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 

Abstract—The theory of integers and fractions at which 

plateaus arise in the quantum Hall effect is explained. The 

experimental values are noted and explained by using the 

theory of angular momentum in quantum mechanics. The 

special treatment of spin introduced by this work eliminates the 

Lande’s formula of g values and introduces a formula which is 

linear in the angular momentum variables, L, S and J. At high 

fields, the +S states are symmetric with the –S states so that 

when there is a plateau at + state there is also one at –S state. A 

lot of states require that the Landau levels are modified by this 

spin effect.  

 
Index Terms—Quantum Hall effect, modified Lande’s 

formula, landau levels, symmetric spin effect.  

 

I. INTRODUCTION 

The preliminary experimental work on the detection of 

fractions and integers at which plateaus occur in the quantum 

Hall effect was done by von Klitzing, Dorda and Pepper [1] 

and by Tsui,  Stormer and Gossard [2]. It was thought that the 

wave function of electrons should be two dimensional as the 

Laughlin’s wave function is [3]. Anderson [4] and Schrieffer 

[5] thought that Laughlin’s wave function will provide a 

prototype wave function which will form the basic theory of 

charge fractionalization. Whether the charge fractionalizes in 

the quantum Hall effect or not by electron correlations is a 

different question but we have found that all of the data can 

be explained on the basis of spin symmetry and the angular 

momentum and not by Laughlin’s wave function. Hence, the 

charge fractionalization does not occur by Laughlin’s 

correlations. Later work showed that Laughlin’s wave 

function is a zero-energy ground state of a very unusual 

potential which is unlikely to occur in solids and hence will 

not be useful to interpret the experimental data. The 

Laughlin’s potential cannot be transformed into a Coulomb 

potential. They never claimed that Laughlin’s wave function 

is the ground state of Coulomb’s potential. Simply, we find it 

convenient and have understanding of the Coulomb potential 

as a fundamental law of nature. It will be a great service to the 

physics community if we can prove the equivalence between 

our angular momentum theory and the Laughlin’s theory. It 

seems that it will be very difficult to find such an equivalence 

if it exists at all. What is the Hall effect resistivity? We are 

able to explain the Hall effect without the need of a wave 

function [6]. That means that the wave functions are 

hydrogen type, made from Legendre’s polynomials with 

suitable modifications. The Hall resistivity is a linear 
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function of magnetic field. In real systems it is found to have 

fractional values which require understanding. We find that 

the size of the devices is often only a few nm and 

temperatures of measurements are quite low such as mK.  

Our theory explains all of the data correctly [7]-[21]. 

 

II. ELEMENTARY  THEORY 

We define the cyclotron frequency as, 

 Bg B                                         (1) 

The Bohr magneton is, 
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Hence, 
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Since for L=0, g=2, it is a common practice to define the 

cyclotron frequency as, 
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The electrons in a magnetic field behave like harmonic 

oscillators. Hence, the energy of a state is given by, 
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It is proper to include the factor of g/2 so that the above 

energy is modified to, 

).
2

1
(

2

1
 n

mc

eB
gEn 

                           (6) 

The same effect can be obtained by replacing e by 

gee )2/1(* , so that the energy can be written as, 
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The transition can occur from nE  to 'nE  The Hall effect 

resistivity is, 

cne

B

nec

B
xy

*

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Hence the effective charge can be measured. The flux 

quantization is given by, 
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where A is the area in which flux is quantized. Substituting 

this field in the Hall effect formula gives, 
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Which gives the quantum Hall effect. We do not use the 

Lande’s formula but suggest a formula linear in the angular 

momentum. This formula gives, 

12
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g .                                  (11)                                                       

 Here, slj   is the total angular momentum quantum 

number. The effective charge is thus, 
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For positive sign and s=1/2, 

1
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l

l
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and for the negative sign and s=1/2, 

.
2 1

l

l
  

                                           (14)                                                                     

Here , 

(1/ 2)ge                                          (15)                                                                    
 

gives the correct fractional charges such as, 

For l =1, 3/1  and 3/2 , etc. These values are 

the same as tabulated in 1985 which agree with experimental 

data. We call these as “principal fractions”. Instead of the 

principal values, we can also generate the 

resonances, 21   . This process produces some more 

fractions not already present in the “principal fractions”, 

except in the case when we consider the energy level 

difference 21 EE   with .02 E  Indeed, there is a zero 

energy state for l =0, with negative sign, s=1/2, .0  

Many resonances are  in fact present in the experimental data 

and indeed predicted from the linear theory.  At low 

temperatures, the excitation populations are small so that 

interactions are minimized. Hence we predict the 

“resonances”. We are thus able to produce a large number of 

principal fractions and resonances so that “two-particle 

states” occur.  For these particles we have 21    so that 

these processes produce more fractions than are found in 

resonances. Hence we have (i) principal fractions, (ii) 

resonances and the (iii) two-particle states. The real material 

is often having electron clusters so that the spin need not be 

½.  

