𝑡𝑝  , 

where 

𝑔 : 𝐸𝑝 → 𝐸 , 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑝 < 𝑡0 + 𝑎, 𝑝 ∈

ℕ, 𝑏𝑖 : 𝐼 → 𝐼 𝑖 = 1,2,  … ,𝑚 and 𝑢0 ∈ 𝐸 . In thesequel, the 

operator norm  ∙ 𝐵𝐿 𝐸,𝐸  will be denoted by ∙ . We need the 

following sets: 

 𝐸𝜌 ≔  𝑧 ∈ 𝐸,    𝑧 ≤ 𝜌 and 𝑋𝜌 ≔  𝑤 ∈ 𝑋,    𝑤 𝑋 ≤ 𝜌 ,

𝜌 > 0. 

Introduce the following assumptions [6]: 

A1: 𝑓 ∈ 𝐶  𝐼 × 𝐸𝑚+1 → 𝐸 , 𝑔 ∈ 𝐶 𝑋,𝐸 𝑎𝑛𝑑 𝑏𝑖 ∈
𝐶 𝐼, 𝐼 , 𝑖 = 1,2,… ,𝑚 and  there areconstants 𝐶𝑖 , 𝑖 = 1,2,3, 

such that 

 
 
 

 
 
 𝑓 𝑠, 𝑧0, 𝑧1,… , 𝑧𝑚  ≤ 𝐶1 𝑓𝑜𝑟 𝑠 ∈ 𝐼,                                    

𝑧𝑖 ∈ 𝐸𝑟 𝑖 = 0,1,… ,𝑚 ,                        
 𝑔 𝑤  ≤ 𝐶2 𝑎𝑛𝑑 max

𝑘=1,2,…,𝜅
 𝐼𝑘𝑤 ≤ 𝐶3 𝑓𝑜𝑟 𝑤 ∈ 𝑋𝑟 ,

𝑤𝑒𝑟𝑒 𝑟 ≔ 𝑀 𝑎𝐶1 +  𝑢0 + 𝐶2 + 𝜅𝐶3 .

 (2) 

A2: 𝑔 𝜆𝑤1 +  1 − 𝜆 𝑤2 = 𝜆𝑔 𝑤1 +  1 − 𝜆 𝑔 𝑤2 for 

𝑤𝑖 ∈ 𝑋𝑟 , 𝑖 = 1,2, and 𝜆 ∈  0,1 , and 𝑟 is given by (2).  

A3: The set  𝑤 𝑡0 = 𝑢0 − 𝑔 𝑤 :𝑤 ∈ 𝑋𝑟 , where 𝑟  is 

given by (2), is precompact in 𝐸. 

Consider the initial value problem [8] 

 
𝑢  𝑡 + 𝐴𝑢 𝑡 = 𝑓 𝑡 ,    𝑡 ∈  𝑡0,  𝑡0 + 𝑎 , 

𝑢 𝑡0 = 𝑥,                                                      
               (3)  

where 𝑓: 𝐼 → 𝐸 , −𝐴  is the infinitesimal generator of a 

𝐶0semigroup 𝑇 𝑡 ,𝑡 ≥ 0, and 𝑥 ∈ 𝐸.  

Definition 1.A function 𝑢 is said to be a strong solution of 

problem (3) on 𝐼   if 𝑢 is differentiable almost everywhere 

(a.e.)on𝐼, so that 𝑑𝑢 𝑑𝑡  ∈ 𝐿1  𝑡0, 𝑡0 + 𝑎 ;𝐸 ,𝑢 𝑡0 = 𝑥 

and𝑢  𝑡 + 𝐴𝑢 𝑡 = 𝑓 𝑡 a.e. on 𝐼. 
The unique strongsolution 𝑢 on 𝐼 is given by the formula 

       𝑢 𝑡 = 𝑇 𝑡 − 𝑡0 𝑥 +  𝑇 𝑡 − 𝑠 𝑓 𝑠  𝑑𝑠,    𝑡 ∈ 𝐼.      (4)
𝑡

𝑡0

 

Definition 2.A function 𝑢 is said to be a classical solution 

of problem (3) on 𝐼  if 𝑢 is continuous on 𝐼 and continuously 

differentiable on 𝑡 ∈  𝑡0,  𝑡0 + 𝑎 ,    such that 𝑢 𝑡 ∈ 𝐷 𝐴 for 

𝑡0 < 𝑡 ≤ 𝑡0 + 𝑎 and theproblem (3) is satisfied on𝐼. 
If 𝐸  is a Banach space and −𝐴  is the infinitesimal 

generator of a 𝐶0 semigroup 𝑇 𝑡 , 𝑡 ≥ 0, 𝑓: 𝐼 → 𝐸 is 

continuous on 𝐼 and 𝑥 ∈ 𝐷 𝐴 , then the problem (3) has a 

classical solution 𝑢 on 𝐼 given by  (4). 

