
  

 

Abstract—A numerical resolution of the two dimensional 

Vlasov-Poisson system is proposed. The time splitting method is 

used on the Vlasov equations to reduce the dimensions, then we 

apply the WENO (weighted essentially non-oscillatory) scheme 

based on the idea of Harten to solve our equation. We elaborate 

a transformation time-space to avoid the mixed problem and 

reducing the error. This algorithm is applied to the two 

dimensional Vlasov-Poisson system and an evolution of the 

density and the total energy is presented. 

 

Index Terms—WENO schemes, vlasov equation, time 

splitting method. 

 

I. INTRODUCTION 

Various numerical methods have been developed for 

solving the Vlasov-Poisson equations. These methods can be 

parted in two main branches. The first is the well-known 

particle-in-cell (PIC) method [1], [2]. This one introduces the 

concept of pseudo-particles and relies on the computation of 

their trajectories. This method has been successfully used to 

simulate the behavior of collisionless laboratory and space 

plasmas and provides accurate results for modeling of large 

scale phenomena. Moreover suffer from intrinsic drawbacks. 

An alternative approach based on an Eulerian approach 

consists in solving the Vlasov equation for the distribution 

function [3], [4]. Also an adaptative wavelets scheme is 

proposed in [5]. 

There is a large number of competing finite difference and 

related schemes for the solution of the Vlasov equation 

suggested in the literature; we have chosen to use the 

essentially nonoscillatory (ENO) schemes of Osher [6]and 

Osher and Shu [7] and the related weighed ENO (WENO) 

schemes Jiang and Peng [8]; Liu et al. [6]; Shu [7] for the 

following reasons: (1) stable schemes of arbitrarily high 

order accuracy exist, permitting accurate solutions on coarse 

grids (which is critical to the mesh refinement or coarsen- 

ment); (2) versions exist in any dimension so that we can 

extend our methodology to the three-dimensional case 

straightforwardly (see [9]). 

The ENO scheme was successfully applied on the Vlasov 

equation in two dimensions [10]. 

In two dimensions, the Vlasov equation is written as 

follows [11] : 
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We apply time splitting method [12] to the equation (1), 

we obtain then: 
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From these equations, all work carry out until now were 

elaborate by again applying a stage of fractional steps to the 

equations (2) and (3). In this way, we find a problem in 

dimension one (1D) which we can solve successfully. But the 

time splitting method required, for the level of the numerical 

scheme, to cut the step of time by two to keep the same order 

of precision because it is necessary to symetrize the steps. 

With splitting again (2) et (3), we obtain: 
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and the symmetric algorithm is now : 

If we begin in time 0t , with ,,( vxf  f(x; v; t = t0) = f(t0) as 

initial condition, each solution of the equations A to D is used 

as an initial condition to the next step: 

 Solution of (A) on a time ),2(2 01 ttft   

 Solution of (B) on a time ),2(2 02 ttft   

 Solution of (C) on a time ),2(2 03 ttft  , 

 Solution of (D) on a time ),( 04 ttft   

 Solution of (C) on a time ),2(2 05 ttft   

 Solution of (B) on a time ),2(2 06 ttft   

 Solution of (A) on a time ),2(2 07 ttft   

In total 7 steps. A scheme non resplitted require only two 

steps. Also this algorithm is not adapted for large shifts which 

increase the error in particular by reducing the order of 

precision. This large shift is very realizable in our case and 

consequently any method used for the resolution of the 

equations results of the second splitting is not efficient and 

the results are rather erroneous and not very reliable. To 
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avoid these errors, we established a method which reduced 

the error considerably. 

The algorithm is to solve directly the equations (1, 2) and 

(1, 3) (without splitting) by using the idea of Harten [13] in 

two dimensions. In this case the large shift is not a constraint 

in our scheme because it represents a translation of our cell 

towards another. Then we will be able to take up the idea of 

splitting our equation but at this time the large shift was 

already carries out well on a complete step that the entire part 

first, then the small shift has to take into account for the 

continuation of the resolution. At this level we will use the 

method of the fractional steps (time splitting). 

 

II. WENO SCHEMES 

The basic idea of WENO, which is based on ENO [14] of 

course, is the following: instead of using only one of the 

candidate stencils to form the reconstruction, one uses a 

convex combination of all of them. So suppose the k 

candidate stencils 
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produce k different reconstructions to the value 
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WENO reconstruction would take a convex combination 

of all 
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defined in (6) as a new approximation to the cell 

boundary value )(
2

1i
xv : 
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We require 
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for stability and consistency. 