III. CLUSTERS 

In real materials aluminium is mixed in gallium arsenide so 

that the film is not a single crystal and clusters of atoms are 

formed. The electron clusters are formed in between spaces 

of the atomic clusters. In these clusters spin becomes

 
 NS= .)( SNN




                                     (16) 

Hence the spin may be 3/2, 5/2, 2 or 3. For example for,
 

 l =0                                                   (17)  

The fractional charge can occur at,  
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For finite l, 
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 For  

N – N=0,                                    (20) 

S=0, so that the effective charge becomes, 
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Thus only half of the particle is seen in the resistivity 

which has even denominator. For S=1, 

1 3 1
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2 2 2*/ ,
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 
  

                      (22) 

Which has even denominators and occurs in pairs. We 

have explained 101 plateaus correctly by this theory.  The 

fractions of charge which are measured by using xy are 

usually the same as those measured by using xx . The 

fractions occur in the form of (i) principal fractions, (ii) 

resonances, (iii) sum process and those of the (iv) electron 

clusters. In the case of electron clusters, the fractions derived 

from xx direction are slightly different from those found from 

xy values. The effective charge of the electron becomes 

anisotropic due to the spin wave propagation in the 

micro-cluster of electrons. The wave vector of the spin waves 

appears in the effective value of the spin 

Seffective = S - S                                    (23) 

There is an explicit dependence of the charge on the spin 

which modifies the condition of the flux quantization and 

leads to an anisotropic charge. In the Hall effect, the 

resistivity is a linear function of magnetic field. When field is 

quantized there occur plateaus in the
xy and minima in xx .  

 

IV. SPIN WAVES 

The Hamiltonian of the ferromagnetic spin waves with 

exchange interaction is given by, 
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jzjBjjj SHgSSJ    .
                   (24) 

where J is the exchange interaction and H is the magnetic 

field. 
jS  are the spin operators at the jth site and the 

summation can be carried out to nearest neighbors, jS .  

The number of nearest neighbors is z so that the Fourier 

transforms of spin operators requires, 

).exp(
1

  ik
z

k 
                                       (25)

                                                                     

Leaving out the magnetic field dependent term, the 

unperturbed frequency of a magnon is, 

)1(2 kk JzS                                           (26)  

Hence, the spin has been changed from S to S(1- k ) in 

going from the site variables to spin wave variables. This is 

called the spin deviation and it amounts to a few per cent in 

real materials. For .k <<1, exp(ik. ) has only the sine term 

and the cos term is zero so that for small wave vectors, 

2).(
2

1
)1(  kz kk                                     (27)  

so that 

2).(  kJS kk                                            (28) 

Which for cubic lattices is 2JS(k.a)
2

 where a is the lattice 

constant. Hence, the spin is changed to S(k.a)
2

. In the case of 

two-sublattice antiferromagnets, .34 JSkak   In a 

cluster, in the a-b plane, the frequency of a magnon is given 

by the expression  2JS[(k.a)
2

+(k.b)
2

] whereas along the x 

direction it  appears as 2JS(k.a)
2

.  Hence, the spin value 

becomes anisotropic. The Hall effect resistivity is, 
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                          (29) 

In the case of an electron cluster, the value of S along xx 

direction is NS which due to spin waves becomes  NakS 2).(  

whereas along the xy direction it will be 

.]).().[(
2

1 22 NbkakS    Hence the value of (1/2)g 

depends of the direction. The value of the filling factor 

g)2/1(  also depends on the direction. Hence xx  need 

not be equal to 
xy where xx is deduced from xx  and 

xy from 
xy . 