Next consider the initial value problem for the impulsive 

linear system 

 

 

𝑢  𝑡 + 𝐴𝑢 𝑡 = 𝑓 𝑡 ,    𝑡 ∈  𝑡0,  𝑡0 + 𝑎 ,     𝑡 ≠ 𝜏𝑘 ,                  

𝑢 𝜏𝑘 + 0 = 𝑢 𝜏𝑘 + 𝐼𝑘𝑢 𝜏𝑘 ,       𝑘 = 1,2,… ,𝜅,            (5)

𝑢 𝑡0 = 𝑥,                                                                                       

  

 

where 𝐴, 𝑓 and 𝑥 are as in problem (3), and 𝜏𝑘  and 𝐼𝑘  are as 

in problem (1). 

Definition 3. A function 𝑢: 𝐼 → 𝐸  is said to be a 

classicalsolution of the problem (5) on 𝐼 if 𝑢 is piecewise 

continuous on 𝐼  with discontinuities of the first kind 

at  𝜏1, 𝜏2,… , 𝜏𝜅 and continuouslydifferentiable on  𝑡0,  𝑡0 +
𝑎\𝜏𝑘𝑘=1𝜅, such that 𝑢𝑡∈𝐷𝐴 for 𝑡0<𝑡≤𝑡0+𝑎 and the 

problem (5) is satisfied on 𝐼. 

If 𝐴, 𝑓 and 𝑥 are as above and𝐼𝑘 :𝐷 𝐴 → 𝐷 𝐴 , then the 

Problem(5) has a classical solution 𝑢  on 𝐼  given by the 

formula 

𝑢 𝑡 = 𝑇 𝑡 − 𝑡0 𝑥 +  𝑇 𝑡 − 𝑠 𝑓 𝑠  𝑑𝑠
𝑡

𝑡0

+  𝑇 𝑡 − 𝜏𝑘 𝐼𝑘𝑢 𝜏𝑘 .

𝑡0≤𝜏𝑘<𝑡

              (6) 
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Formula (6) motivates us to give the following definition. 

Definition 4.A function 𝑢 ∈ 𝑋 satisfying the following 

integro-summary equation 

 

𝑢 𝑡 = 𝑇 𝑡 − 𝑡0 𝑢0 − 𝑇 𝑡 − 𝑡0 𝑔 𝑢 

+ 𝑇 𝑡 − 𝑠 𝑓  𝑠,𝑢 𝑠 ,𝑢 𝑏1 𝑠  ,… ,𝑢 𝑏𝑚 𝑠    𝑑𝑠
𝑡

𝑡0

+  𝑇 𝑡 − 𝜏𝑘 𝐼𝑘𝑢 𝜏𝑘 ,     𝑡 ∈  𝑡0, 𝑡0 + 𝑎 ,     

𝑡0≤𝜏𝑘<𝑡

 

 

is said to be a mild solution of the nonlocal Cauchy problem 

(1). 

 

II. EXISTENCE AND UNIQUENESSTHEOREMS 

Theorem 1.Suppose that assumptionsA1-A3 aresatisfied, 

then the impulsive nonlocal Cauchy problem(1)has a mild 

solution. 

Proof. The mild solution of the impulsive system (1) with 

nonlocal condition satisfies the operator equation (6) 

 

𝑢 𝑡 =  𝐹𝑢  𝑡 , 
 

where 

 

 𝐹𝑤  𝑡 : = 𝑇 𝑡 − 𝑡0 𝑢0 − 𝑇 𝑡 − 𝑡0 𝑔 𝑤 

+ 𝑇 𝑡 − 𝑠 𝑓  𝑠,𝑤 𝑠 ,𝑤 𝑏1 𝑠  ,… ,𝑤 𝑏𝑚 𝑠    𝑑𝑠
𝑡

𝑡0

+  𝑇 𝑡 − 𝜏𝑘 𝐼𝑘𝑤 𝜏𝑘 ,     𝑡 ∈  𝑡0, 𝑡0 + 𝑎 ,     

𝑡0≤𝜏𝑘<𝑡

 

so that  

 

  𝐹𝑤  𝑡  ≤ 𝑀 𝑢0 + 𝑀𝐶2 + 𝑎𝑀𝐶1 + 𝜅𝑀𝐶3 = 𝑟,     
 

where the impulsive moments 𝜏𝑘  are such that 𝑡0 < 𝜏1 <
τ2 < ⋯ < 𝜏𝑘 < ⋯ < 𝜏𝜅 < 𝑡0 + 𝑎,   𝜅 ∈ ℕ . See detailed 

proof in [6]. 

