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Abstract—In this study, we provide a global picture of the 

bifurcation scenario of a two-dimensional Hindmarsh-Rose 

(HR) type model. We present all of the possible classifications 

based on the following results: first, the number and stability of 

the equilibrium are analyzed in detail with a table built to show 

not only how to change the stability of the equilibrium but also 

which two equilibria collapse through the saddle-node 

bifurcation; secondly, sufficient conditions for an 

Andronov-Hopf bifurcation and a saddle-node bifurcation are 

mathematically confirmed; and finally, we provide sufficient 

conditions for a Bogdanov-Takens (BT) bifurcation and a 

Bautin bifurcation. Finally, we present characteristic equation 

for the HR type model with delay. These results provide us a 

diversity of behaviors for the model. The results in the paper 

should be helpful when choosing suitable parameters for fitting 

experimental observations. 

 

Index Terms—Two-dimensional hindmarsh-rose type model, 

bifurcations. 

 

I. INTRODUCTION 

In the field of neuroscience [1]-[6] researchers have 

constructed a variety of different types of biological neural 

networks. Most of these modeling processes are constructed 

from experimental observations. To understand whether 

these constructed neural networks have a richer behavior, 

many researchers have explored network’s basic system 

properties.  

Hindmarsh and Rose (HR) [1]-[3] constructed a model of a 

bursting neuron from a thalamocortical neuron model with 

detailed ionic currents, which can be seen as a generalization 

of the FitzHugh-Nagumo (FN) equations [4], [5], which are a 

polynomial model and mimic most of the behaviors of the 

Hodgkin-Huxley equations [6]. The first version was 

developed by FitzHugh [7] and is a two-dimensional system 

of ODEs. The main difference between FN and HR is the 

component of the recovery variable: the former is 

characterized by the linearity, whereas the latter is described 

by the quadratic function.  

Hodgkin suggested that two different types of neurons, 

namely, Class I and Class II neurons, exist according to their 

frequency response characteristics when a constant current is 

injected into the cell body. Class I neurons go from steady 

state to oscillatory behavior through a saddle-node 

bifurcation. Additionally, for Class I neuron, it has been 

claimed that repetitive firing first appears with zero 

frequency (homoclinic bifurcation), latency may be 
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arbitrarily long and intermediate-sized responses (in 

amplitude) are not possible. For Class II neurons, the spiking 

is initiated through a (subcritical) Hopf bifurcation. The 

result leads to the onset of oscillations with a well-defined, 

non-zero frequency and possibly with small amplitude, and 

the latency for firing is finite. With respect to the 

classification based on bifurcation theory, these two types of 

neurons have also been called Type I and Type II, 

respectively. Bifurcation methodologies enable us to reduce 

many biophysically accurate HR type models to a 

two-dimensional system of ordinary differential equations of 

the form. It is noteworthy that in a plane system, class I 

excitability is essentially characterized by the quadratic 

nonlinearity. To date, many two- and three- dimensional HR 

models [1], [2], [8]-[10] have been studied. However, most of 

these papers investigated the bifurcations of the HR model 

though computer simulations. Therefore, it is important to 

mathematically analyze the AH and SN bifurcations of the 

HR model with bifurcation theory. 

In this paper, we present bifurcation diagrams that explain 

all of the possible behaviors. The paper is organized as 

follows: In Section II, a 2 -dimensional Hindmarsh-Rose 

(2DHR) type model proposed with delay is introduced. In 

Section III, we discuss the number of an equilibrium and its 

stability for no delay case. For certain conditions, different 

categories are represented by pictures. Each picture is 

divided into several zones. We assign to each zone a letter 

and set out in detail the number of equilibria and their 

stability in a table. According to this table, we can clearly 

understand how the number of the solution and its stability 

changes with the current parameters. In Section IV, the 

conditions of SN bifurcations are given. we also give an 

example of a saddle-node bifurcation on a limit cycle. In 

Section V, the AH and Bautin bifurcations are analyzed. A 

numerical simulation with bistable behavior is given. In 

Section VI, we analyze the Bogdanov-Takens bifurcation. In 

Section VII, we will present the characteristic equation of the 

model with delay and analyze it’s eigenvalues of purely 

imaginary roots. Finally, the conclusions are presented. 