Kumar et al. [22] have found that in the xx 

direction 002.0463.2   whereas in the xy direction 

.461.2  Hence, the value deduced from the xy is slightly 

different from that deduced from the xx which we assign to 

the value of the spin due to spin waves. For L=0, the filling 

fraction is  

.                           
1000

2463

2

1
 s                                (30) 

Hence 963.1 s  which shows 1.8 % spin deviation 

compared with S=2. The Hall effect experiment is performed 

on a polycrystalline heterostructure film so that the 

crystallographic directions are not the same as those used in 

the Hall effect. Thus spin deviation occurs in the Hall effect 

of clusters. The effective spin is found to be slightly different 

from the integer value,
 

96.104.02  SS                            (31) 

                                                          

V. DATA INTERPRETATION 

Usually, the Lande’s formula for the g value uses the 

squares of the angular momenta operators and spin is positive 

only. In 1985, we decided to use linear expression and allow 

both signs for the spin. Therefore, we obtained an expression 

in the form of angular momenta variables which multiply the 

Bohr magneton so that the charge can be replaced by an 

effective value. In this way, we obtained the fractional 

charges. All of the calculated values are in agreement with 

the experimental data. Because of the two signs of the spin, 

there are symmetries in the data which are well explained by 

the theory [6]. For the present purpose, we mention that the g 

values obtained in the previous paper [6] are given by, 
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Which are just the g = (2j+1)/(2l+1) for j = l  s. 

Accordingly, for s=1/2, 
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Type 1. For l = 0, (1/2)g-= 0 and (1/2)g+ = 1. These values 

are very important which we will need at some time. In 

particular, the zero value of (1/2)g- will be useful. For finite 

values of l the two series are given in Table I. All of the 19 

values are the same as those reported by Pan et al. [23]. We 

have included three more values which are the predicted 

values, perhaps not yet reported but we believe that these 

values are correct. It may also be noted that the values given 

in Table I are pairwise and they are Kramers conjugates of 

each other and may appear as particle-hole symmetric states. 

According to our scheme, 

 Hg B                                       (35) 

so that substituting the value of Bohr magneton, we find,  
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so that the cyclotron frequency becomes, 
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 .
2 mc

eHg
                                     (37) 

Therefore,   should be multiplied by (1/2)g. The values 

of (1/2)g are given in Table I for both signs of spin. The 

effective charge is e*=(1/2)ge. Hence, the value of (1/2)g 

appears in the resistivity as the effective charge. When the 

energy of a state is given by (1/2)g  , then the energy level 

difference, E= (1/2)g1 – (1/2)g2 also becomes an allowed 

transition. We consider the Landau levels at, 

E= gn
2

1
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1
(   .                              (38) 

In the case of two oscillators with equal g values, 

E=   gnngngn
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2
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2

1
( 2121     (39) 

which is an integer multiple of (1/2)g.  So when a state 

occurs at (1/2)g, then  for 21 nn   =2, g   also becomes 

allowed and it is due to the Landau level type effect. 

Type 2. If one particle has energy  , then two particle 

state will occur at   2)( 21  . When a particle has 

energy 2/3, then two particle state will be at (2/3)+(2/3)=4/3. 

Now there is a particle at 4/3 and there was already at 1/3, 

then two particle state occurs at (4/3)+(1/3)=5/3. Similarly, 

(5/3)+(2/3)=7/3 and (1/3)+(7/3)=8/3. As we keep adding 

particles, the states become weak due to low probability of 

occurring. This explains 4/3, 5/3, 7/3 and 8/3 and predicts 

two weak states at 10/3 and 14/3. In Table I, 121   

exists but now these states have much higher filling factors 

than 1 so they are two particle states but not particle-hole 

symmetric states. The two-particle state of 2/5 is at 4/5, and 

the two particle state of 2/5 and 4/5 is at (2/5)+(4/5) = 6/5, 

which can be taken as a three particle state. Similarly, 

(3/5)+(4/5) = 7/5, (4/5)+(4/5) = 8/5, (3/5)+(6/5) = 9/5, 

(2/5)+(9/5) =11/5, (3/5)+(9/5) =12/5, (1/5)+(12/5) =13/5, 

(13/5)+(1/5) = 14/5,(4/5)+ (12/5)= 16/5, (6/5) + (13/5) = 19/5, 

(9/5)+(12/5)=21/5, (12/5)+(12/5) =24/5. This explains the 

two particle states at 4/5, 6/5, 7/5, 8/5, 9/5, 11/5, 12/5, 13/5, 

14/5, 16/5, 19/5, 21/5, 24/5 and predicts 17/5 = 6/5+11/5, 

18/5=6/5+12/5, 22/5= 11/5+11/5. and 23/5=11/5+12/5. As 

the number of particles increases, the states become weaker. 

For example, 2 particle states are stronger than 3 particle 

states. 