If the function v(x) is smooth in all of the candidate stencils 

(5), there are constants rd such that 
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and for the other 
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We have by symmetry 
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For example, rd  for 31  k are given by 
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We can see that rd  is always positive and, due to 

constancy, 
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The weights should be smooth functions of the all averages 

involved. In fact, the weights described below are C1. We 

would like to have weights which are computationally 

efficient. Thus, polynomials or rational functions are 

preferred over exponential type functions. 

All the considerations lead to the following form of 

weights: 

 

1,...,0,
1

0








krw
k

s

s

r
r



             (8) 

with 

2)( r

r
r

d





  

 

Here 0  is introduced to avoid the denominator to 

become 0 and r  is a smoothness measurement of the flux 

function on the k-th candidate stencil. 

Consideration for a smooth flux and for the role of higher 

order variations leads us to the following measurement for 

the smoothness: let the reconstruction polynomial on the 

stencil )(iS r  be denoted by )(xpr , we define: 
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The right hand side is just a sum of the squares of scaled 
2L  norms for all the derivatives of the interpolation 

polynomial )(xpr  over the interval ),( 2/12/1  ii xx . The 

factor 
12  lx  is introduced to remove any x  dependency 

in the derivatives. 

For example, when k = 2 
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and for k = 3, (61) gives: 
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Now, we can form the weights rw  and rw  using (8)  

and 
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Finally, we can find the (2k-1)-th order reconstruction 
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And now, we can return to the monotone flux chosen 

before for the ENO schemes then follows all the steps as in it 

(use (9) to compute the flux then form the scheme ). 

 

III. TIME-SPACE TRANSITION 

Our problem is to carry out a passage of the integral in time 

t to an integral in space x or y. For that, we return to 

dimension 1 (1d) while making our calculations compared to 

the transport equation: 
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By integrating, we obtain 
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In our case, a is a constant consider a function X(t0; t; x) 

such: 
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which satisfied 
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Taking a constant gives: 
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We introduce the relation now (11) in the integral in time, 

we obtain then: 
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from (3.34), we have 
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Putting X = z and with the conditions (12), the equation 

(13) becomes 
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We obtain then desired transformation which transforms a 

integral into time in another in space. 

We will use the transformation (14) to calculate jif ,2/1
ˆ
  

and 2/1,
ˆ

jig and by similarity jif ,2/1
ˆ
  and 2/1,

ˆ
jig . 

 

IV. APPLICATION TO THE VLASOV-POISSON SYSTEM 

Consider 
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In the case of the equation of Vlasov, we have: 
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There are several cases to study carrying out our 

calculations for a small shift using finite difference method. 
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By using the transformation (14), we obtain then: 
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Using five points finite difference, we develop our 

function u such as: 
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Case 2: 
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Following the same calculations of the first case and now 

denoted by B , we have: 
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Let us compute 2/1,
ˆ

jig  and 2/1,
ˆ

jig .It is carried out 

according to the technique of previous description: 
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We note by C the following integral: 
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In the same manner, we obtain: 
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Case 4: ,
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After same calculation for 2/1,
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jig , we find the integral D: 
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The general relation (4. 40) become: 
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Considering the variations of the shift in space, we find 

new boundaries. 
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Hence, we obtain then: 
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We start the simulation from a two stream situation, both 
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in x and y, with a perturbation term: 
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  0.02[  cos( )   cos ]pert k x k y  . 

 

The initial condition is Maxwellian in v-space and with a 

cosine perturbation in x and y space. 

As shown in Fig. 1, the initial perturbation which has been 

introduced in the distribution function make some noise on 

the Vlasov model but using splitting scheme we contain this 

noise to be stable in sense of increasing. Both density and 

total energy are shown in Fig. 1 varying with time evolution. 

 

 
 

 
Fig. 1. Time evolution of the mean normalized density and the total energy. 

 

V. CONCLUSION 

We have presented the WENO method based on the idea 

of Harten and its application to solve the two-dimensional 

Vlasov-Poisson system. By splitting Vlasov equation only 

one time, we reduce the number of steps. 

Our algorithm is applied on the first splitted equation, then 

we determine the E from Poisson equation and finally we 

solve the second splitted equation using the same shift. 

We have separated integer part and left fractional in 

elaborating the boundaries of the integrals. The method used 

here is faster than other method [2], [15], but we obtain a 

similar results. 
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