 

II. A TWO-DIMENSIONAL HINDMARSH-ROSE TYPE MODEL 

Let us consider a two-dimensional Hindmarsh-Rose 

(2DHR) type model of the following form:  
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where the prime denotes differentiation with respect to the 
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independent variable t  and the two variables x  and y  

denote the cell membrane potential and a recovery variable, 

respectively. The parameters a , b , c , d ,   and k  are 

positive. The parameter 0v  means the resting potential. The 

parameter c  represents the time scale. The parameter I  

denotes the membrane current or external stimulus. Because 

the effect of a nonzero I  can be studied by the parameter a , 

we can assume that 0I  . 

 

III. EQUILIBRIA AND THEIR STABILITY 

In this section, we attempt to discuss an equilibrium and its 

stability for Eq. (1) for 1k  and 0  . The study of an 

equilibrium for Eq. (1) is equivalent to the study of the zero 

solution of the following cubic function:  

 
3 2( ) ( 3) ( )h x b x x d b x a                     (2) 

 

with 0b  . We will make clear the existence and the number 

of zero solutions and analyze their stability of equilibria.  

Define  

 

r1 1c cx D b x D b   
   
   

          

 

with 21D b bd    and 0b  . For a positive number D , 

these variables are the right and left critical numbers of ( )h x , 

respectively. Obviously, r
c cx x . By 

cx , r
cx , and the sign 

of D , the number of zero solutions can be analyzed. If 

0D  , the cubic function h  is monotone. Therefore, there 

exists only one zero solution. In other words, there exists 

only one equilibrium for Eq. (1). Let 0D  . The two critical 

numbers 
cx  and r

cx  exist. If zero is between ( )ch x  and 

r( )ch x , there exist three equilibria for Eq. (1). If either 

( ) 0ch x   or r( ) 0ch x  , there exist two equilibria for Eq. (1). 

If none of previous two cases holds, only one equilibrium for 

Eq. (1) exists. Let the notation (SN)   denote a triple of 

parameters ( a b d  ) that satisfies the following relation:  

(SN)  : 
21 3 2 (3 )a D D D b 

 
 

       If the condition 

(SN)   [resp. (SN)  ] holds, then 
c
r( ) 0h x   [resp. 

c( ) 0h x  ]. Therefore, the existence and the number of 

equilibria are already analyzed.  

Next, the eigenvalues of an equilibrium for a plane system 

will be discussed. In the two-dimensional case, the linear part 

0L  of Eq. (1) at an equilibrium 0 0 0( )x y x  is a 2 2  

matrix, as follows:  

 

2
0

0

0(2 )

c cx c
L

x d c b c

  
  

     
 

 

Let 0( )x  be the trace of 0L  and 0( )x  be the 

determinant of 0L , where functions   and R R    are as 

follows: 

2
0 0( )x cx c b c        

2
0 0 0( ) 2x bx x b d       

 

The characteristic polynomial of 0L  is 

2
0 0( ) ( )x x     . Comparing Eq. (2) with  , we notice 

that 
 ( ) ( )h x x


   for all x . The zero solutions of   are 
cx  

and r
cx . If the first component of an equilibrium 0x  is either 

cx  or r
cx , then at least one of the eigenvalues is zero. Refer 

to Condition (SN)  . Let 2c b . The zero solutions of   are 

0
0x m   and 

0
r 0x m , where 2

0 1m b c   , and 

obviously, 
0 0

rx x . If the first component of an equilibrium 

0x  is either 
0x  or 

0
rx , then the sum of their eigenvalues is 

zero. In other words, it is a necessary condition that the 

eigenvalues are pure imaginary. Let the notation (AH)   

denote a quadruple of parameters ( a b c d   ) that satisfies the 

following relations:  

 
2

2
2

0 02

and(AH)

2

3 3

c b

b b
a d m m

c

  

 
       

 

 