The difference states. In eq.(39),  121  nn  leads to 

states at (1/2)g   and 221  nn  gives states at g  . We 

can get 
21 EE   type states such as of the form

21
2

1

2

1
gg  . 

We already have 3/7 and 4/7 in Table I. the difference 

between these two energies is 4/7-3/7=1/7, 3/7-1/7 =2/7. The 

sum of the states are at 
21   . Hence 2/7+3/7 =5/7, 

4/7+5/7= 9/7, 5/7+5/7=10/7, 2/7 +9/7=11/7, 3/7+9/7=12/7, 

5/7+11/7= 16/7, 9/7+10/7= 19/7. Some of the states are given 

as follows:  

10/7-9/7=1/7, 

2/7+9/7=11/7, 

3/7+9/7=12/7, 

9/7+2/7=11/7, 

5/7+11/7= 16/7, 

9/7+10/7=19/7. 

Which are given in Table II. The 3/7 and 4/7  given in 

Table I, can generate all of these fractions by consideration of 

differences (transitions)  and sums (two-particle states) of the 

two energies at a time. We see that, 5/9-4/9=1/9 which is a 

transition and 1/9+1/9=2/9 is a two particle state. The 

particles obtained by confluence are 2/9+5/9=7/9, 

7/9+4/9=11/9, 11/9+2/9=13/9, 7/9+7/9=14/9 and 

11/9+14/9=25/9, which are two particle states. The transition 

state also produces 6/11-5/11=1/11, 1/11+1/11= 2/11, 

1/11+2/11=3/11, 2/11+2/11=4/11, 3/11+4/11=7/11, 

4/11+4/11=8/11, 6/11+8/11=14/11, 8/11+8/11=16/11, 

14/11+3/11=17/11. These predicted fractions are given in 

Table III. The transition energy between 7/13 and 6/13 is 

1/13. The two particle state of 1/13 is at 2/13. Further, 

particle states are 1/13+2/13=3/13, 3/13+1/13=4/13, 

4/13+1/13=5/13, 5/13+5/13=10/13 and 10/13+10/13 =20/13. 

The 19/13 may be a three particle state 

10/13+7/13+2/13=19/13 which will be weak. The transition 

state between 8/15 and 7/15 is at 1/15. A two particle state 

occurs at 2/15. The two particle states occur at 

2/15+2/15=4/15, 4/15+7/15=11/15, 11/15+11/15=22/15 and 

22/15+1/15=23/15. The experiment picks up a lot of two 

particle states. For l > 8, the number of populated states 

becomes small and when l  >12, the population becomes so 

small that they are not observed. The non-observation of 

some of the fractions is therefore due to the very small 

population. The states with l = 8 from eqs. (36) and (37) are 

8/17 and 9/17 and the difference or transition energy is 1/17. 

The two-particle state of this transition is at 2/17. The two 

particle states occur at, 2/17+1/17=3/17, 2/17+2/17=4/17, 

3/17+2/17 =5/17 and 3/17+3/17=6/17. For l = 9, the states are 

9/19 and 10/19, the transition state of these states is 1/19 and 

its two particle state occurs at 2/19. The two-particle state of 

1/19+2/19 occurs at 3/19. The two-particle state of 2/19+2/19 

occurs at 4/19. The two-particle state of 3/19+2/19 occurs at 

5/19 as given in Table IV. Obviously, these states are weak 

because of large l and because of combinations involved. 

Every time we compose a particle, the probability decreases 

with increase in the number of particles. It is possible to have 

two particle state with 5/19+5/19=10/19. For l =10, 2l+1=21 

and the predicted energy is (1/2)g in units of  . The 

transition energy between 10/21 and 11/21 is 1/21. By means 

of two particle states, the system builds 2/21 and 

(2+2+1)/21=5/21 but these are weak. For l = 11 we get 11/23 

and 12/23 from l/(2l+1) and (l+1)/(2l+1). The difference state 

occurs at 1/23 which gives the two particle state at 2/23. The 

three particle state of which occurs at (2+2+2)/23=6/23. Of 

course, these large l states are weak. For l =12 we have 12/25 

and 13/25,  the difference of which is 1/25. The two-particle 

state of which occurs at 2/25 given in Table V.  Table I. Gives 

the fractions calculated from 1985 theory of ref.6 by using 

)12/( ll and )12/()1(  ll . All of the calculated values are 

the same as the experimental values. Values marked by * are 

predicted but not found in the data. The calculated values use 

a formula which is quite different from the Lande’s formula. 