Theorem 2.Suppose that the functions 𝑓,𝑔  and 𝑏𝑖 𝑖 =
1,2,𝑚satisfyassumptionsA1, A2, where 𝑢0∈𝐸. Then inthe 

class of all the functions 𝑤, for which assumptionA3 holds, 

the nonlocal Cauchyproblem (1) has a mild solution 𝑢. If in 

addition: 

1) 𝐸 is a reflexive Banach space, 

2) there exists a constant 𝐿 > 0 such that 

 

 
 
 

 
 

 𝑓 𝑠,𝑢0 ,𝑢1,… ,𝑢𝑚 − 𝑓 𝑠 ,𝑢 0,𝑢 1,𝑢 𝑚  

≤ 𝐿1   𝑠 − 𝑠  +   𝑢𝑘 − 𝑢 𝑘 

𝑚

𝑘=0

 ,

 𝐼𝑘𝑣 𝐸 ≤ 𝐿2 𝑣 𝐸  𝑓𝑜𝑟 𝑣 ∈ 𝐸,   𝑘 = 1,2,… , 𝜅,

  

 

where 𝑠, 𝑠 ∈ 𝐼 , 𝑢𝑖 ,𝑢 𝑖 ∈ 𝐸𝑟 𝑖 = 0,1,2,… ,𝑚 and 𝐿 =
𝑚𝑎𝑥  𝐿1, 𝐿2  . 
3) 𝑢 is the unique mild solution of the problem(1)and there 

is a constant 𝐾 > 0 such that 

 𝑢 𝑏𝑖 𝑠  − 𝑢 𝑏𝑖 𝑠    ≤ 𝐾 𝑢 𝑠 − 𝑢 𝑠    𝑓𝑜𝑟 𝑠, 𝑠 ∈ 𝐼, 

4) The element𝑢0 ∈ 𝐷 𝐴 and 𝑔 𝑢 ∈ 𝐷 𝐴 , 

then 𝑢 is the unique classical solution of the 

impulsivenonlocalCauchy problem (1). 

Proof. Since all the assumptions of Theorem 1 are 

satisfied,then the nonlocal impulsive Cauchy problem (1) 

possesses a mild solution 𝑢 which, according to assumption 

(iii), is the unique mild solution of the problem (1). Now, we 

will showthat 𝑢  is the unique classical solution of the 

semilinear, nonlocal, impulsive, Cauchy problem (1).  

Therefore, 

 
𝑢(𝑡 + ) − 𝑢(𝑡) = [𝑇(𝑡 +  − 𝑡0)𝑢0 − 𝑇(𝑡 − 𝑡0)𝑢0]

                                          −[𝑇(𝑡 +  − 𝑡0)𝑔(𝑢) − 𝑇(𝑡 − 𝑡0)𝑔(𝑢)]

+  𝑇

𝑡0+

𝑡0

(𝑡 +  − 𝑠)𝑓(𝑠, 𝑢(𝑠), 𝑢(𝑏1(𝑠)), 𝑢(𝑏2(𝑠)),… , 𝑢(𝑏𝑚(𝑠))) 𝑑𝑠

+  𝑇

𝑡+

𝑡0+

(𝑡 +  − 𝑠)𝑓(𝑠, 𝑢(𝑠), 𝑢(𝑏1(𝑠)), 𝑢(𝑏2(𝑠)),… , 𝑢(𝑏𝑚(𝑠))) 𝑑𝑠

 

− 𝑇

𝑡

𝑡0

(𝑡 − 𝑠)𝑓(𝑠, 𝑢(𝑠), 𝑢(𝑏1(𝑠)), 𝑢(𝑏2(𝑠)),… , 𝑢(𝑏𝑚(𝑠))) 𝑑𝑠

+  𝑇

𝑡0≤𝜏𝑘<𝑡+

 𝑡 +  − 𝜏𝑘 𝐼𝑘 𝑢 𝜏𝑘  −  𝑇

𝑡0≤𝜏𝑘<𝑡

 𝑡 − 𝜏𝑘 𝐼𝑘 𝑢 𝜏𝑘  .

 

 

Consequently, by applying Gronwall’s inequality we have 

 
∥ 𝑢(𝑡 + ) − 𝑢(𝑡) ∥

≤ (𝐶∗ + 𝑀𝐶3𝑖(𝑡, 𝑡 + )) exp (𝑎𝑀𝐿(1 + 𝑚𝐾)).
 