 

where (AH)   and (AH)   are determined by equations 
0( ) 0h x   and 

0
r( ) 0h x  , respectively. With the help of the 

theorem [11], the stability of an equilibrium in the plane can 

be concluded as follows: If 0( ) 0x   and 0( )x  0, then 

0x  is an unstable node. If 0( ) 0x   and 0( )x  0, then 0x  

is a stable node. If 0( ) 0x  , then 0x  is a saddle point. If 

0( ) 0x   and 0( ) 0x  , then there are zero and negative 

eigenvalues. If 0( ) 0x   and 0( ) 0x  , then there are 

double zero eigenvalues. If 0( ) 0x   and 0( ) 0x  , then 

there are zero and positive eigenvalues. Although these 

criteria are given, the number of equilibria and their stability 

are unknown for a parameter-given HR type model. We still 

need to know the relative position of 0x  among 
0x , 

0
rx , 

cx  

and r
cx . Consequently, we will separate the parameter 

domain into several parts. First of all, several lemmas will be 

given. 

Lemma 1.  Let 
2c b  and 0D  .  

1) If 0 1b  , then 01
b

x   .  

2) If 1 b  and 3 2 2 1b c b b    , then 01
b

x   .  

3) If 1 b  and 3 2 2 1b b c    , then 
0 1

b
x  .  

By Lemma 1, their relationship between 1 b   and 
0x  is 

confirmed. The number 1 b   or zero is the middle point 

between 
cx  and r

cx  or 
0x  and 

0
rx , respectively. Because 

0b  , the number 1 b   is always less than zero. Notably, if  

 

3 2 2 1c b b     
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then 
0 1x b   . The interfaces of these conditions in 

Lemma 1 are shown in Fig. 1, where the region 2  or 1  

satisfies Condition (a) or (b), respectively, and Condition (c) 

is represented by both regions 3  and 4 . None of the three 

conditions is represented by the region 5 . 

 

 
 

Fig. 1. Illustration of the conditions of Lemma 1 in the parameter domain 

( b c ). Regions 
2  and 

1  correspond to Condition (a) and (b), 

respectively, in Lemma 1. Regions 3  and 4  correspond to Condition 

(c) and (b), respectively in Lemma 1. The relationship between b  and c  in 

Region 5  satisfies an inequality 
2c b . 

 

Next, we will discuss the relationship among 
0x , 

0
rx , 

cx  

and r
cx . Let two critical numbers ˆ

b cL   and b cĽ   be defined 

as follows:  

 

2 2 2 2 2

2 2 2 2 2

ˆ [ 2 ( ) ( ) ] ( )

[ 2 ( ) ( ) ] ( )

b c

b c

b c b c c cL

b c b c c cĽ





      

      

 

 

Lemma 2. Consider the following conditions with 
2c b  

and 0D  .  

 Let 
0 1x b   .  

1) If ˆ
b c dL   , then 

0 0
r r

c cx x x x    .  

2) If ˆb c b cdĽ L   , then 
0 0

r r
c cx x x x    .  

3) If b cd Ľ  , then 
0 0

r r
c cx x x x    .  

 Let 
0 1x b   .  

1) If ˆ
b c dL   , then 

0 0
r r

c cx x x x    .  

2) If ˆb c b cdĽ L   , then 
0 0

r r
c cx x x x    .  

3) If b cd Ľ  , then 
0 0

r r
c cx x x x    .  

Next, for a pair of given parameters (b, c), the parameter 

domain (a, d) will be divided into several regions. For every 

region, there are different numbers and stability of equilibria 

for these regions. This basic category is based on the stability 

and numbers of equilibria. We analyze under which 

parameter the four conditions (AH)  , (SN  ) can be equal. 

Let the parameters b , c  and d  satisfy both (AH)   and 

(AH)  . In other words, we have the following equation:  

        
Fig. 2. Illustration of bifurcations with different parameters b  and c . The 

horizontal red line above and that below represents 
ˆ

b cL 
 and 

b cĽ 
, 

respectively. The horizontal blue line denotes the line with 1/d b b  . 

The remaining four non-horizontal curves denote AH


 and SN


. The 

number and stability of equilibria in these partitions with different capital 

letters can be found in Table I. 

 

 

Fig. 3. Illustration of a bifurcation with 2c b , where the two parameters 

5b  , 1c   are fixed. The blue horizontal line means 1/d b b  . 