Similarly, the theory of Landau levels has to be changed by 

the spin. This spin occurs in the form of S but not trivially in 
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the form of components. Usually in the theory of magnetism, 

the Hamiltonian is written in terms of x, y and z components 

but in the present theory the spin occurs in the g values. In the 

case of electron clusters, the spin components become 

important as S is modified by the neighbors which requires 

spin-wave type effect. The quantum Hall effect is thus a 

property of pure material and a small number of plateaus 

require clustering. 

 
TABLE I: PRINCIPAL FRACTIONS

l 0 1 2 3 4 5 6 7 8 9 10 11 

(1/2)g- 0 1/3 2/5 3/7 4/9 5/11 6/13 7/15 8/17 9/19 10/21 11/23

* 

(1/2)g+ 1 2/3 3/5 4/7 5/9 6/11 7/13 8/15 9/17 10/19 11/21

* 

12/23

* 

 

TABLE II: TWO-PARTICLE STATES AND TRANSITION STATES GENERATED BY THE SAME EXPRESSION AS USED FOR TABLE I 

TABLE III. THE TWO-PARTICLE STATES WITH 9 AND 11 IN THE DENOMINATOR FOR L = 4 AND 5, RESPECTIVELY. 

1/9 2/9 7/9 11/9 13/9 14/9 25/9  

2/11 3/11 4/11 7/11 8/11 14/11 16/11 17/11 

 

 
TABLE IV: THE TWO AND THREE-PARTICLE STATES WITH 13, 15, 17, 19 AND 21 IN THE DENOMINATOR.

 
TABLE V: LARGE L OR WEAK FRACTIONS. 

1/21 5/21 10/21 11/21 

6/23 11/23 12/23  

1/25 2/25 12/25 13/25 

 

Table I. “Principal fractions” based on single-particle 

theory valid at low temperatures.  Type 3. Even denominators. 

When s = 0, 1, 2,…, which is possible for multielectron states, 

a factor of 2 drops from the ½ in the numerator of eq.(32) to 

the denominator.For example, s=0 which means a two 

electron state with one spin up and the other down, is formed. 

The expression (32) for s = 0, l =0 gives, 

2

1

2

1
g                                       (40) 

or g=1. For n = 0 the Landau level   
4

1

2

1
)

2

1
(  gn  so 

the denominator is even. For n=2 (n+1/2)(1/2)g=5/4 which is 

not a paired state. This explains the even denominator state at 

5/4. For n=3, the predicted fraction is 7/4. Considering two 

particle states 5/4+5/4=5/2 and 7/4+7/4=7/2. If we look at the 

equation (39) for ,221  nn  the factor gnn )2/1)(( 21   gives 

resonances at g and not at (1/2)g. This effect generates some 

degeneracies in the problem. Now using the formula (38) for 

(1/2)g=1(Table I), the resonance occurs at 5/2 for n=2, and at 

7/2 for n=3. That solves the problem of 5/2 and 7/2. The state 

of s=0 will be non-magnetic and it is similar to a diamagnetic 

state. The electron pairs of spin = 0 are well known in 

superconductors which are in the conduction band due to the 

electron-phonon interaction. However, the present problem 

is quite different from that of superconductors and the 

analogy is only to the extent of two-particle state. The 

two-particle states are not bound whereas in superconductors 

there is a binding energy. When there are two electrons, we 

4/3 5/3 7/3 8/3 4/5 6/5 7/5 8/5 9/5 

11/5 12/5 13/5 14/5 16/5 19/5 21/5 24/5  

1/7 2/7 5/7 9/7 10/7 11/7 12/7 16/7 19/7 

1/13 2/13 3/13 4/13 5/13 10/13 19/13 20/13 

1/15 2/15 4/15 11/15 22/15 23/15   

1/17 2/17 3/17 4/17 5/17 6/17   

1/19 2/19 3/19 4/19 5/19 9/19 10/19  
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predict that not only spin zero state occurs but s = 1 state 

should also occur. The value of s = 1 gives, 

12

1
2

1

2

1






l

l

g                                     (41) 

Which for l =0, s=1 gives (1/2)g+=3/2 and (1/2)g-=-1/2 

which have even denominators. For l =1 we get (1/2)g+=5/6 

and (1/2)g-=1/6. For l =2 , we obtain,(1/2)g+=7/10 and (1/2)g- 

=3/10. In fact 3/10 is experimentally observed. The even 

denominator states thus seen above are at ½, 5/2, 7/2, 5/6, 1/6, 

3/10 and 7/10. We can look for more values of l but they 

become weak. 