 

Thus ∥ 𝑢 𝑡 +  − 𝑢 𝑡 ∥→ 0as  → 0,and 𝑢 is Lipschitz 

continuous on each interval of continuity in 𝐼. The Lipschitz 

continuity of 𝑢 on each interval of continuity in 𝐼 combined 

with the Lipschitz continuity of 𝑓 on 𝐼 × 𝐸𝑚+1 imply that the 

mapping 𝑡 ↦ 𝑓(𝑡,𝑢(𝑡),𝑢(𝑏1(𝑡)), . . ,𝑢(𝑏𝑚(𝑡)  is Lipschitz 

continuous on each interval of continuity in 𝐼. This property, 

together with the assumptions of Theorem 2, implies that the 

linear Cauchy problem 

 
𝑣 (𝑡) + 𝐴𝑣(𝑡) = 𝑓(𝑡,𝑢(𝑡),𝑢(𝑏1(𝑡)),… ,𝑢(𝑏𝑚(𝑡))),

𝑡 ∈ 𝐼,   𝑡 ≠ 𝜏𝑘 ,

𝑣 𝜏𝑘 + 0 = 𝑢 𝜏𝑘 + 𝐼𝑘 𝑢 𝜏𝑘  , 𝑘 = 1,2,… , 𝜅,   

𝑣 𝑡0 = 𝑢0 − 𝑔 𝑢 ,                                                         

 

 

has a unique classical solution 𝑣 such that  

 
  𝑣(𝑡) = 𝑇(𝑡 − 𝑡0)𝑢0 − 𝑇(𝑡 − 𝑡0)𝑔(𝑢)

+ 𝑇 𝑡 − 𝑠 𝑓(𝑠,𝑢(𝑠),𝑢(𝑏1(𝑠)),… ,𝑢(𝑏𝑚(𝑠))) 𝑑𝑠
𝑡

𝑡0

+  𝑇

𝑡0≤𝜏𝑘<𝑡

(𝑡 − 𝜏𝑘)𝐼𝑘(𝑢(𝜏𝑘)), 𝑡 ∈ 𝐼.

 

 

Consequently, 𝑢  is the unique classical solution of the 

nonlocal impulsive Cauchy problem (1) (details of the proof 

in [6]).  
 

III. CONTINUOUS DEPENDENCE OF A MILD SOLUTION ON 

THE INITIAL CONDITION 

Theorem3. Supposethat the functions 𝑓,𝑔 an𝑑 𝐼 𝑢 satisfy 
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theassumptionsA1–A3and there exist constants𝜇1,𝜇2,𝜇3such 

that 

1) ∥ 𝑔(𝑢) − 𝑔(𝑢 ) ∥≤ 𝜇1 ∥ 𝑢 − 𝑢 ∥, 

2) 
∥ 𝑓(𝑠,𝑢(𝑠),… ,𝑢(𝑏𝑚(𝑠))) − 𝑓(𝑠,𝑢 (𝑠),… ,𝑢  𝑏𝑚(𝑠) ) ∥

≤ 𝜇2 ∥ 𝑢 − 𝑢 ∥,
 

3) ∥ 𝐼𝑘(𝑢(𝜏𝑘)) − 𝐼𝑘(𝑢 (𝜏𝑘)) ∥≤ 𝜇3 ∥ 𝑢(𝜏𝑘) − 𝑢 (𝜏𝑘) ∥, 
where  𝑢, 𝑢 ∈ 𝐶(𝐼,𝐸) . If  𝑢 and 𝑢 are mild solutions of 

theproblem(1)with the respective initial values 𝑢0,𝑢 0 and 

theconstants𝜇1and 𝜇 = 𝑚𝑎𝑥 {𝜇2,𝜇3} satisfy the inequality 

 𝜇1 <
𝑒𝑥𝑝 −(𝑡0 + 𝑎)𝑀𝜇 (1 + 𝑀𝜇)−𝜅

𝑀
,  

then the following inequality holds[6]:  

 𝑢(𝑡) − 𝑢 (𝑡) 

≤
𝑀 𝑒𝑥𝑝  𝑡0 + 𝑎 𝑀𝜇 (1 + 𝑀𝜇)𝜅

1 −𝑀𝜇1 𝑒𝑥𝑝  𝑡0 + 𝑎 𝑀𝜇 (1 + 𝑀𝜇)𝜅
 𝑢0 − 𝑢 0 .

     (7) 

Proof. Assume that 𝑢,𝑢  are mild solutions of problem (1). 