The other two curves are SN


. The number and stability of equilibria in 

these partitions with different capital letters can be referred in Table I 

 

Theorem 1. Let two positive parameters b  and c  with 
2c b  be given. For the parameter domain ( )a d  in Fig. 2, 

the number of equilibria and their stabilities are listed for 

different regions in Table I. 

Remark. For the positive parameters b  and c  with 
2c b , we plot a bifurcation diagram with 5b   and 1c   

in Fig. 3.  
 

TABLE I: ILLUSTRATION OF THE NUMBER OF EQUILIBRIA AND THEIR 

STABILITY FOR DIFFERENT REGIONS.  

Region  state  Region  state   

A,K,G,J  (s,N,N)  F  (s,sd,u)  

B,O,E,X  (N,N,u) G  (s,N,N)  

C,D,P,T  (N,N,s)  H,I,R  (s,sd,s)  

I  (s,sd,s)  M  (u,sd,u)  

L  (s,sd,u)  N  (u,N,N)  

Q  (u,sd,s)  U  (s,N,N)  

V  (s,sd,s)  W  (s,sd,u)  

Y  (N,N,s)  Z  (N,N,s)  

 

These regions are marked in Fig. 2 and Fig. 3. The capital 

letters in the same column have the same status. “N" denotes 

no equilibrium point. “s" denotes a stable node. “u" denotes 

an unstable node. “sd" denotes a saddle point. For example, 
( )s N N   means one stable equilibrium and ( )s sd u   means 

one stable, one unstable and one saddle equilibrium. The 

interface between different regions represent a bifurcation 

parameter. For example, if the parameter a  is decreasing 

from Region A to B, the stability of the equilibrium is 

changed. 
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IV. SADDLE-NODE BIFURCATION 

A saddle-node bifurcation is a collision and disappearance 

of two equilibria in dynamical systems. In systems generated 

by autonomous ODEs, this occurs when the critical 

equilibrium has one zero eigenvalue. This phenomenon is 

also called fold or limit point bifurcation. A saddle-node 

homoclinic bifurcation is also referred to as a saddle-node 

bifurcation on limit cycle. An important case of saddle-node 

bifurcation in planar ODEs is when the center manifold 

makes a homoclinic loop. Such a saddle-node homoclinic 

bifurcation results in the birth of a limit cycle when the 

saddle-node disappears. The period of this cycle tends to 

infinity as the parameter approaches its bifurcation value. 

The following theorem is provided to show the occurrence of 

a SN bifurcation. Recall that 

 

(SN)  : 21 3 2 (3 )a D D D b 
 
 

      

 

Theorem 1. Assume 0D  . If all of the parameters in 

Eq. (1) satisfy Condition (SN)  , then a SN bifurcation exists, 

and its equilibrium is  

 
2

3

1 4 3 (3 4 ( ))

3

D bd b b b d D

b b

       
   

 
 

 

Corollary 1. If 1
b

d b   and 
2

1

3b
a  , then there exists a 

cusp bifurcation.  

 

V. ANDRONOV-HOPF AND BAUTIN BIFURCATION 

In this section, we analyze a AH bifurcation which 

describes when a stable or unstable limit cycle appears out of 

an unstable or stable equilibrium, respectively. Recall that 

Condition (AH)   only implies that the trace of 0L  is zero. 

The following theorem will show that eigenvalues of 0L  are 

complex.  

Theorem 1. Assume that 
2c b . If all of the parameters 

in Eq. (1) satisfy Condition (AH)   and 
2

2 02b

c
d m  , then a 

AH bifurcation exists, and its equilibrium is  

 

0 02

2

3 3

b
m m

c

 
 
  
 

 
   
 

   

 

Next, a Bautin bifurcation is considered. For a nearby 

bifurcation parameter, there exist two limit cycles that collide 

and disappear via a SN bifurcation of periodic orbits. We 

analyze the bifurcation by the process in Ref. [12].  

Theorem 2.   

1) Let a quadruple of parameters ( )a b c d    satisfy 

Condition AH  . If 0 1m b  , then a Bautin bifurcation 

occurs if 2 22d b b c    and if 
2 3 2( 1)c b b   .  