Using the formula (1), 

For s =0, (1/2)g=1/2 

For l = 0, s =1, (1/2)g+=3/2 and (1/2)g-= -1/2 

For l  =0, s =2, (1/2)g+=5/2 and (1/2)g-= -3/2. 

The factor of (1/2) can arise from Bohr magneton. The 

energy of the electron in a magnetic field is 

H
mc

e
gHg B

2


 which can be written in terms of 

cyclotron frequency, (1/2)g   where ./ mceHc   The 

eigen values of the Landau levels become, gn
2

1
)

2

1
(   in 

which case the factor (n+1/2) can be multiplied by (1/2)g. For 

n=0 the factor n+1/2 gives ½. When g = 2, (1/2)g=1 in Table 

I, there is no effect on the harmonic oscillator type eigen 

values so that the eigen values are obtained from (n+1/2). We 

give in table Ⅵ, various energies for a few values of n. In the 

serial number 1, (1/2)g=1. The other values of (1/2) g are ½, 

3/2, 5/2 and (-1/2) which are multiplied by (n+1/2) and given 

in the Table Ⅵ. 

 

 
TABLE VI: THE ENERGIES FOR N=0, 1, 2, 3, AND 4 FOR VARIOUS VALUES OF (1/2)G. 

Let us make two particle states, 
21   . From n=4, 

(1/2)g=1, g=2 from serial number 1 and the first member of 

the third row, 9/2+1/4=19/4. The values of ¾ and 5/4 are 

already in the Table. Therefore, we can obtain the values ¾, 

5/4 and 19/4. In the expression for the flux quantization, there 

is an area in which flux is quantized in units of hc/e. It is 

perfectly valid to say that flux is quantized in units of integer 

multiple of hc/e. When we take n’=2 in n’hc/e, the flux 

quanta also correspond to (1/2)e. Hence, the flux is quantized 

with half the charge of the electron. In this way a factor of ½ 

appears in the charge. In the previous Table, the charges of 

3/4, 5/4 and 19/4 were obtained. Considering n’=2, these 

values become 3/8, 5/8 and 19/8. The quantized Hall effect 

formula becomes, h/[(1/2)e]e so that weak plateaus are 

predicted at 3/8, 5/8 and 19/8. 

The helicity is defined as the sign of the product of the 

linear momentum and the spin, p.s. In quantum Hall effect the 

total angular momentum j=l±s shows the importance of the 

sign of the spin. The data are symmetric with respect to the 

sign of the spin and hence display helicity. The sign of the 

velocity of the electron is the same as the sign in front of s. 

Hence particles differing in the sign of s travel in different 

directions, such as + sign for downstream particles implies 

that the particle with  – sign in s  travels upstream. It may be 

noted that the sign of the z component of the spin which has 

two values for spin ½ is not used to define the helicity. The 

interpretation of the quantum Hall effect in GaAs as well as 

in graphene is in agreement with the g values which have 

particle–hole symmetry. 

 

VI. CONCLUSIONS 

The quantum Hall effect was discovered by von Klitzing et 

al experimentally but it had no theory in those days. The 

value of h/e2 can be calculated by a pencil from the known 

values of  h and e. The experimental value of the resistivity of 

h/e2 multiplies by a lot of unknown integers or fractions. It is 

important to find out as to what these fractions or integers are.  

We have found the theory which predicts the fractions which 

occur in the resistivity at the plateaus in the Hall effect.  

Basically, the Lande’s formula requires to be changed by a 

more accurate formula which has certain symmetries such as 

those of helicity.  The Landau levels as given in the books are 

single valued. The constant in the frequency must be double 

valued. Hence we have changed the Landau level theory 

suitably. The effect of the spin which is not trivially 

contained in the Landau levels has been found by us and 

applied to the quantum Hall effect. The spin thus not only 

occurs in the Hamiltonian as components but also as a 

constant in the Zeeman effect which at high fields is subject 

S.No. n 0 1 2 3 4 

1 n+(1/2) 1/2 3/2 5/2 7/2 9/2 

2 [n+(1/2)](1/2) 1/4 3/4 5/4 7/4 9/4 

3 [n+(1/2)](3/2) 3/4 9/4 15/4 21/4 27/4 

4 [n+(1/2)](5/2) 5/4 15/4 25/4 35/4 45/4 

5 [n+1/2](-1/2) -1/4 -3/4 -5/4 -7/4 -9/4 
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to helicity type doubling of states. 
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