Then  

                                  𝑢 𝑡 − 𝑢  𝑡 

= [𝑇 𝑡 − 𝑡0  𝑢0 − 𝑢 0 − 𝑇 𝑡 − 𝑡0  𝑔 𝑢 − 𝑔 𝑢   ]

+  𝑇

𝑡

𝑡0

(𝑡 − 𝑠)  𝑓  𝑠,𝑢 𝑠 ,𝑢 𝑏1 𝑠  ,… ,𝑢 𝑏𝑚 𝑠    

                −  𝑓  𝑠,𝑢  𝑠 ,𝑢  𝑏1 𝑠  ,… ,𝑢  𝑏𝑚 𝑠     𝑑𝑠

+  𝑇

𝑡0≤𝜏𝑘<𝑡+

(𝑡 − 𝜏𝑘)[𝐼𝑘(𝑢(𝜏𝑘)) − 𝐼𝑘(𝑢 (𝜏𝑘))],

 

where 𝑡 ∈ [𝑡0, 𝑡0 + 𝑎]. From A1–A3 and the hypotheses of 

the theorem, and applying Gronwall’s inequality we have  

 𝑢(𝑡) − 𝑢 (𝑡) ≤

 ∥ 𝑢0 − 𝑢 0 ∥ +𝜇1 ∥ 𝑢 − 𝑢 ∥ 𝑀 exp  𝑡0 + 𝑎 𝑀𝜇 (1 + 𝑀𝜇)𝜅 .
 

We can also write this inequality in the form 

 1 −𝑀𝜇1 exp ( (𝑡0 + 𝑎)𝑀𝜇)(1 + 𝑀𝜇)𝜅 ∥ 𝑢(𝑡) − 𝑢  𝑡 ∥

≤ 𝑀 exp ( (𝑡0 + 𝑎)𝑀𝜇)(1 + 𝑀𝜇)𝜅 ∥ 𝑢0 − 𝑢 0 ∥.
 

For more details of the proof,you can see [6]  and the 

references therein. 

Remark 1.If 𝜇1 = 𝜅 = 0, then inequality (7) is reduced to 

the classical inequality.  

∥ 𝑢(𝑡) − 𝑢 (𝑡) ∥≤ 𝑀 exp ( (𝑡0 + 𝑎)𝑀𝜇) ∥ 𝑢0 − 𝑢 0 ∥, 

This is a characteristic for the continuous dependence of the 

semilinear functional-differential evolution Cauchy problem 

with the classical initial condition. 

 

IV. SECOND ORDER IMPULSIVE DIFFERENTIAL EQUATIONS 

WITH NONLOCAL CONDITIONS 

Consider a second order semilinear nonlocal impulsive 

differential equation of the form 

 
 
 

 
 
𝑥 ′′  𝑡 = 𝐴𝑥 𝑡 + 𝑓 𝑡, 𝑥 𝑡 , 𝑥 ′ 𝑡  ,               

                                𝑡 ∈ 𝐽 =  0,𝑏 , 𝑡 ≠ 𝑡𝑘 ,

Δ𝑥|𝑡=𝑡𝑘
= 𝐼𝑘 𝑥 𝑡𝑘  , 𝑘 = 1, . . . ,𝑚,          

Δ𝑥′|𝑡=𝑡𝑘
= 𝐼  𝑘(𝑥(𝑡𝑘)), 𝑥 ′(𝑡𝑘)),   𝑘 = 1, . . ,𝑚,

𝑥 0 + 𝑔 𝑥 = 𝑥0, 𝑥 ′ 0 = 𝑥1,                  

             (8)  

where 𝐴 is a linear operator from a real Banach space 𝑋 into 

itself with the norm ∥⋅∥ and  

𝑥0, 𝑥1 ∈ 𝑋,  0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑚 < 𝑡𝑚+1 = 𝑏, 

Δ𝑥|𝑡=𝑡𝑘
= 𝑥 𝑡𝑘

+ − 𝑥 𝑡𝑘
− ,  Δ𝑥 ′ |𝑡=𝑡𝑘

= 𝑥 ′ 𝑡𝑘
+ − 𝑥 ′ 𝑡𝑘

− , 

and 𝑓,𝑔, 𝐼𝑘 , and 𝐼  𝑘  (𝑘 = 1,2, . . . ,𝑚) are given functions to be 

specified. Let 𝐴 be the same linear operator as in (1). 

We need the following assumptions[9], [10]: 

H1: The operator 𝐴 is the infinitesimal generator of a 

strongly continuous cosine family {𝐶(𝑡): 𝑡 ∈ ℝ} of bounded 

linear operators from 𝑋 into itself defined by  

𝐴𝑥: =
𝑑2

𝑑𝑡2
𝐶 𝑡 𝑥|𝑡=0, 𝑥 ∈ 𝐷 𝐴 ,𝐴:𝑋 ⊃ 𝐷 𝐴 → 𝑋. 