2) Let a quadruple of parameters ( )a b c d    satisfy 

Condition AH  . If 0 0m  , then a Bautin bifurcation 

occurs if 2 22d b b c    and if 
2 3 2( 1)c b b   .  

For an AH bifurcation, there are two types: one is a 

subcritical AH bifurcation, and the other is a supercritical AH 

bifurcation. Let us consider Case (a) and (b) in Theorem 2. If 
2 22d b b c   , then 1(0) 0 . The AH bifurcation is 

supercritical. If 2 22d b b c   , then 1(0) 0 . The AH 

bifurcation is subcritical. 

 

VI. BOGDANOV-TAKENS BIFURCATION  

In this section, a BT bifurcation is analyzed by the process 

in Ref. [12] and [13]. The normal form of the BT bifurcation 

is as follows:  

 

u v   

2
1 2v u u uv      

 

We attempt to transform Eq. (1) as Eqs. (6) and (7). For the 

normal form, we have the following three results for 

bifurcations: if 
2

1 24 0   , the system undergoes a SN 

bifurcation; if 1 0   and 2 0  , the system undergoes a 

supercritical AH bifurcation; if 
2 3

1 2 2(6 25) ( )o      and 

2 0  , the system undergoes a homoclinic bifurcation 

curve.  

Theorem 1.  

(a) Assume that the parameter a  satisfies Condition AH   

and ˆ
b cd L  . Then  

 

 4 4 2 2
0 1 0 2 0 2

1 23 2
0 0

16 4

(1 ) ( 1)

c m m c m

bm bm

  
 


    

 
 

 

where 2 2
1 0(2 3) (3 )a b c bm c  

 
 

      and 

2 2
2 0( 2 )d b c m     . 

(b) Assume that the parameter a  satisfies Condition AH   

and b cd Ľ  . Then  

 

 4 4 2 2
0 1 0 2 0 2

1 23 2
0 0

16 4

(1 ) ( 1)

c m m c m

bm bm

  
 


    

 
 

 

where 
2 2

1 0( )(2 3) (3 )a c b bm c       and 

2 2
2 0( 2 )d b c m     .  

To show the utility of the theorem, some numerical results 

about the existence of a homoclinic bifurcation are given. Let 

( ) (2 3 2 25283 )b c d        be fixed. When 0 0965a    , a 

stable equilibrium and one saddle equilibrium exist. When 

0 0969993468a    , a homoclinic orbit, one stable 

equilibrium and one saddle equilibrium exist. When 

0 09715a    , an unstable limit cycle, one stable equilibrium 

and one saddle equilibrium exist. In particular, there exist 

bistable behaviors in this case, due to the fact that there exists 

a bigger stable limit cycle that enclosed the three above states. 



  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

International Journal of Applied Physics and Mathematics, Vol. 3, No. 2, March 2013

121

  

Therefore, we also confirm that there numerically exists a 

homoclinic bifurcation. 

 

VII. CHARACTERISTIC EQUATION FOR THE DELAY CASE 

Here, we consider the model with delay case and analyze 

the characteristic equation with purely imaginary roots. Let 

the point 0 0( )x y  be an equilibrium and 0( ) ( )x t x t x   and 

0( ) ( )y t y t y  . To keep the notation simple, the variable x  

is replaced of x  and equations can be transformed as 

follows.  

2
0( ) ( ) ( ) ( ) (1 ) ( )x t c k x x t y t k x t       

 
  

3 2
0

1
( ) ( )

3
cx t cx x t    

2
0( ) (2 ) ( ) ( ) ( )y t x d x t by t c x t c          

The associated characteristic equation is  

2
0

0

( ) (1 )
det 0

(2 )

c k x c k e c

x d c b c

 



     
        

     (3) 

In other words,  

2
0 0(1 ) ( ) (2 ) 0

b
c k x k e x d

c

 
  

  
  

          

Eq. (3) is simplified as  

( ) ( ) 0F G e                               (4) 

where 
2

1 0( )F a a      and 1 0( )G b b    with 

2
0 0 0( ) (2 )a b x k x d    , 

2
1 0( )a b c c k x    , 

0 ( 1)b b k   and 1 ( 1)b c k  . This characteristic equation 

determines the local stability of an equilibrium. That is, the 

equilibrium is stable if and only if all the characteristic roots 

  have negative real parts.  