The associated sine family {𝑆(𝑡): 𝑡 ∈ ℝ} is defined by  

 𝑆 𝑡 𝑥: =  𝐶
𝑡

0

 𝑠 𝑥 𝑑𝑠, 𝑥 ∈ 𝑋, 𝑡 ∈ ℝ.  

H2: The adjoint operator 𝐴∗ is densely defined in 𝑋∗, that 

is,𝐷(𝐴∗) = 𝑋∗. It can be easily seen from these assumption 

that for some constant 𝑀 ≥ 1 and 𝜔 ≥ 0 we have 

∥ 𝐶(𝑡) ∥≤ 𝑀𝑒𝜔|𝑡| and  ∥ 𝑆(𝑡) ∥≤ 𝑀𝑒𝜔 |𝑡|,  for all 𝑡 ∈ ℝ. 

Denote 𝐽0 =  0, 𝑡1 , 𝐽𝑘 =  𝑡𝑘 , 𝑡𝑘+1 ,   𝐽
′ = 𝐽\ 𝑡𝑘 ,   𝑘 =

1,2,… ,𝑚,  and define the class of functions 𝑃𝐶(𝐽,𝑋) =
{𝑥:  𝐽 → 𝑋, 𝑥 ∈ 𝐶(𝐽𝑘 ,𝑋), 𝑘 = 0,1,… ,𝑚 and there exist 

𝑥 𝑡𝑘
+ , 𝑥 𝑡𝑘

− ,   𝑘 = 1,2,… ,𝑚,with  𝑥 𝑡𝑘 = 𝑥 𝑡𝑘
−   and 

𝑃𝐶1(𝐽,𝑋) = {𝑥 ∈ 𝑃𝐶(𝐽,𝑋): 𝑥′ ∈ 𝐶(𝐽𝑘 ,𝑋), 𝑘 = 0,1,2, . . . ,𝑚  

and there exist 𝑥 ′ 𝑡𝑘
+ , 𝑥 ′ 𝑡𝑘

− , 𝑘 = 1,2, . . . ,𝑚, with 𝑥 ′(𝑡𝑘) =

𝑥 ′ 𝑡𝑘
− }. It is clear that 𝑃𝐶(𝐽,𝑋) and 𝑃𝐶1 𝐽,𝑋 are Banach 

spaces with respective norms 

∥ 𝑥 ∥𝑃𝐶= max  sup
𝑠∈𝐽𝑘

 𝑥 𝑠  ,  𝑘 = 0,1, . . ,𝑚 ,

 ∥ 𝑥 ∥𝑃𝐶1 = max { ∥ 𝑥 ∥𝑃𝐶 , ∥ 𝑥 ′ ∥𝑃𝐶}.

 

Definition 5[12].A map 𝑓: 𝑗 × 𝑋 × 𝑋 → 𝑋  is said to be 

𝐿1 -Carathéodory if 𝑓: (⋅,𝜔, 𝑣): 𝐽 → 𝑋  is measurable for 

every 𝜔, 𝑣,∈ 𝑋,  𝑓: (𝑡,⋅,⋅):𝑋 × 𝑋 → 𝑋 is continues for almost 

all 𝑡 ∈ 𝐽 and for each 𝑖 > 0 there exists𝛼𝑖 ∈ 𝐿
1(𝐽,ℝ+) such 

that for almost all 𝑡 ∈ 𝐽. 

sup
∥𝜔∥,∥𝑣∥≤1

∥ 𝑓(𝑡,𝜔, 𝑣) ∥≤ 𝛼𝑖(𝑡). 

A function 𝑥 ∈ 𝑃𝐶1(𝐽,𝑋) 𝐶2 (𝐽′ ,𝑋) satisfying 𝑥 𝑡 ∈
𝐷 𝐴   for all 𝑡 ∈ 𝐽 and (8) is called aclassicalsolution of the 

system (8). Then we get  

𝑥 ′(𝑡) = 𝐶(𝑡)𝑥 ′(0) +  𝑓
𝑡

0

 𝑠, 𝑥 𝑠 , 𝑥 ′ 𝑠  𝑑𝑠

+  [

0<𝑡𝑘<𝑡

𝑥′ 𝑡𝑘
+ − 𝑥 ′(𝑡𝑘)], ∀𝑡 ∈ 𝐽,

                       (9) 

and, therefore, 

                   𝑥 𝑡 = 𝐶 𝑡 𝑥0 + 𝑆 𝑡 𝑥1 + 𝑥0 + 𝑥1𝑡                  (10)

+  [

0<𝑡𝑘<𝑡

𝑥(𝑡𝑘
+) − 𝑥(𝑡𝑘)]

+  [

0<𝑡𝑘<𝑡

𝑥 ′ 𝑡𝑘
+ − 𝑥 ′(𝑡𝑘)](𝑡 − 𝑡𝑘)

+ 𝑆
𝑡

0

 𝑡 − 𝑠 𝑓 𝑠, 𝑥 𝑠 , 𝑥 ′ 𝑠   𝑑𝑠, ∀𝑡 ∈ 𝐽.
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In fact, let us assume 𝑡𝑘 < 𝑡 < 𝑡𝑘+1(here 𝑡0 = 0, 𝑡𝑚+1 =
𝑏).Using the successive iteration techniques on the intervals 

 0, 𝑡1 ,  𝑡1, 𝑡2 , . . . , [𝑡𝑘
+, 𝑡] we have  

𝑥 ′ 𝑡1 − 𝑥 ′ 0 =  𝑓
𝑡1

0

 𝑠, 𝑥 𝑠 , 𝑥 ′ 𝑠  𝑑𝑠,

𝑥 ′(𝑡2) − 𝑥 ′ 𝑡1
+ =  𝑓

𝑡2

𝑡1

(𝑠, 𝑥(𝑠), 𝑥 ′(𝑠))𝑑𝑠,

⋅
⋅
⋅

𝑥 ′ 𝑡 − 𝑥 ′ 𝑡𝑘
+ =  𝑓

𝑡

𝑡𝑘
+
 𝑠, 𝑥 𝑠 , 𝑥 ′ 𝑠  𝑑𝑠.

 

Adding these, we get  

𝑥 ′(𝑡) = 𝑥 ′(0) +  𝑓
𝑡

0

 𝑠, 𝑥 𝑠 , 𝑥 ′ 𝑠  𝑑𝑠

+   𝑥 ′ 𝑡𝑘
+ − 𝑥 ′ 𝑡𝑘  

0<𝑡𝑘<𝑡

.
 

Similarly, we can get  

𝑥 𝑡 = 𝑥 0 +  𝑥 ′
𝑡

0

 𝑠 𝑑𝑠 +   𝑥 𝑡𝑘
+ − 𝑥 𝑡𝑘  

0<𝑡𝑘<𝑡

    (11) 

and, using the equation (9) in(11), we get the result (10). 

Assume the following additional assumptions are 

satisfied[12]:  
H3: 𝑓:  𝐽 × 𝑋 × 𝑋 → 𝑋 is an 𝐿1-Carathéodorymapping. 

H4: 𝐼𝑘 ∈ 𝐶(⋅,𝑋), 𝐼  𝑘 ∈ 𝐶(𝑋 × 𝑋,𝑋)  and there are 

constants 𝑑𝑘 ,𝑑 𝑘  such that ∥ 𝐼𝑘(𝜔𝑘) ∥≤ 𝑑𝑘 , ∥ 𝐼  𝑘(𝜔, 𝑣) ∥≤

𝑑 𝑘 ,  𝑘 = 1,2, . . . ,𝑚 for every 𝜔, 𝑣 ∈ 𝑋. 
H5: 𝑔:𝑃𝐶 𝐽,𝑋 → 𝑋 is a continuous function and for 

some constant 𝑀, ∥ 𝑔(𝑥) ∥≤ 𝑀, for every 𝑥 ∈ 𝑃𝐶 𝐽,𝑋 . 
H6: There exists a function 𝑝 ∈ 𝐿1(𝐽,ℝ+)  such that 

∥ 𝑓(𝑡,𝜔, 𝑣) ∥≤ 𝑝(𝑡)𝜓(∥ 𝜔 ∥ +∥ 𝑣 ∥) fora.e. 𝑡 ∈ 𝐽 and every 

𝜔, 𝑣 ∈ 𝑋  where 𝜓: [0,∞) → [0,∞) is anondecreasing 

continuous function satisfying the inequality  

 𝑏 + 1  𝑝
𝑏

0

 𝑠 𝑑𝑠 <  
𝑑𝑠

𝜓 𝑠 

∞

𝑐

 

where the constant c can be determined as 

𝑐 =  𝑥0 + 𝑀 +  𝑏 + 1  𝑥1 +   𝑑𝑘 + (𝑏 + 1 − 𝑡𝑘)𝑑𝑘 

𝑚

𝑘=1

 

Definition 6. Consider the following second order nonlocal 

problem [10] 

 
  
 

  
 

𝑥"(𝑡) = 𝐴𝑥(𝑡) + 𝑓(𝑡, 𝑥(𝑡), 𝑥′(𝑡)), 𝑡 ∈ (0,𝑇]

𝑥 0 = 𝑥0,   𝑥:  0,𝑇 → 𝑋,   𝑓:  0,𝑇 × 𝑋2 → 𝑋

𝑥 ′ 0 +  𝑖  𝑥(𝑡𝑖

𝑝

𝑖=1

) = 𝑥1,    𝑥0, 𝑥1 ∈ 𝑋,   𝑖 ∈ ℝ,

 𝑖 = 1,2,… ,𝑝 , 0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑝 ≤ 𝑇

       (12) 