Applying the Lemma in Cooke and Grossman, we obtain 

the following results. For Eq. (4), we have the following 

results: if 
2 2
0 0a b  holds and n   , then Eq. (4) has a pair 

of purely imaginary roots i ; if 
2 2
0 0a b , 

2 2
1 1 02 0b a a   , 

2 2 2 2 2
1 1 0 0 0( 2 ) 4( )b a a a b    , and 

n    (resp. n   ), then Eq. (4) has a pair of imaginary 

roots i  (resp. i ); if neither (1) nor (2), and 0  , 

then Eq. (4) has no purely imaginary root, where  

2 2 2
1 1 0

1
( 2 )

2
b a a     

1 2
2 2 2 2 2
1 1 0 0 0

1
( 2 ) ( )

4
b a a a b


 

      
 

 

2 2
1 0 0 1 1

2 2 2
1 0

( )1 2
cosn

b a a b n

b b

  


 

   

 

  
   

 
 

2 2
1 0 0 1 1

2 2 2
1 0

( )1 2
cosn

b a a b n

b b

  


 

   

 

  
   

 
 

where 0 1n    . Denote  

( ) ( ) 0 1 2k n k n k ni k `` "or`` " n                   

where the root of Eq. (4) satisfying ( ) 0n n    , 

( )n n  
  and ( ) 0 ( )n n n n     

     . If n


 and 

n


 are bifurcation values, we need to verify if the 

transversality conditions hold. In other words, the following 

transversality conditions  

 

( ) ( )
0 0

n n n ndRe dRe

d d

   

 

 
 

    

 

are satisfied due to the fact that  

 

2 2 2
1 1 0

( )
2 2

n ndRe
sign sign a b a

d

 





  

  

 
     

 
 

 

 

Under the conditions, the Hopf bifurcation with delay 

occurs. 

 

VIII. CONCLUSION 

For the 2DHR type model (1), the conditions for a AH, SN, 

BT and Bautin bifurcation are given. The existence and 

number of equilibria in Eq. (1) are completely studied. 

Because the system is a planar system, it follows from the 

analysis of trace and determinant of the linear part that we 

discuss the stability of the equilibria. By the Conditions in 

Lemma 1, the parameter domain ( )b c  can be divided into 

three parts, 1 , 2  and 3 4  , which correspond to 

Condition (a), (b) and (c) in Lemma 1, respectively. Only 

5  is excluded in Lemma 1. The order among 
0x , 

0
rx , 

cx  

and r
cx  is confirmed following Lemma 2. Based on the 

Lemma, we confirm the signs of 0( )x  and 0( )x , where 

0x  is the first component of an equilibrium ( 0 0x y ) for the 

2DHR type model (1). The two signs can help us judge the 

stability of the equilibrium. With all of the categories based 

on Lemma 1 and 2, we can furthermore explore all of the AN, 

SN bifurcations. Furthermore, the normal forms for the BT 

and Bautin bifurcations based on the results of the AH and 

SN bifurcations are provided in Theorem 2 and 1, 

respectively. We also notice that there exist bistable 

behaviors near the BT and Bautin bifurcation. In addition, it 

is worth mentioning that lim 2c d b   in Theorem 2, 

2
3

lim ( ) 1b
c a d      in Condition (AH)  , and there is 

no parameter c  in Condition (SN)  . Therefore, as c  is 

sufficiently large, all of the bifurcations curves in the 

parameter domains (a, b, d) are almost the same. In Section 

VII, with the characteristic equation, the Hopf bifurcation 

occurs when purely imaginary roots exist and the 

transversality condition holds. In the study, we have 

completely shown the global bifurcation scenario for the 

2DHR type model, which may be useful in more biophysical 

studies, for instance, as a guide in modeling studies for 
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choosing suitable parameters for fitting the model to 

qualitatively different types of electro-physiological 

behaviors. 
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