Then the function 𝑥 ∈ 𝐶1( 0,𝑇 ,𝑋) satisfying the integral 

equation  

 
 
 

 
 
𝑥 𝑡 = 𝐶 𝑡 𝑥0𝑆 𝑡 𝑥1 − 𝑆 𝑡   𝑖 𝑥(𝑡𝑖

𝑝

𝑖=1

) 

+ 𝑆 𝑡 − 𝑠 𝑓 𝑠, 𝑥 𝑠 , 𝑥 ′ 𝑠  𝑑𝑠,   𝑠 ∈  0,𝑇 
𝑡

0

  

is said to be a mild solution of the nonlocal Cauchy problem 

(12). 

Theorem 4.Under the assumptionsH3-H6the secondorder 

impulsive problem with nonlocal conditions(8)has at least 

one solution on the interval 𝐽. 
Proof. Define the space 𝐵 = 𝑃𝐶1(𝐽,𝑋).We can show that 

the functional operator 𝐺 defined by  

𝐺𝑥(𝑡) = 𝐶(𝑡)(𝑥0 − 𝑔(𝑥)) + 𝑡𝑆(𝑡)𝑥1 +  𝐼𝑘
0<𝑡𝑘<𝑡

(𝑥(𝑡𝑘)) 

+  𝐼 𝑘
0<𝑡𝑘<𝑡

(𝑥(𝑡𝑘), 𝑥 ′(𝑡𝑘))(𝑡 − 𝑡𝑘) 

 + (
𝑡

0

𝑡 − 𝑠)𝑓(𝑠, 𝑥(𝑠), 𝑥 ′(𝑠))𝑑𝑠,  𝑡 ∈ 𝐽,  

has a fixed point and this fixed point is the solution of the 

equation (8). For details of the proof, you can see [12] and 

the given references. It can be shown that 𝐺:𝐵 → 𝐵  is a 

completely continuous operator. Let 𝐵𝑖 = {𝑥 ∈ 𝐵: ∥ 𝑥 ∥𝑃𝐶1≤

𝑖},  for some 𝑖 > 1. 𝐺 maps 𝐵𝑖  into an equicontinuous family. 

To show this result,let 𝑥 ∈ 𝐵𝑖 , and 𝑡, 𝑡 ∈ 𝐽  satisfy 0 < 𝑡 <

𝑡 ≤ 𝑏.Then we have  

∥ (𝐺𝑥)(𝑡) − (𝐺𝑥)(𝑡) ∥≤ (𝑡 − 𝑡) ∥ 𝑥1 ∥

+  𝑑𝑘
𝑡≤𝑡𝑘≤𝑡

+  (

0<𝑡𝑘<𝑡

𝑡 − 𝑡)𝑑 𝑘 +  (

𝑡≤𝑡𝑘<𝑡

𝑡 − 𝑡𝑘)𝑑 𝑘

+ (
𝑡

0

𝑡 − 𝑡)𝛼𝑖(𝑠) 𝑑𝑠 +  (
𝑡

𝑡

𝑡 − 𝑠)𝛼𝑖(𝑠) 𝑑𝑠.

       (13) 

Similarly, 

 (𝐺𝑥)′(𝑡) − (𝐺𝑥)′(𝑡) 

≤   𝑓
𝑡

0

(𝑠, 𝑥(𝑠), 𝑥 ′(𝑠))𝑑𝑠 −  𝑓
𝑡

0

(𝑠, 𝑥(𝑠)𝑥 ′(𝑠))𝑑𝑠 

+  𝐼 𝑘
0<𝑡𝑘<𝑡

 𝑥 𝑡𝑘 , 𝑥
′ 𝑡𝑘  −  𝐼 𝑘

0<𝑡𝑘<𝑡

(𝑥(𝑡𝑘), 𝑥 ′(𝑡𝑘)) 

≤  𝛼𝑖

𝑡

𝑡

(𝑠)𝑑𝑠 +  𝑑 𝑘 .

𝑡≤𝑡𝑘<𝑡

 (14)

 

The right-hand sides of(13) and (14) are independent of 𝑥 

and approach zero when𝑡 → 𝑡, this means 𝐺 maps 𝐵𝑖  into an 

equicontinuous family of functions [12] . By using the 

Arzelà-Ascoli theorem 𝐺:𝐵 → 𝐵 is compact. It can be easily 

shown that 𝐺:𝐵 → 𝐵 is continuous. This completes the proof 

of the theorem.  
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